(*  Title:      HOLCF/ex/hoare.thy
    ID:         $Id$
    Author:     Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen
Theory for an example by C.A.R. Hoare 
p x = if b1 x 
         then p (g x)
         else x fi
q x = if b1 x orelse b2 x 
         then q (g x)
         else x fi
Prove: for all b1 b2 g . 
            q o p  = q 
In order to get a nice notation we fix the functions b1,b2 and g in the
signature of this example
*)
Hoare = HOLCF + 
consts
        b1:: "'a -> tr"
        b2:: "'a -> tr"
         g:: "'a -> 'a"
        p :: "'a -> 'a"
        q :: "'a -> 'a"
defs
  p_def  "p == fix$(LAM f. LAM x.
                 If b1$x then f$(g$x) else x fi)"
  q_def  "q == fix$(LAM f. LAM x.
                 If b1$x orelse b2$x then f$(g$x) else x fi)"
end