(* Title: HOL/nat_simprocs.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 2000 University of Cambridge
Simprocs for nat numerals.
*)
structure Nat_Numeral_Simprocs =
struct
(*Maps n to #n for n = 0, 1, 2*)
val numeral_syms =
[@{thm nat_numeral_0_eq_0} RS sym, @{thm nat_numeral_1_eq_1} RS sym, @{thm numeral_2_eq_2} RS sym];
val numeral_sym_ss = HOL_ss addsimps numeral_syms;
fun rename_numerals th =
simplify numeral_sym_ss (Thm.transfer (the_context ()) th);
(*Utilities*)
fun mk_number n = HOLogic.number_of_const HOLogic.natT $ HOLogic.mk_numeral n;
fun dest_number t = Int.max (0, snd (HOLogic.dest_number t));
fun find_first_numeral past (t::terms) =
((dest_number t, t, rev past @ terms)
handle TERM _ => find_first_numeral (t::past) terms)
| find_first_numeral past [] = raise TERM("find_first_numeral", []);
val zero = mk_number 0;
val mk_plus = HOLogic.mk_binop @{const_name HOL.plus};
(*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*)
fun mk_sum [] = zero
| mk_sum [t,u] = mk_plus (t, u)
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
(*this version ALWAYS includes a trailing zero*)
fun long_mk_sum [] = HOLogic.zero
| long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
val dest_plus = HOLogic.dest_bin @{const_name HOL.plus} HOLogic.natT;
(** Other simproc items **)
val trans_tac = Int_Numeral_Simprocs.trans_tac;
val bin_simps =
[@{thm nat_numeral_0_eq_0} RS sym, @{thm nat_numeral_1_eq_1} RS sym,
@{thm add_nat_number_of}, @{thm nat_number_of_add_left},
@{thm diff_nat_number_of}, @{thm le_number_of_eq_not_less},
@{thm mult_nat_number_of}, @{thm nat_number_of_mult_left},
@{thm less_nat_number_of},
@{thm Let_number_of}, @{thm nat_number_of}] @
arith_simps @ rel_simps;
fun prep_simproc (name, pats, proc) =
Simplifier.simproc (the_context ()) name pats proc;
(*** CancelNumerals simprocs ***)
val one = mk_number 1;
val mk_times = HOLogic.mk_binop @{const_name HOL.times};
fun mk_prod [] = one
| mk_prod [t] = t
| mk_prod (t :: ts) = if t = one then mk_prod ts
else mk_times (t, mk_prod ts);
val dest_times = HOLogic.dest_bin @{const_name HOL.times} HOLogic.natT;
fun dest_prod t =
let val (t,u) = dest_times t
in dest_prod t @ dest_prod u end
handle TERM _ => [t];
(*DON'T do the obvious simplifications; that would create special cases*)
fun mk_coeff (k,t) = mk_times (mk_number k, t);
(*Express t as a product of (possibly) a numeral with other factors, sorted*)
fun dest_coeff t =
let val ts = sort Term.term_ord (dest_prod t)
val (n, _, ts') = find_first_numeral [] ts
handle TERM _ => (1, one, ts)
in (n, mk_prod ts') end;
(*Find first coefficient-term THAT MATCHES u*)
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
| find_first_coeff past u (t::terms) =
let val (n,u') = dest_coeff t
in if u aconv u' then (n, rev past @ terms)
else find_first_coeff (t::past) u terms
end
handle TERM _ => find_first_coeff (t::past) u terms;
(*Split up a sum into the list of its constituent terms, on the way removing any
Sucs and counting them.*)
fun dest_Suc_sum (Const ("Suc", _) $ t, (k,ts)) = dest_Suc_sum (t, (k+1,ts))
| dest_Suc_sum (t, (k,ts)) =
let val (t1,t2) = dest_plus t
in dest_Suc_sum (t1, dest_Suc_sum (t2, (k,ts))) end
handle TERM _ => (k, t::ts);
(*Code for testing whether numerals are already used in the goal*)
fun is_numeral (Const(@{const_name Numeral.number_of}, _) $ w) = true
| is_numeral _ = false;
fun prod_has_numeral t = exists is_numeral (dest_prod t);
(*The Sucs found in the term are converted to a binary numeral. If relaxed is false,
an exception is raised unless the original expression contains at least one
numeral in a coefficient position. This prevents nat_combine_numerals from
introducing numerals to goals.*)
fun dest_Sucs_sum relaxed t =
let val (k,ts) = dest_Suc_sum (t,(0,[]))
in
if relaxed orelse exists prod_has_numeral ts then
if k=0 then ts
else mk_number k :: ts
else raise TERM("Nat_Numeral_Simprocs.dest_Sucs_sum", [t])
end;
(*Simplify 1*n and n*1 to n*)
val add_0s = map rename_numerals [@{thm add_0}, @{thm add_0_right}];
val mult_1s = map rename_numerals [@{thm nat_mult_1}, @{thm nat_mult_1_right}];
(*Final simplification: cancel + and *; replace Numeral0 by 0 and Numeral1 by 1*)
(*And these help the simproc return False when appropriate, which helps
the arith prover.*)
val contra_rules = [@{thm add_Suc}, @{thm add_Suc_right}, @{thm Zero_not_Suc},
@{thm Suc_not_Zero}, @{thm le_0_eq}];
val simplify_meta_eq =
Int_Numeral_Simprocs.simplify_meta_eq
([@{thm nat_numeral_0_eq_0}, @{thm numeral_1_eq_Suc_0}, @{thm add_0}, @{thm add_0_right},
@{thm mult_0}, @{thm mult_0_right}, @{thm mult_1}, @{thm mult_1_right}] @ contra_rules);
(*Like HOL_ss but with an ordering that brings numerals to the front
under AC-rewriting.*)
val num_ss = Int_Numeral_Simprocs.num_ss;
(*** Applying CancelNumeralsFun ***)
structure CancelNumeralsCommon =
struct
val mk_sum = (fn T:typ => mk_sum)
val dest_sum = dest_Sucs_sum true
val mk_coeff = mk_coeff
val dest_coeff = dest_coeff
val find_first_coeff = find_first_coeff []
val trans_tac = fn _ => trans_tac
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @
[@{thm Suc_eq_add_numeral_1_left}] @ @{thms add_ac}
val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
fun norm_tac ss =
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
val numeral_simp_ss = HOL_ss addsimps add_0s @ bin_simps;
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss));
val simplify_meta_eq = simplify_meta_eq
end;
structure EqCancelNumerals = CancelNumeralsFun
(open CancelNumeralsCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_eq
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT
val bal_add1 = @{thm nat_eq_add_iff1} RS trans
val bal_add2 = @{thm nat_eq_add_iff2} RS trans
);
structure LessCancelNumerals = CancelNumeralsFun
(open CancelNumeralsCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less}
val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
val bal_add1 = @{thm nat_less_add_iff1} RS trans
val bal_add2 = @{thm nat_less_add_iff2} RS trans
);
structure LeCancelNumerals = CancelNumeralsFun
(open CancelNumeralsCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq}
val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
val bal_add1 = @{thm nat_le_add_iff1} RS trans
val bal_add2 = @{thm nat_le_add_iff2} RS trans
);
structure DiffCancelNumerals = CancelNumeralsFun
(open CancelNumeralsCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop @{const_name HOL.minus}
val dest_bal = HOLogic.dest_bin @{const_name HOL.minus} HOLogic.natT
val bal_add1 = @{thm nat_diff_add_eq1} RS trans
val bal_add2 = @{thm nat_diff_add_eq2} RS trans
);
val cancel_numerals =
map prep_simproc
[("nateq_cancel_numerals",
["(l::nat) + m = n", "(l::nat) = m + n",
"(l::nat) * m = n", "(l::nat) = m * n",
"Suc m = n", "m = Suc n"],
K EqCancelNumerals.proc),
("natless_cancel_numerals",
["(l::nat) + m < n", "(l::nat) < m + n",
"(l::nat) * m < n", "(l::nat) < m * n",
"Suc m < n", "m < Suc n"],
K LessCancelNumerals.proc),
("natle_cancel_numerals",
["(l::nat) + m <= n", "(l::nat) <= m + n",
"(l::nat) * m <= n", "(l::nat) <= m * n",
"Suc m <= n", "m <= Suc n"],
K LeCancelNumerals.proc),
("natdiff_cancel_numerals",
["((l::nat) + m) - n", "(l::nat) - (m + n)",
"(l::nat) * m - n", "(l::nat) - m * n",
"Suc m - n", "m - Suc n"],
K DiffCancelNumerals.proc)];
(*** Applying CombineNumeralsFun ***)
structure CombineNumeralsData =
struct
type coeff = int
val iszero = (fn x => x = 0)
val add = op +
val mk_sum = (fn T:typ => long_mk_sum) (*to work for 2*x + 3*x *)
val dest_sum = dest_Sucs_sum false
val mk_coeff = mk_coeff
val dest_coeff = dest_coeff
val left_distrib = @{thm left_add_mult_distrib} RS trans
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv_nohyps
val trans_tac = fn _ => trans_tac
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @ [@{thm Suc_eq_add_numeral_1}] @ @{thms add_ac}
val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
fun norm_tac ss =
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
val numeral_simp_ss = HOL_ss addsimps add_0s @ bin_simps;
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
val simplify_meta_eq = simplify_meta_eq
end;
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
val combine_numerals =
prep_simproc ("nat_combine_numerals", ["(i::nat) + j", "Suc (i + j)"], K CombineNumerals.proc);
(*** Applying CancelNumeralFactorFun ***)
structure CancelNumeralFactorCommon =
struct
val mk_coeff = mk_coeff
val dest_coeff = dest_coeff
val trans_tac = fn _ => trans_tac
val norm_ss1 = num_ss addsimps
numeral_syms @ add_0s @ mult_1s @ [@{thm Suc_eq_add_numeral_1_left}] @ @{thms add_ac}
val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
fun norm_tac ss =
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
val numeral_simp_ss = HOL_ss addsimps bin_simps
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
val simplify_meta_eq = simplify_meta_eq
end
structure DivCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop @{const_name Divides.div}
val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT
val cancel = @{thm nat_mult_div_cancel1} RS trans
val neg_exchanges = false
)
structure DvdCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name Divides.dvd}
val dest_bal = HOLogic.dest_bin @{const_name Divides.dvd} HOLogic.natT
val cancel = @{thm nat_mult_dvd_cancel1} RS trans
val neg_exchanges = false
)
structure EqCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_eq
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT
val cancel = @{thm nat_mult_eq_cancel1} RS trans
val neg_exchanges = false
)
structure LessCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less}
val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
val cancel = @{thm nat_mult_less_cancel1} RS trans
val neg_exchanges = true
)
structure LeCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq}
val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
val cancel = @{thm nat_mult_le_cancel1} RS trans
val neg_exchanges = true
)
val cancel_numeral_factors =
map prep_simproc
[("nateq_cancel_numeral_factors",
["(l::nat) * m = n", "(l::nat) = m * n"],
K EqCancelNumeralFactor.proc),
("natless_cancel_numeral_factors",
["(l::nat) * m < n", "(l::nat) < m * n"],
K LessCancelNumeralFactor.proc),
("natle_cancel_numeral_factors",
["(l::nat) * m <= n", "(l::nat) <= m * n"],
K LeCancelNumeralFactor.proc),
("natdiv_cancel_numeral_factors",
["((l::nat) * m) div n", "(l::nat) div (m * n)"],
K DivCancelNumeralFactor.proc),
("natdvd_cancel_numeral_factors",
["((l::nat) * m) dvd n", "(l::nat) dvd (m * n)"],
K DvdCancelNumeralFactor.proc)];
(*** Applying ExtractCommonTermFun ***)
(*this version ALWAYS includes a trailing one*)
fun long_mk_prod [] = one
| long_mk_prod (t :: ts) = mk_times (t, mk_prod ts);
(*Find first term that matches u*)
fun find_first_t past u [] = raise TERM("find_first_t", [])
| find_first_t past u (t::terms) =
if u aconv t then (rev past @ terms)
else find_first_t (t::past) u terms
handle TERM _ => find_first_t (t::past) u terms;
(** Final simplification for the CancelFactor simprocs **)
val simplify_one = Int_Numeral_Simprocs.simplify_meta_eq
[@{thm mult_1_left}, @{thm mult_1_right}, @{thm div_1}, @{thm numeral_1_eq_Suc_0}];
fun cancel_simplify_meta_eq cancel_th ss th =
simplify_one ss (([th, cancel_th]) MRS trans);
structure CancelFactorCommon =
struct
val mk_sum = (fn T:typ => long_mk_prod)
val dest_sum = dest_prod
val mk_coeff = mk_coeff
val dest_coeff = dest_coeff
val find_first = find_first_t []
val trans_tac = fn _ => trans_tac
val norm_ss = HOL_ss addsimps mult_1s @ @{thms mult_ac}
fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss))
end;
structure EqCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_eq
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_eq_cancel_disj}
);
structure LessCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less}
val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_less_cancel_disj}
);
structure LeCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq}
val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_le_cancel_disj}
);
structure DivideCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop @{const_name Divides.div}
val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_div_cancel_disj}
);
structure DvdCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binrel @{const_name Divides.dvd}
val dest_bal = HOLogic.dest_bin @{const_name Divides.dvd} HOLogic.natT
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_dvd_cancel_disj}
);
val cancel_factor =
map prep_simproc
[("nat_eq_cancel_factor",
["(l::nat) * m = n", "(l::nat) = m * n"],
K EqCancelFactor.proc),
("nat_less_cancel_factor",
["(l::nat) * m < n", "(l::nat) < m * n"],
K LessCancelFactor.proc),
("nat_le_cancel_factor",
["(l::nat) * m <= n", "(l::nat) <= m * n"],
K LeCancelFactor.proc),
("nat_divide_cancel_factor",
["((l::nat) * m) div n", "(l::nat) div (m * n)"],
K DivideCancelFactor.proc),
("nat_dvd_cancel_factor",
["((l::nat) * m) dvd n", "(l::nat) dvd (m * n)"],
K DvdCancelFactor.proc)];
end;
Addsimprocs Nat_Numeral_Simprocs.cancel_numerals;
Addsimprocs [Nat_Numeral_Simprocs.combine_numerals];
Addsimprocs Nat_Numeral_Simprocs.cancel_numeral_factors;
Addsimprocs Nat_Numeral_Simprocs.cancel_factor;
(*examples:
print_depth 22;
set timing;
set trace_simp;
fun test s = (Goal s; by (Simp_tac 1));
(*cancel_numerals*)
test "l +( 2) + (2) + 2 + (l + 2) + (oo + 2) = (uu::nat)";
test "(2*length xs < 2*length xs + j)";
test "(2*length xs < length xs * 2 + j)";
test "2*u = (u::nat)";
test "2*u = Suc (u)";
test "(i + j + 12 + (k::nat)) - 15 = y";
test "(i + j + 12 + (k::nat)) - 5 = y";
test "Suc u - 2 = y";
test "Suc (Suc (Suc u)) - 2 = y";
test "(i + j + 2 + (k::nat)) - 1 = y";
test "(i + j + 1 + (k::nat)) - 2 = y";
test "(2*x + (u*v) + y) - v*3*u = (w::nat)";
test "(2*x*u*v + 5 + (u*v)*4 + y) - v*u*4 = (w::nat)";
test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::nat)";
test "Suc (Suc (2*x*u*v + u*4 + y)) - u = w";
test "Suc ((u*v)*4) - v*3*u = w";
test "Suc (Suc ((u*v)*3)) - v*3*u = w";
test "(i + j + 12 + (k::nat)) = u + 15 + y";
test "(i + j + 32 + (k::nat)) - (u + 15 + y) = zz";
test "(i + j + 12 + (k::nat)) = u + 5 + y";
(*Suc*)
test "(i + j + 12 + k) = Suc (u + y)";
test "Suc (Suc (Suc (Suc (Suc (u + y))))) <= ((i + j) + 41 + k)";
test "(i + j + 5 + k) < Suc (Suc (Suc (Suc (Suc (u + y)))))";
test "Suc (Suc (Suc (Suc (Suc (u + y))))) - 5 = v";
test "(i + j + 5 + k) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (u + y)))))))";
test "2*y + 3*z + 2*u = Suc (u)";
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = Suc (u)";
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::nat)";
test "6 + 2*y + 3*z + 4*u = Suc (vv + 2*u + z)";
test "(2*n*m) < (3*(m*n)) + (u::nat)";
test "(Suc (Suc (Suc (Suc (Suc (Suc (case length (f c) of 0 => 0 | Suc k => k)))))) <= Suc 0)";
test "Suc (Suc (Suc (Suc (Suc (Suc (length l1 + length l2)))))) <= length l1";
test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length l3)))))) <= length (compT P E A ST mxr e))";
test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length (compT P E (A Un \<A> e) ST mxr c))))))) <= length (compT P E A ST mxr e))";
(*negative numerals: FAIL*)
test "(i + j + -23 + (k::nat)) < u + 15 + y";
test "(i + j + 3 + (k::nat)) < u + -15 + y";
test "(i + j + -12 + (k::nat)) - 15 = y";
test "(i + j + 12 + (k::nat)) - -15 = y";
test "(i + j + -12 + (k::nat)) - -15 = y";
(*combine_numerals*)
test "k + 3*k = (u::nat)";
test "Suc (i + 3) = u";
test "Suc (i + j + 3 + k) = u";
test "k + j + 3*k + j = (u::nat)";
test "Suc (j*i + i + k + 5 + 3*k + i*j*4) = (u::nat)";
test "(2*n*m) + (3*(m*n)) = (u::nat)";
(*negative numerals: FAIL*)
test "Suc (i + j + -3 + k) = u";
(*cancel_numeral_factors*)
test "9*x = 12 * (y::nat)";
test "(9*x) div (12 * (y::nat)) = z";
test "9*x < 12 * (y::nat)";
test "9*x <= 12 * (y::nat)";
(*cancel_factor*)
test "x*k = k*(y::nat)";
test "k = k*(y::nat)";
test "a*(b*c) = (b::nat)";
test "a*(b*c) = d*(b::nat)*(x*a)";
test "x*k < k*(y::nat)";
test "k < k*(y::nat)";
test "a*(b*c) < (b::nat)";
test "a*(b*c) < d*(b::nat)*(x*a)";
test "x*k <= k*(y::nat)";
test "k <= k*(y::nat)";
test "a*(b*c) <= (b::nat)";
test "a*(b*c) <= d*(b::nat)*(x*a)";
test "(x*k) div (k*(y::nat)) = (uu::nat)";
test "(k) div (k*(y::nat)) = (uu::nat)";
test "(a*(b*c)) div ((b::nat)) = (uu::nat)";
test "(a*(b*c)) div (d*(b::nat)*(x*a)) = (uu::nat)";
*)
(*** Prepare linear arithmetic for nat numerals ***)
local
(* reduce contradictory <= to False *)
val add_rules = @{thms ring_distribs} @
[@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1}, @{thm nat_0}, @{thm nat_1},
@{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
@{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
@{thm le_Suc_number_of}, @{thm le_number_of_Suc},
@{thm less_Suc_number_of}, @{thm less_number_of_Suc},
@{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
@{thm mult_Suc}, @{thm mult_Suc_right},
@{thm add_Suc}, @{thm add_Suc_right},
@{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
@{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of}, @{thm if_True}, @{thm if_False}];
(* Products are multiplied out during proof (re)construction via
ring_distribs. Ideally they should remain atomic. But that is
currently not possible because 1 is replaced by Suc 0, and then some
simprocs start to mess around with products like (n+1)*m. The rule
1 == Suc 0 is necessary for early parts of HOL where numerals and
simprocs are not yet available. But then it is difficult to remove
that rule later on, because it may find its way back in when theories
(and thus lin-arith simpsets) are merged. Otherwise one could turn the
rule around (Suc n = n+1) and see if that helps products being left
alone. *)
val simprocs = Nat_Numeral_Simprocs.combine_numerals
:: Nat_Numeral_Simprocs.cancel_numerals;
in
val nat_simprocs_setup =
LinArith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
{add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
inj_thms = inj_thms, lessD = lessD, neqE = neqE,
simpset = simpset addsimps add_rules
addsimprocs simprocs});
end;