Now Datatype.occs_in_prems prints the necessary warning ITSELF.
It is also easier to invoke and even works if the induction variable
is a parameter (rather than a free variable).
(*  Title:      HOL/Prod.thy
    ID:         Prod.thy,v 1.5 1994/08/19 09:04:27 lcp Exp
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge
Ordered Pairs and the Cartesian product type.
The unit type.
*)
Prod = Fun + equalities +
(** products **)
(* type definition *)
constdefs
  Pair_Rep      :: ['a, 'b] => ['a, 'b] => bool
  "Pair_Rep == (%a b. %x y. x=a & y=b)"
typedef (Prod)
  ('a, 'b) "*"          (infixr 20)
    = "{f. ? a b. f = Pair_Rep (a::'a) (b::'b)}"
syntax (symbols)
  "*"           :: [type, type] => type         ("(_ \\<times>/ _)" [21, 20] 20)
(* abstract constants and syntax *)
consts
  fst           :: "'a * 'b => 'a"
  snd           :: "'a * 'b => 'b"
  split         :: "[['a, 'b] => 'c, 'a * 'b] => 'c"
  prod_fun      :: "['a => 'b, 'c => 'd, 'a * 'c] => 'b * 'd"
  Pair          :: "['a, 'b] => 'a * 'b"
  Sigma         :: "['a set, 'a => 'b set] => ('a * 'b) set"
(* patterns -- extends pre-defined type "pttrn" used in abstractions *)
types pttrns
syntax
  "@Tuple"      :: "['a, args] => 'a * 'b"      ("(1'(_,/ _'))")
  "_pttrn"      :: [pttrn, pttrns] => pttrn     ("'(_,/_')")
  ""            :: pttrn => pttrns              ("_")
  "_pttrns"     :: [pttrn, pttrns] => pttrns    ("_,/_")
  "@Sigma"      :: "[idt, 'a set, 'b set] => ('a * 'b) set"     ("(3SIGMA _:_./ _)" 10)
  "@Times"      :: "['a set, 'a => 'b set] => ('a * 'b) set"    ("_ Times _" [81, 80] 80)
translations
  "(x, y, z)"   == "(x, (y, z))"
  "(x, y)"      == "Pair x y"
  "%(x,y,zs).b" == "split(%x (y,zs).b)"
  "%(x,y).b"    == "split(%x y.b)"
  "_abs (Pair x y) t" => "%(x,y).t"
  (* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *)
  "SIGMA x:A.B" => "Sigma A (%x.B)"
  "A Times B"   => "Sigma A (_K B)"
syntax (symbols)
  "@Sigma"      :: "[idt, 'a set, 'b set] => ('a * 'b) set"     ("(3\\<Sigma> _\\<in>_./ _)" 10)
  "@Times"      :: "['a set, 'a => 'b set] => ('a * 'b) set"    ("_ \\<times> _" [81, 80] 80)
(* definitions *)
defs
  Pair_def      "Pair a b == Abs_Prod(Pair_Rep a b)"
  fst_def       "fst p == @a. ? b. p = (a, b)"
  snd_def       "snd p == @b. ? a. p = (a, b)"
  split_def     "split == (%c p. c (fst p) (snd p))"
  prod_fun_def  "prod_fun f g == split(%x y.(f(x), g(y)))"
  Sigma_def     "Sigma A B == UN x:A. UN y:B(x). {(x, y)}"
(** unit **)
typedef  unit = "{True}"
consts
  "()"          :: unit                           ("'(')")
defs
  Unity_def     "() == Abs_unit True"
end
ML
val print_translation = [("Sigma", dependent_tr' ("@Sigma", "@Times"))];