| author | wenzelm |
| Fri, 05 Aug 2022 13:23:52 +0200 | |
| changeset 75760 | f8be63d2ec6f |
| parent 74224 | e04ec2b9ed97 |
| child 76836 | 30182f9e1818 |
| permissions | -rw-r--r-- |
section "Affine Sets" theory Affine imports Linear_Algebra begin lemma if_smult: "(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by (fact if_distrib) lemma sum_delta_notmem: assumes "x \<notin> s" shows "sum (\<lambda>y. if (y = x) then P x else Q y) s = sum Q s" and "sum (\<lambda>y. if (x = y) then P x else Q y) s = sum Q s" and "sum (\<lambda>y. if (y = x) then P y else Q y) s = sum Q s" and "sum (\<lambda>y. if (x = y) then P y else Q y) s = sum Q s" apply (rule_tac [!] sum.cong) using assms apply auto done lemmas independent_finite = independent_imp_finite lemma span_substd_basis: assumes d: "d \<subseteq> Basis" shows "span d = {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0}" (is "_ = ?B") proof - have "d \<subseteq> ?B" using d by (auto simp: inner_Basis) moreover have s: "subspace ?B" using subspace_substandard[of "\<lambda>i. i \<notin> d"] . ultimately have "span d \<subseteq> ?B" using span_mono[of d "?B"] span_eq_iff[of "?B"] by blast moreover have *: "card d \<le> dim (span d)" using independent_card_le_dim[of d "span d"] independent_substdbasis[OF assms] span_superset[of d] by auto moreover from * have "dim ?B \<le> dim (span d)" using dim_substandard[OF assms] by auto ultimately show ?thesis using s subspace_dim_equal[of "span d" "?B"] subspace_span[of d] by auto qed lemma basis_to_substdbasis_subspace_isomorphism: fixes B :: "'a::euclidean_space set" assumes "independent B" shows "\<exists>f d::'a set. card d = card B \<and> linear f \<and> f ` B = d \<and> f ` span B = {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0} \<and> inj_on f (span B) \<and> d \<subseteq> Basis" proof - have B: "card B = dim B" using dim_unique[of B B "card B"] assms span_superset[of B] by auto have "dim B \<le> card (Basis :: 'a set)" using dim_subset_UNIV[of B] by simp from ex_card[OF this] obtain d :: "'a set" where d: "d \<subseteq> Basis" and t: "card d = dim B" by auto let ?t = "{x::'a::euclidean_space. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0}" have "\<exists>f. linear f \<and> f ` B = d \<and> f ` span B = ?t \<and> inj_on f (span B)" proof (intro basis_to_basis_subspace_isomorphism subspace_span subspace_substandard span_superset) show "d \<subseteq> {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0}" using d inner_not_same_Basis by blast qed (auto simp: span_substd_basis independent_substdbasis dim_substandard d t B assms) with t \<open>card B = dim B\<close> d show ?thesis by auto qed subsection \<open>Affine set and affine hull\<close> definition\<^marker>\<open>tag important\<close> affine :: "'a::real_vector set \<Rightarrow> bool" where "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)" unfolding affine_def by (metis eq_diff_eq') lemma affine_empty [iff]: "affine {}" unfolding affine_def by auto lemma affine_sing [iff]: "affine {x}" unfolding affine_alt by (auto simp: scaleR_left_distrib [symmetric]) lemma affine_UNIV [iff]: "affine UNIV" unfolding affine_def by auto lemma affine_Inter [intro]: "(\<And>s. s\<in>f \<Longrightarrow> affine s) \<Longrightarrow> affine (\<Inter>f)" unfolding affine_def by auto lemma affine_Int[intro]: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)" unfolding affine_def by auto lemma affine_scaling: "affine s \<Longrightarrow> affine (image (\<lambda>x. c *\<^sub>R x) s)" apply (clarsimp simp add: affine_def) apply (rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in image_eqI) apply (auto simp: algebra_simps) done lemma affine_affine_hull [simp]: "affine(affine hull s)" unfolding hull_def using affine_Inter[of "{t. affine t \<and> s \<subseteq> t}"] by auto lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s" by (metis affine_affine_hull hull_same) lemma affine_hyperplane: "affine {x. a \<bullet> x = b}" by (simp add: affine_def algebra_simps) (metis distrib_right mult.left_neutral) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Some explicit formulations\<close> text "Formalized by Lars Schewe." lemma affine: fixes V::"'a::real_vector set" shows "affine V \<longleftrightarrow> (\<forall>S u. finite S \<and> S \<noteq> {} \<and> S \<subseteq> V \<and> sum u S = 1 \<longrightarrow> (\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V)" proof - have "u *\<^sub>R x + v *\<^sub>R y \<in> V" if "x \<in> V" "y \<in> V" "u + v = (1::real)" and *: "\<And>S u. \<lbrakk>finite S; S \<noteq> {}; S \<subseteq> V; sum u S = 1\<rbrakk> \<Longrightarrow> (\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V" for x y u v proof (cases "x = y") case True then show ?thesis using that by (metis scaleR_add_left scaleR_one) next case False then show ?thesis using that *[of "{x,y}" "\<lambda>w. if w = x then u else v"] by auto qed moreover have "(\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V" if *: "\<And>x y u v. \<lbrakk>x\<in>V; y\<in>V; u + v = 1\<rbrakk> \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V" and "finite S" "S \<noteq> {}" "S \<subseteq> V" "sum u S = 1" for S u proof - define n where "n = card S" consider "card S = 0" | "card S = 1" | "card S = 2" | "card S > 2" by linarith then show "(\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V" proof cases assume "card S = 1" then obtain a where "S={a}" by (auto simp: card_Suc_eq) then show ?thesis using that by simp next assume "card S = 2" then obtain a b where "S = {a, b}" by (metis Suc_1 card_1_singletonE card_Suc_eq) then show ?thesis using *[of a b] that by (auto simp: sum_clauses(2)) next assume "card S > 2" then show ?thesis using that n_def proof (induct n arbitrary: u S) case 0 then show ?case by auto next case (Suc n u S) have "sum u S = card S" if "\<not> (\<exists>x\<in>S. u x \<noteq> 1)" using that unfolding card_eq_sum by auto with Suc.prems obtain x where "x \<in> S" and x: "u x \<noteq> 1" by force have c: "card (S - {x}) = card S - 1" by (simp add: Suc.prems(3) \<open>x \<in> S\<close>) have "sum u (S - {x}) = 1 - u x" by (simp add: Suc.prems sum_diff1 \<open>x \<in> S\<close>) with x have eq1: "inverse (1 - u x) * sum u (S - {x}) = 1" by auto have inV: "(\<Sum>y\<in>S - {x}. (inverse (1 - u x) * u y) *\<^sub>R y) \<in> V" proof (cases "card (S - {x}) > 2") case True then have S: "S - {x} \<noteq> {}" "card (S - {x}) = n" using Suc.prems c by force+ show ?thesis proof (rule Suc.hyps) show "(\<Sum>a\<in>S - {x}. inverse (1 - u x) * u a) = 1" by (auto simp: eq1 sum_distrib_left[symmetric]) qed (use S Suc.prems True in auto) next case False then have "card (S - {x}) = Suc (Suc 0)" using Suc.prems c by auto then obtain a b where ab: "(S - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto then show ?thesis using eq1 \<open>S \<subseteq> V\<close> by (auto simp: sum_distrib_left distrib_left intro!: Suc.prems(2)[of a b]) qed have "u x + (1 - u x) = 1 \<Longrightarrow> u x *\<^sub>R x + (1 - u x) *\<^sub>R ((\<Sum>y\<in>S - {x}. u y *\<^sub>R y) /\<^sub>R (1 - u x)) \<in> V" by (rule Suc.prems) (use \<open>x \<in> S\<close> Suc.prems inV in \<open>auto simp: scaleR_right.sum\<close>) moreover have "(\<Sum>a\<in>S. u a *\<^sub>R a) = u x *\<^sub>R x + (\<Sum>a\<in>S - {x}. u a *\<^sub>R a)" by (meson Suc.prems(3) sum.remove \<open>x \<in> S\<close>) ultimately show "(\<Sum>x\<in>S. u x *\<^sub>R x) \<in> V" by (simp add: x) qed qed (use \<open>S\<noteq>{}\<close> \<open>finite S\<close> in auto) qed ultimately show ?thesis unfolding affine_def by meson qed lemma affine_hull_explicit: "affine hull p = {y. \<exists>S u. finite S \<and> S \<noteq> {} \<and> S \<subseteq> p \<and> sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}" (is "_ = ?rhs") proof (rule hull_unique) show "p \<subseteq> ?rhs" proof (intro subsetI CollectI exI conjI) show "\<And>x. sum (\<lambda>z. 1) {x} = 1" by auto qed auto show "?rhs \<subseteq> T" if "p \<subseteq> T" "affine T" for T using that unfolding affine by blast show "affine ?rhs" unfolding affine_def proof clarify fix u v :: real and sx ux sy uy assume uv: "u + v = 1" and x: "finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "sum ux sx = (1::real)" and y: "finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "sum uy sy = (1::real)" have **: "(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto show "\<exists>S w. finite S \<and> S \<noteq> {} \<and> S \<subseteq> p \<and> sum w S = 1 \<and> (\<Sum>v\<in>S. w v *\<^sub>R v) = u *\<^sub>R (\<Sum>v\<in>sx. ux v *\<^sub>R v) + v *\<^sub>R (\<Sum>v\<in>sy. uy v *\<^sub>R v)" proof (intro exI conjI) show "finite (sx \<union> sy)" using x y by auto show "sum (\<lambda>i. (if i\<in>sx then u * ux i else 0) + (if i\<in>sy then v * uy i else 0)) (sx \<union> sy) = 1" using x y uv by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] sum_distrib_left [symmetric] **) have "(\<Sum>i\<in>sx \<union> sy. ((if i \<in> sx then u * ux i else 0) + (if i \<in> sy then v * uy i else 0)) *\<^sub>R i) = (\<Sum>i\<in>sx. (u * ux i) *\<^sub>R i) + (\<Sum>i\<in>sy. (v * uy i) *\<^sub>R i)" using x y unfolding scaleR_left_distrib scaleR_zero_left if_smult by (simp add: sum_Un sum.distrib sum.inter_restrict[symmetric] **) also have "\<dots> = u *\<^sub>R (\<Sum>v\<in>sx. ux v *\<^sub>R v) + v *\<^sub>R (\<Sum>v\<in>sy. uy v *\<^sub>R v)" unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] by blast finally show "(\<Sum>i\<in>sx \<union> sy. ((if i \<in> sx then u * ux i else 0) + (if i \<in> sy then v * uy i else 0)) *\<^sub>R i) = u *\<^sub>R (\<Sum>v\<in>sx. ux v *\<^sub>R v) + v *\<^sub>R (\<Sum>v\<in>sy. uy v *\<^sub>R v)" . qed (use x y in auto) qed qed lemma affine_hull_finite: assumes "finite S" shows "affine hull S = {y. \<exists>u. sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}" proof - have *: "\<exists>h. sum h S = 1 \<and> (\<Sum>v\<in>S. h v *\<^sub>R v) = x" if "F \<subseteq> S" "finite F" "F \<noteq> {}" and sum: "sum u F = 1" and x: "(\<Sum>v\<in>F. u v *\<^sub>R v) = x" for x F u proof - have "S \<inter> F = F" using that by auto show ?thesis proof (intro exI conjI) show "(\<Sum>x\<in>S. if x \<in> F then u x else 0) = 1" by (metis (mono_tags, lifting) \<open>S \<inter> F = F\<close> assms sum.inter_restrict sum) show "(\<Sum>v\<in>S. (if v \<in> F then u v else 0) *\<^sub>R v) = x" by (simp add: if_smult cong: if_cong) (metis (no_types) \<open>S \<inter> F = F\<close> assms sum.inter_restrict x) qed qed show ?thesis unfolding affine_hull_explicit using assms by (fastforce dest: *) qed subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Stepping theorems and hence small special cases\<close> lemma affine_hull_empty[simp]: "affine hull {} = {}" by simp lemma affine_hull_finite_step: fixes y :: "'a::real_vector" shows "finite S \<Longrightarrow> (\<exists>u. sum u (insert a S) = w \<and> sum (\<lambda>x. u x *\<^sub>R x) (insert a S) = y) \<longleftrightarrow> (\<exists>v u. sum u S = w - v \<and> sum (\<lambda>x. u x *\<^sub>R x) S = y - v *\<^sub>R a)" (is "_ \<Longrightarrow> ?lhs = ?rhs") proof - assume fin: "finite S" show "?lhs = ?rhs" proof assume ?lhs then obtain u where u: "sum u (insert a S) = w \<and> (\<Sum>x\<in>insert a S. u x *\<^sub>R x) = y" by auto show ?rhs proof (cases "a \<in> S") case True then show ?thesis using u by (simp add: insert_absorb) (metis diff_zero real_vector.scale_zero_left) next case False show ?thesis by (rule exI [where x="u a"]) (use u fin False in auto) qed next assume ?rhs then obtain v u where vu: "sum u S = w - v" "(\<Sum>x\<in>S. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto have *: "\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto show ?lhs proof (cases "a \<in> S") case True show ?thesis by (rule exI [where x="\<lambda>x. (if x=a then v else 0) + u x"]) (simp add: True scaleR_left_distrib sum.distrib sum_clauses fin vu * cong: if_cong) next case False then show ?thesis apply (rule_tac x="\<lambda>x. if x=a then v else u x" in exI) apply (simp add: vu sum_clauses(2)[OF fin] *) by (simp add: sum_delta_notmem(3) vu) qed qed qed lemma affine_hull_2: fixes a b :: "'a::real_vector" shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs") proof - have *: "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto have "?lhs = {y. \<exists>u. sum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}" using affine_hull_finite[of "{a,b}"] by auto also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}" by (simp add: affine_hull_finite_step[of "{b}" a]) also have "\<dots> = ?rhs" unfolding * by auto finally show ?thesis by auto qed lemma affine_hull_3: fixes a b c :: "'a::real_vector" shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" proof - have *: "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto show ?thesis apply (simp add: affine_hull_finite affine_hull_finite_step) unfolding * apply safe apply (metis add.assoc) apply (rule_tac x=u in exI, force) done qed lemma mem_affine: assumes "affine S" "x \<in> S" "y \<in> S" "u + v = 1" shows "u *\<^sub>R x + v *\<^sub>R y \<in> S" using assms affine_def[of S] by auto lemma mem_affine_3: assumes "affine S" "x \<in> S" "y \<in> S" "z \<in> S" "u + v + w = 1" shows "u *\<^sub>R x + v *\<^sub>R y + w *\<^sub>R z \<in> S" proof - have "u *\<^sub>R x + v *\<^sub>R y + w *\<^sub>R z \<in> affine hull {x, y, z}" using affine_hull_3[of x y z] assms by auto moreover have "affine hull {x, y, z} \<subseteq> affine hull S" using hull_mono[of "{x, y, z}" "S"] assms by auto moreover have "affine hull S = S" using assms affine_hull_eq[of S] by auto ultimately show ?thesis by auto qed lemma mem_affine_3_minus: assumes "affine S" "x \<in> S" "y \<in> S" "z \<in> S" shows "x + v *\<^sub>R (y-z) \<in> S" using mem_affine_3[of S x y z 1 v "-v"] assms by (simp add: algebra_simps) corollary%unimportant mem_affine_3_minus2: "\<lbrakk>affine S; x \<in> S; y \<in> S; z \<in> S\<rbrakk> \<Longrightarrow> x - v *\<^sub>R (y-z) \<in> S" by (metis add_uminus_conv_diff mem_affine_3_minus real_vector.scale_minus_left) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Some relations between affine hull and subspaces\<close> lemma affine_hull_insert_subset_span: "affine hull (insert a S) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> S}}" proof - have "\<exists>v T u. x = a + v \<and> (finite T \<and> T \<subseteq> {x - a |x. x \<in> S} \<and> (\<Sum>v\<in>T. u v *\<^sub>R v) = v)" if "finite F" "F \<noteq> {}" "F \<subseteq> insert a S" "sum u F = 1" "(\<Sum>v\<in>F. u v *\<^sub>R v) = x" for x F u proof - have *: "(\<lambda>x. x - a) ` (F - {a}) \<subseteq> {x - a |x. x \<in> S}" using that by auto show ?thesis proof (intro exI conjI) show "finite ((\<lambda>x. x - a) ` (F - {a}))" by (simp add: that(1)) show "(\<Sum>v\<in>(\<lambda>x. x - a) ` (F - {a}). u(v+a) *\<^sub>R v) = x-a" by (simp add: sum.reindex[unfolded inj_on_def] algebra_simps sum_subtractf scaleR_left.sum[symmetric] sum_diff1 that) qed (use \<open>F \<subseteq> insert a S\<close> in auto) qed then show ?thesis unfolding affine_hull_explicit span_explicit by fast qed lemma affine_hull_insert_span: assumes "a \<notin> S" shows "affine hull (insert a S) = {a + v | v . v \<in> span {x - a | x. x \<in> S}}" proof - have *: "\<exists>G u. finite G \<and> G \<noteq> {} \<and> G \<subseteq> insert a S \<and> sum u G = 1 \<and> (\<Sum>v\<in>G. u v *\<^sub>R v) = y" if "v \<in> span {x - a |x. x \<in> S}" "y = a + v" for y v proof - from that obtain T u where u: "finite T" "T \<subseteq> {x - a |x. x \<in> S}" "a + (\<Sum>v\<in>T. u v *\<^sub>R v) = y" unfolding span_explicit by auto define F where "F = (\<lambda>x. x + a) ` T" have F: "finite F" "F \<subseteq> S" "(\<Sum>v\<in>F. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding F_def using u by (auto simp: sum.reindex[unfolded inj_on_def]) have *: "F \<inter> {a} = {}" "F \<inter> - {a} = F" using F assms by auto show "\<exists>G u. finite G \<and> G \<noteq> {} \<and> G \<subseteq> insert a S \<and> sum u G = 1 \<and> (\<Sum>v\<in>G. u v *\<^sub>R v) = y" apply (rule_tac x = "insert a F" in exI) apply (rule_tac x = "\<lambda>x. if x=a then 1 - sum (\<lambda>x. u (x - a)) F else u (x - a)" in exI) using assms F apply (auto simp: sum_clauses sum.If_cases if_smult sum_subtractf scaleR_left.sum algebra_simps *) done qed show ?thesis by (intro subset_antisym affine_hull_insert_subset_span) (auto simp: affine_hull_explicit dest!: *) qed lemma affine_hull_span: assumes "a \<in> S" shows "affine hull S = {a + v | v. v \<in> span {x - a | x. x \<in> S - {a}}}" using affine_hull_insert_span[of a "S - {a}", unfolded insert_Diff[OF assms]] by auto subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Parallel affine sets\<close> definition affine_parallel :: "'a::real_vector set \<Rightarrow> 'a::real_vector set \<Rightarrow> bool" where "affine_parallel S T \<longleftrightarrow> (\<exists>a. T = (\<lambda>x. a + x) ` S)" lemma affine_parallel_expl_aux: fixes S T :: "'a::real_vector set" assumes "\<And>x. x \<in> S \<longleftrightarrow> a + x \<in> T" shows "T = (\<lambda>x. a + x) ` S" proof - have "x \<in> ((\<lambda>x. a + x) ` S)" if "x \<in> T" for x using that by (simp add: image_iff) (metis add.commute diff_add_cancel assms) moreover have "T \<ge> (\<lambda>x. a + x) ` S" using assms by auto ultimately show ?thesis by auto qed lemma affine_parallel_expl: "affine_parallel S T \<longleftrightarrow> (\<exists>a. \<forall>x. x \<in> S \<longleftrightarrow> a + x \<in> T)" by (auto simp add: affine_parallel_def) (use affine_parallel_expl_aux [of S _ T] in blast) lemma affine_parallel_reflex: "affine_parallel S S" unfolding affine_parallel_def using image_add_0 by blast lemma affine_parallel_commut: assumes "affine_parallel A B" shows "affine_parallel B A" proof - from assms obtain a where B: "B = (\<lambda>x. a + x) ` A" unfolding affine_parallel_def by auto have [simp]: "(\<lambda>x. x - a) = plus (- a)" by (simp add: fun_eq_iff) from B show ?thesis using translation_galois [of B a A] unfolding affine_parallel_def by blast qed lemma affine_parallel_assoc: assumes "affine_parallel A B" and "affine_parallel B C" shows "affine_parallel A C" proof - from assms obtain ab where "B = (\<lambda>x. ab + x) ` A" unfolding affine_parallel_def by auto moreover from assms obtain bc where "C = (\<lambda>x. bc + x) ` B" unfolding affine_parallel_def by auto ultimately show ?thesis using translation_assoc[of bc ab A] unfolding affine_parallel_def by auto qed lemma affine_translation_aux: fixes a :: "'a::real_vector" assumes "affine ((\<lambda>x. a + x) ` S)" shows "affine S" proof - { fix x y u v assume xy: "x \<in> S" "y \<in> S" "(u :: real) + v = 1" then have "(a + x) \<in> ((\<lambda>x. a + x) ` S)" "(a + y) \<in> ((\<lambda>x. a + x) ` S)" by auto then have h1: "u *\<^sub>R (a + x) + v *\<^sub>R (a + y) \<in> (\<lambda>x. a + x) ` S" using xy assms unfolding affine_def by auto have "u *\<^sub>R (a + x) + v *\<^sub>R (a + y) = (u + v) *\<^sub>R a + (u *\<^sub>R x + v *\<^sub>R y)" by (simp add: algebra_simps) also have "\<dots> = a + (u *\<^sub>R x + v *\<^sub>R y)" using \<open>u + v = 1\<close> by auto ultimately have "a + (u *\<^sub>R x + v *\<^sub>R y) \<in> (\<lambda>x. a + x) ` S" using h1 by auto then have "u *\<^sub>R x + v *\<^sub>R y \<in> S" by auto } then show ?thesis unfolding affine_def by auto qed lemma affine_translation: "affine S \<longleftrightarrow> affine ((+) a ` S)" for a :: "'a::real_vector" proof show "affine ((+) a ` S)" if "affine S" using that translation_assoc [of "- a" a S] by (auto intro: affine_translation_aux [of "- a" "((+) a ` S)"]) show "affine S" if "affine ((+) a ` S)" using that by (rule affine_translation_aux) qed lemma parallel_is_affine: fixes S T :: "'a::real_vector set" assumes "affine S" "affine_parallel S T" shows "affine T" proof - from assms obtain a where "T = (\<lambda>x. a + x) ` S" unfolding affine_parallel_def by auto then show ?thesis using affine_translation assms by auto qed lemma subspace_imp_affine: "subspace s \<Longrightarrow> affine s" unfolding subspace_def affine_def by auto lemma affine_hull_subset_span: "(affine hull s) \<subseteq> (span s)" by (metis hull_minimal span_superset subspace_imp_affine subspace_span) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Subspace parallel to an affine set\<close> lemma subspace_affine: "subspace S \<longleftrightarrow> affine S \<and> 0 \<in> S" proof - have h0: "subspace S \<Longrightarrow> affine S \<and> 0 \<in> S" using subspace_imp_affine[of S] subspace_0 by auto { assume assm: "affine S \<and> 0 \<in> S" { fix c :: real fix x assume x: "x \<in> S" have "c *\<^sub>R x = (1-c) *\<^sub>R 0 + c *\<^sub>R x" by auto moreover have "(1 - c) *\<^sub>R 0 + c *\<^sub>R x \<in> S" using affine_alt[of S] assm x by auto ultimately have "c *\<^sub>R x \<in> S" by auto } then have h1: "\<forall>c. \<forall>x \<in> S. c *\<^sub>R x \<in> S" by auto { fix x y assume xy: "x \<in> S" "y \<in> S" define u where "u = (1 :: real)/2" have "(1/2) *\<^sub>R (x+y) = (1/2) *\<^sub>R (x+y)" by auto moreover have "(1/2) *\<^sub>R (x+y)=(1/2) *\<^sub>R x + (1-(1/2)) *\<^sub>R y" by (simp add: algebra_simps) moreover have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> S" using affine_alt[of S] assm xy by auto ultimately have "(1/2) *\<^sub>R (x+y) \<in> S" using u_def by auto moreover have "x + y = 2 *\<^sub>R ((1/2) *\<^sub>R (x+y))" by auto ultimately have "x + y \<in> S" using h1[rule_format, of "(1/2) *\<^sub>R (x+y)" "2"] by auto } then have "\<forall>x \<in> S. \<forall>y \<in> S. x + y \<in> S" by auto then have "subspace S" using h1 assm unfolding subspace_def by auto } then show ?thesis using h0 by metis qed lemma affine_diffs_subspace: assumes "affine S" "a \<in> S" shows "subspace ((\<lambda>x. (-a)+x) ` S)" proof - have [simp]: "(\<lambda>x. x - a) = plus (- a)" by (simp add: fun_eq_iff) have "affine ((\<lambda>x. (-a)+x) ` S)" using affine_translation assms by blast moreover have "0 \<in> ((\<lambda>x. (-a)+x) ` S)" using assms exI[of "(\<lambda>x. x\<in>S \<and> -a+x = 0)" a] by auto ultimately show ?thesis using subspace_affine by auto qed lemma affine_diffs_subspace_subtract: "subspace ((\<lambda>x. x - a) ` S)" if "affine S" "a \<in> S" using that affine_diffs_subspace [of _ a] by simp lemma parallel_subspace_explicit: assumes "affine S" and "a \<in> S" assumes "L \<equiv> {y. \<exists>x \<in> S. (-a) + x = y}" shows "subspace L \<and> affine_parallel S L" proof - from assms have "L = plus (- a) ` S" by auto then have par: "affine_parallel S L" unfolding affine_parallel_def .. then have "affine L" using assms parallel_is_affine by auto moreover have "0 \<in> L" using assms by auto ultimately show ?thesis using subspace_affine par by auto qed lemma parallel_subspace_aux: assumes "subspace A" and "subspace B" and "affine_parallel A B" shows "A \<supseteq> B" proof - from assms obtain a where a: "\<forall>x. x \<in> A \<longleftrightarrow> a + x \<in> B" using affine_parallel_expl[of A B] by auto then have "-a \<in> A" using assms subspace_0[of B] by auto then have "a \<in> A" using assms subspace_neg[of A "-a"] by auto then show ?thesis using assms a unfolding subspace_def by auto qed lemma parallel_subspace: assumes "subspace A" and "subspace B" and "affine_parallel A B" shows "A = B" proof show "A \<supseteq> B" using assms parallel_subspace_aux by auto show "A \<subseteq> B" using assms parallel_subspace_aux[of B A] affine_parallel_commut by auto qed lemma affine_parallel_subspace: assumes "affine S" "S \<noteq> {}" shows "\<exists>!L. subspace L \<and> affine_parallel S L" proof - have ex: "\<exists>L. subspace L \<and> affine_parallel S L" using assms parallel_subspace_explicit by auto { fix L1 L2 assume ass: "subspace L1 \<and> affine_parallel S L1" "subspace L2 \<and> affine_parallel S L2" then have "affine_parallel L1 L2" using affine_parallel_commut[of S L1] affine_parallel_assoc[of L1 S L2] by auto then have "L1 = L2" using ass parallel_subspace by auto } then show ?thesis using ex by auto qed subsection \<open>Affine Dependence\<close> text "Formalized by Lars Schewe." definition\<^marker>\<open>tag important\<close> affine_dependent :: "'a::real_vector set \<Rightarrow> bool" where "affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> affine hull (s - {x}))" lemma affine_dependent_imp_dependent: "affine_dependent s \<Longrightarrow> dependent s" unfolding affine_dependent_def dependent_def using affine_hull_subset_span by auto lemma affine_dependent_subset: "\<lbrakk>affine_dependent s; s \<subseteq> t\<rbrakk> \<Longrightarrow> affine_dependent t" apply (simp add: affine_dependent_def Bex_def) apply (blast dest: hull_mono [OF Diff_mono [OF _ subset_refl]]) done lemma affine_independent_subset: shows "\<lbrakk>\<not> affine_dependent t; s \<subseteq> t\<rbrakk> \<Longrightarrow> \<not> affine_dependent s" by (metis affine_dependent_subset) lemma affine_independent_Diff: "\<not> affine_dependent s \<Longrightarrow> \<not> affine_dependent(s - t)" by (meson Diff_subset affine_dependent_subset) proposition affine_dependent_explicit: "affine_dependent p \<longleftrightarrow> (\<exists>S u. finite S \<and> S \<subseteq> p \<and> sum u S = 0 \<and> (\<exists>v\<in>S. u v \<noteq> 0) \<and> sum (\<lambda>v. u v *\<^sub>R v) S = 0)" proof - have "\<exists>S u. finite S \<and> S \<subseteq> p \<and> sum u S = 0 \<and> (\<exists>v\<in>S. u v \<noteq> 0) \<and> (\<Sum>w\<in>S. u w *\<^sub>R w) = 0" if "(\<Sum>w\<in>S. u w *\<^sub>R w) = x" "x \<in> p" "finite S" "S \<noteq> {}" "S \<subseteq> p - {x}" "sum u S = 1" for x S u proof (intro exI conjI) have "x \<notin> S" using that by auto then show "(\<Sum>v \<in> insert x S. if v = x then - 1 else u v) = 0" using that by (simp add: sum_delta_notmem) show "(\<Sum>w \<in> insert x S. (if w = x then - 1 else u w) *\<^sub>R w) = 0" using that \<open>x \<notin> S\<close> by (simp add: if_smult sum_delta_notmem cong: if_cong) qed (use that in auto) moreover have "\<exists>x\<in>p. \<exists>S u. finite S \<and> S \<noteq> {} \<and> S \<subseteq> p - {x} \<and> sum u S = 1 \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = x" if "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" "finite S" "S \<subseteq> p" "sum u S = 0" "v \<in> S" "u v \<noteq> 0" for S u v proof (intro bexI exI conjI) have "S \<noteq> {v}" using that by auto then show "S - {v} \<noteq> {}" using that by auto show "(\<Sum>x \<in> S - {v}. - (1 / u v) * u x) = 1" unfolding sum_distrib_left[symmetric] sum_diff1[OF \<open>finite S\<close>] by (simp add: that) show "(\<Sum>x\<in>S - {v}. (- (1 / u v) * u x) *\<^sub>R x) = v" unfolding sum_distrib_left [symmetric] scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] sum_diff1[OF \<open>finite S\<close>] using that by auto show "S - {v} \<subseteq> p - {v}" using that by auto qed (use that in auto) ultimately show ?thesis unfolding affine_dependent_def affine_hull_explicit by auto qed lemma affine_dependent_explicit_finite: fixes S :: "'a::real_vector set" assumes "finite S" shows "affine_dependent S \<longleftrightarrow> (\<exists>u. sum u S = 0 \<and> (\<exists>v\<in>S. u v \<noteq> 0) \<and> sum (\<lambda>v. u v *\<^sub>R v) S = 0)" (is "?lhs = ?rhs") proof have *: "\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else 0::'a)" by auto assume ?lhs then obtain t u v where "finite t" "t \<subseteq> S" "sum u t = 0" "v\<in>t" "u v \<noteq> 0" "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0" unfolding affine_dependent_explicit by auto then show ?rhs apply (rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) apply (auto simp: * sum.inter_restrict[OF assms, symmetric] Int_absorb1[OF \<open>t\<subseteq>S\<close>]) done next assume ?rhs then obtain u v where "sum u S = 0" "v\<in>S" "u v \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto then show ?lhs unfolding affine_dependent_explicit using assms by auto qed lemma dependent_imp_affine_dependent: assumes "dependent {x - a| x . x \<in> s}" and "a \<notin> s" shows "affine_dependent (insert a s)" proof - from assms(1)[unfolded dependent_explicit] obtain S u v where obt: "finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto define t where "t = (\<lambda>x. x + a) ` S" have inj: "inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto have "0 \<notin> S" using obt(2) assms(2) unfolding subset_eq by auto have fin: "finite t" and "t \<subseteq> s" unfolding t_def using obt(1,2) by auto then have "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto moreover have *: "\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)" apply (rule sum.cong) using \<open>a\<notin>s\<close> \<open>t\<subseteq>s\<close> apply auto done have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0" unfolding sum_clauses(2)[OF fin] * using \<open>a\<notin>s\<close> \<open>t\<subseteq>s\<close> by auto moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0" using obt(3,4) \<open>0\<notin>S\<close> by (rule_tac x="v + a" in bexI) (auto simp: t_def) moreover have *: "\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)" using \<open>a\<notin>s\<close> \<open>t\<subseteq>s\<close> by (auto intro!: sum.cong) have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)" unfolding scaleR_left.sum unfolding t_def and sum.reindex[OF inj] and o_def using obt(5) by (auto simp: sum.distrib scaleR_right_distrib) then have "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0" unfolding sum_clauses(2)[OF fin] using \<open>a\<notin>s\<close> \<open>t\<subseteq>s\<close> by (auto simp: *) ultimately show ?thesis unfolding affine_dependent_explicit apply (rule_tac x="insert a t" in exI, auto) done qed lemma affine_dependent_biggerset: fixes s :: "'a::euclidean_space set" assumes "finite s" "card s \<ge> DIM('a) + 2" shows "affine_dependent s" proof - have "s \<noteq> {}" using assms by auto then obtain a where "a\<in>s" by auto have *: "{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * by (simp add: card_image inj_on_def) also have "\<dots> > DIM('a)" using assms(2) unfolding card_Diff_singleton[OF \<open>a\<in>s\<close>] by auto finally show ?thesis apply (subst insert_Diff[OF \<open>a\<in>s\<close>, symmetric]) apply (rule dependent_imp_affine_dependent) apply (rule dependent_biggerset, auto) done qed lemma affine_dependent_biggerset_general: assumes "finite (S :: 'a::euclidean_space set)" and "card S \<ge> dim S + 2" shows "affine_dependent S" proof - from assms(2) have "S \<noteq> {}" by auto then obtain a where "a\<in>S" by auto have *: "{x - a |x. x \<in> S - {a}} = (\<lambda>x. x - a) ` (S - {a})" by auto have **: "card {x - a |x. x \<in> S - {a}} = card (S - {a})" by (metis (no_types, lifting) "*" card_image diff_add_cancel inj_on_def) have "dim {x - a |x. x \<in> S - {a}} \<le> dim S" using \<open>a\<in>S\<close> by (auto simp: span_base span_diff intro: subset_le_dim) also have "\<dots> < dim S + 1" by auto also have "\<dots> \<le> card (S - {a})" using assms card_Diff_singleton[OF \<open>a\<in>S\<close>] by auto finally show ?thesis apply (subst insert_Diff[OF \<open>a\<in>S\<close>, symmetric]) apply (rule dependent_imp_affine_dependent) apply (rule dependent_biggerset_general) unfolding ** apply auto done qed subsection\<^marker>\<open>tag unimportant\<close> \<open>Some Properties of Affine Dependent Sets\<close> lemma affine_independent_0 [simp]: "\<not> affine_dependent {}" by (simp add: affine_dependent_def) lemma affine_independent_1 [simp]: "\<not> affine_dependent {a}" by (simp add: affine_dependent_def) lemma affine_independent_2 [simp]: "\<not> affine_dependent {a,b}" by (simp add: affine_dependent_def insert_Diff_if hull_same) lemma affine_hull_translation: "affine hull ((\<lambda>x. a + x) ` S) = (\<lambda>x. a + x) ` (affine hull S)" proof - have "affine ((\<lambda>x. a + x) ` (affine hull S))" using affine_translation affine_affine_hull by blast moreover have "(\<lambda>x. a + x) ` S \<subseteq> (\<lambda>x. a + x) ` (affine hull S)" using hull_subset[of S] by auto ultimately have h1: "affine hull ((\<lambda>x. a + x) ` S) \<subseteq> (\<lambda>x. a + x) ` (affine hull S)" by (metis hull_minimal) have "affine((\<lambda>x. -a + x) ` (affine hull ((\<lambda>x. a + x) ` S)))" using affine_translation affine_affine_hull by blast moreover have "(\<lambda>x. -a + x) ` (\<lambda>x. a + x) ` S \<subseteq> (\<lambda>x. -a + x) ` (affine hull ((\<lambda>x. a + x) ` S))" using hull_subset[of "(\<lambda>x. a + x) ` S"] by auto moreover have "S = (\<lambda>x. -a + x) ` (\<lambda>x. a + x) ` S" using translation_assoc[of "-a" a] by auto ultimately have "(\<lambda>x. -a + x) ` (affine hull ((\<lambda>x. a + x) ` S)) >= (affine hull S)" by (metis hull_minimal) then have "affine hull ((\<lambda>x. a + x) ` S) >= (\<lambda>x. a + x) ` (affine hull S)" by auto then show ?thesis using h1 by auto qed lemma affine_dependent_translation: assumes "affine_dependent S" shows "affine_dependent ((\<lambda>x. a + x) ` S)" proof - obtain x where x: "x \<in> S \<and> x \<in> affine hull (S - {x})" using assms affine_dependent_def by auto have "(+) a ` (S - {x}) = (+) a ` S - {a + x}" by auto then have "a + x \<in> affine hull ((\<lambda>x. a + x) ` S - {a + x})" using affine_hull_translation[of a "S - {x}"] x by auto moreover have "a + x \<in> (\<lambda>x. a + x) ` S" using x by auto ultimately show ?thesis unfolding affine_dependent_def by auto qed lemma affine_dependent_translation_eq: "affine_dependent S \<longleftrightarrow> affine_dependent ((\<lambda>x. a + x) ` S)" proof - { assume "affine_dependent ((\<lambda>x. a + x) ` S)" then have "affine_dependent S" using affine_dependent_translation[of "((\<lambda>x. a + x) ` S)" "-a"] translation_assoc[of "-a" a] by auto } then show ?thesis using affine_dependent_translation by auto qed lemma affine_hull_0_dependent: assumes "0 \<in> affine hull S" shows "dependent S" proof - obtain s u where s_u: "finite s \<and> s \<noteq> {} \<and> s \<subseteq> S \<and> sum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0" using assms affine_hull_explicit[of S] by auto then have "\<exists>v\<in>s. u v \<noteq> 0" by auto then have "finite s \<and> s \<subseteq> S \<and> (\<exists>v\<in>s. u v \<noteq> 0 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0)" using s_u by auto then show ?thesis unfolding dependent_explicit[of S] by auto qed lemma affine_dependent_imp_dependent2: assumes "affine_dependent (insert 0 S)" shows "dependent S" proof - obtain x where x: "x \<in> insert 0 S \<and> x \<in> affine hull (insert 0 S - {x})" using affine_dependent_def[of "(insert 0 S)"] assms by blast then have "x \<in> span (insert 0 S - {x})" using affine_hull_subset_span by auto moreover have "span (insert 0 S - {x}) = span (S - {x})" using insert_Diff_if[of "0" S "{x}"] span_insert_0[of "S-{x}"] by auto ultimately have "x \<in> span (S - {x})" by auto then have "x \<noteq> 0 \<Longrightarrow> dependent S" using x dependent_def by auto moreover { assume "x = 0" then have "0 \<in> affine hull S" using x hull_mono[of "S - {0}" S] by auto then have "dependent S" using affine_hull_0_dependent by auto } ultimately show ?thesis by auto qed lemma affine_dependent_iff_dependent: assumes "a \<notin> S" shows "affine_dependent (insert a S) \<longleftrightarrow> dependent ((\<lambda>x. -a + x) ` S)" proof - have "((+) (- a) ` S) = {x - a| x . x \<in> S}" by auto then show ?thesis using affine_dependent_translation_eq[of "(insert a S)" "-a"] affine_dependent_imp_dependent2 assms dependent_imp_affine_dependent[of a S] by (auto simp del: uminus_add_conv_diff) qed lemma affine_dependent_iff_dependent2: assumes "a \<in> S" shows "affine_dependent S \<longleftrightarrow> dependent ((\<lambda>x. -a + x) ` (S-{a}))" proof - have "insert a (S - {a}) = S" using assms by auto then show ?thesis using assms affine_dependent_iff_dependent[of a "S-{a}"] by auto qed lemma affine_hull_insert_span_gen: "affine hull (insert a s) = (\<lambda>x. a + x) ` span ((\<lambda>x. - a + x) ` s)" proof - have h1: "{x - a |x. x \<in> s} = ((\<lambda>x. -a+x) ` s)" by auto { assume "a \<notin> s" then have ?thesis using affine_hull_insert_span[of a s] h1 by auto } moreover { assume a1: "a \<in> s" have "\<exists>x. x \<in> s \<and> -a+x=0" apply (rule exI[of _ a]) using a1 apply auto done then have "insert 0 ((\<lambda>x. -a+x) ` (s - {a})) = (\<lambda>x. -a+x) ` s" by auto then have "span ((\<lambda>x. -a+x) ` (s - {a}))=span ((\<lambda>x. -a+x) ` s)" using span_insert_0[of "(+) (- a) ` (s - {a})"] by (auto simp del: uminus_add_conv_diff) moreover have "{x - a |x. x \<in> (s - {a})} = ((\<lambda>x. -a+x) ` (s - {a}))" by auto moreover have "insert a (s - {a}) = insert a s" by auto ultimately have ?thesis using affine_hull_insert_span[of "a" "s-{a}"] by auto } ultimately show ?thesis by auto qed lemma affine_hull_span2: assumes "a \<in> s" shows "affine hull s = (\<lambda>x. a+x) ` span ((\<lambda>x. -a+x) ` (s-{a}))" using affine_hull_insert_span_gen[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto lemma affine_hull_span_gen: assumes "a \<in> affine hull s" shows "affine hull s = (\<lambda>x. a+x) ` span ((\<lambda>x. -a+x) ` s)" proof - have "affine hull (insert a s) = affine hull s" using hull_redundant[of a affine s] assms by auto then show ?thesis using affine_hull_insert_span_gen[of a "s"] by auto qed lemma affine_hull_span_0: assumes "0 \<in> affine hull S" shows "affine hull S = span S" using affine_hull_span_gen[of "0" S] assms by auto lemma extend_to_affine_basis_nonempty: fixes S V :: "'n::real_vector set" assumes "\<not> affine_dependent S" "S \<subseteq> V" "S \<noteq> {}" shows "\<exists>T. \<not> affine_dependent T \<and> S \<subseteq> T \<and> T \<subseteq> V \<and> affine hull T = affine hull V" proof - obtain a where a: "a \<in> S" using assms by auto then have h0: "independent ((\<lambda>x. -a + x) ` (S-{a}))" using affine_dependent_iff_dependent2 assms by auto obtain B where B: "(\<lambda>x. -a+x) ` (S - {a}) \<subseteq> B \<and> B \<subseteq> (\<lambda>x. -a+x) ` V \<and> independent B \<and> (\<lambda>x. -a+x) ` V \<subseteq> span B" using assms by (blast intro: maximal_independent_subset_extend[OF _ h0, of "(\<lambda>x. -a + x) ` V"]) define T where "T = (\<lambda>x. a+x) ` insert 0 B" then have "T = insert a ((\<lambda>x. a+x) ` B)" by auto then have "affine hull T = (\<lambda>x. a+x) ` span B" using affine_hull_insert_span_gen[of a "((\<lambda>x. a+x) ` B)"] translation_assoc[of "-a" a B] by auto then have "V \<subseteq> affine hull T" using B assms translation_inverse_subset[of a V "span B"] by auto moreover have "T \<subseteq> V" using T_def B a assms by auto ultimately have "affine hull T = affine hull V" by (metis Int_absorb1 Int_absorb2 hull_hull hull_mono) moreover have "S \<subseteq> T" using T_def B translation_inverse_subset[of a "S-{a}" B] by auto moreover have "\<not> affine_dependent T" using T_def affine_dependent_translation_eq[of "insert 0 B"] affine_dependent_imp_dependent2 B by auto ultimately show ?thesis using \<open>T \<subseteq> V\<close> by auto qed lemma affine_basis_exists: fixes V :: "'n::real_vector set" shows "\<exists>B. B \<subseteq> V \<and> \<not> affine_dependent B \<and> affine hull V = affine hull B" proof (cases "V = {}") case True then show ?thesis using affine_independent_0 by auto next case False then obtain x where "x \<in> V" by auto then show ?thesis using affine_dependent_def[of "{x}"] extend_to_affine_basis_nonempty[of "{x}" V] by auto qed proposition extend_to_affine_basis: fixes S V :: "'n::real_vector set" assumes "\<not> affine_dependent S" "S \<subseteq> V" obtains T where "\<not> affine_dependent T" "S \<subseteq> T" "T \<subseteq> V" "affine hull T = affine hull V" proof (cases "S = {}") case True then show ?thesis using affine_basis_exists by (metis empty_subsetI that) next case False then show ?thesis by (metis assms extend_to_affine_basis_nonempty that) qed subsection \<open>Affine Dimension of a Set\<close> definition\<^marker>\<open>tag important\<close> aff_dim :: "('a::euclidean_space) set \<Rightarrow> int" where "aff_dim V = (SOME d :: int. \<exists>B. affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> of_nat (card B) = d + 1)" lemma aff_dim_basis_exists: fixes V :: "('n::euclidean_space) set" shows "\<exists>B. affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> of_nat (card B) = aff_dim V + 1" proof - obtain B where "\<not> affine_dependent B \<and> affine hull B = affine hull V" using affine_basis_exists[of V] by auto then show ?thesis unfolding aff_dim_def some_eq_ex[of "\<lambda>d. \<exists>B. affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> of_nat (card B) = d + 1"] apply auto apply (rule exI[of _ "int (card B) - (1 :: int)"]) apply (rule exI[of _ "B"], auto) done qed lemma affine_hull_eq_empty [simp]: "affine hull S = {} \<longleftrightarrow> S = {}" by (metis affine_empty subset_empty subset_hull) lemma empty_eq_affine_hull[simp]: "{} = affine hull S \<longleftrightarrow> S = {}" by (metis affine_hull_eq_empty) lemma aff_dim_parallel_subspace_aux: fixes B :: "'n::euclidean_space set" assumes "\<not> affine_dependent B" "a \<in> B" shows "finite B \<and> ((card B) - 1 = dim (span ((\<lambda>x. -a+x) ` (B-{a}))))" proof - have "independent ((\<lambda>x. -a + x) ` (B-{a}))" using affine_dependent_iff_dependent2 assms by auto then have fin: "dim (span ((\<lambda>x. -a+x) ` (B-{a}))) = card ((\<lambda>x. -a + x) ` (B-{a}))" "finite ((\<lambda>x. -a + x) ` (B - {a}))" using indep_card_eq_dim_span[of "(\<lambda>x. -a+x) ` (B-{a})"] by auto show ?thesis proof (cases "(\<lambda>x. -a + x) ` (B - {a}) = {}") case True have "B = insert a ((\<lambda>x. a + x) ` (\<lambda>x. -a + x) ` (B - {a}))" using translation_assoc[of "a" "-a" "(B - {a})"] assms by auto then have "B = {a}" using True by auto then show ?thesis using assms fin by auto next case False then have "card ((\<lambda>x. -a + x) ` (B - {a})) > 0" using fin by auto moreover have h1: "card ((\<lambda>x. -a + x) ` (B-{a})) = card (B-{a})" by (rule card_image) (use translate_inj_on in blast) ultimately have "card (B-{a}) > 0" by auto then have *: "finite (B - {a})" using card_gt_0_iff[of "(B - {a})"] by auto then have "card (B - {a}) = card B - 1" using card_Diff_singleton assms by auto with * show ?thesis using fin h1 by auto qed qed lemma aff_dim_parallel_subspace: fixes V L :: "'n::euclidean_space set" assumes "V \<noteq> {}" and "subspace L" and "affine_parallel (affine hull V) L" shows "aff_dim V = int (dim L)" proof - obtain B where B: "affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> int (card B) = aff_dim V + 1" using aff_dim_basis_exists by auto then have "B \<noteq> {}" using assms B by auto then obtain a where a: "a \<in> B" by auto define Lb where "Lb = span ((\<lambda>x. -a+x) ` (B-{a}))" moreover have "affine_parallel (affine hull B) Lb" using Lb_def B assms affine_hull_span2[of a B] a affine_parallel_commut[of "Lb" "(affine hull B)"] unfolding affine_parallel_def by auto moreover have "subspace Lb" using Lb_def subspace_span by auto moreover have "affine hull B \<noteq> {}" using assms B by auto ultimately have "L = Lb" using assms affine_parallel_subspace[of "affine hull B"] affine_affine_hull[of B] B by auto then have "dim L = dim Lb" by auto moreover have "card B - 1 = dim Lb" and "finite B" using Lb_def aff_dim_parallel_subspace_aux a B by auto ultimately show ?thesis using B \<open>B \<noteq> {}\<close> card_gt_0_iff[of B] by auto qed lemma aff_independent_finite: fixes B :: "'n::euclidean_space set" assumes "\<not> affine_dependent B" shows "finite B" proof - { assume "B \<noteq> {}" then obtain a where "a \<in> B" by auto then have ?thesis using aff_dim_parallel_subspace_aux assms by auto } then show ?thesis by auto qed lemma aff_dim_empty: fixes S :: "'n::euclidean_space set" shows "S = {} \<longleftrightarrow> aff_dim S = -1" proof - obtain B where *: "affine hull B = affine hull S" and "\<not> affine_dependent B" and "int (card B) = aff_dim S + 1" using aff_dim_basis_exists by auto moreover from * have "S = {} \<longleftrightarrow> B = {}" by auto ultimately show ?thesis using aff_independent_finite[of B] card_gt_0_iff[of B] by auto qed lemma aff_dim_empty_eq [simp]: "aff_dim ({}::'a::euclidean_space set) = -1" by (simp add: aff_dim_empty [symmetric]) lemma aff_dim_affine_hull [simp]: "aff_dim (affine hull S) = aff_dim S" unfolding aff_dim_def using hull_hull[of _ S] by auto lemma aff_dim_affine_hull2: assumes "affine hull S = affine hull T" shows "aff_dim S = aff_dim T" unfolding aff_dim_def using assms by auto lemma aff_dim_unique: fixes B V :: "'n::euclidean_space set" assumes "affine hull B = affine hull V \<and> \<not> affine_dependent B" shows "of_nat (card B) = aff_dim V + 1" proof (cases "B = {}") case True then have "V = {}" using assms by auto then have "aff_dim V = (-1::int)" using aff_dim_empty by auto then show ?thesis using \<open>B = {}\<close> by auto next case False then obtain a where a: "a \<in> B" by auto define Lb where "Lb = span ((\<lambda>x. -a+x) ` (B-{a}))" have "affine_parallel (affine hull B) Lb" using Lb_def affine_hull_span2[of a B] a affine_parallel_commut[of "Lb" "(affine hull B)"] unfolding affine_parallel_def by auto moreover have "subspace Lb" using Lb_def subspace_span by auto ultimately have "aff_dim B = int(dim Lb)" using aff_dim_parallel_subspace[of B Lb] \<open>B \<noteq> {}\<close> by auto moreover have "(card B) - 1 = dim Lb" "finite B" using Lb_def aff_dim_parallel_subspace_aux a assms by auto ultimately have "of_nat (card B) = aff_dim B + 1" using \<open>B \<noteq> {}\<close> card_gt_0_iff[of B] by auto then show ?thesis using aff_dim_affine_hull2 assms by auto qed lemma aff_dim_affine_independent: fixes B :: "'n::euclidean_space set" assumes "\<not> affine_dependent B" shows "of_nat (card B) = aff_dim B + 1" using aff_dim_unique[of B B] assms by auto lemma affine_independent_iff_card: fixes s :: "'a::euclidean_space set" shows "\<not> affine_dependent s \<longleftrightarrow> finite s \<and> aff_dim s = int(card s) - 1" apply (rule iffI) apply (simp add: aff_dim_affine_independent aff_independent_finite) by (metis affine_basis_exists [of s] aff_dim_unique card_subset_eq diff_add_cancel of_nat_eq_iff) lemma aff_dim_sing [simp]: fixes a :: "'n::euclidean_space" shows "aff_dim {a} = 0" using aff_dim_affine_independent[of "{a}"] affine_independent_1 by auto lemma aff_dim_2 [simp]: fixes a :: "'n::euclidean_space" shows "aff_dim {a,b} = (if a = b then 0 else 1)" proof (clarsimp) assume "a \<noteq> b" then have "aff_dim{a,b} = card{a,b} - 1" using affine_independent_2 [of a b] aff_dim_affine_independent by fastforce also have "\<dots> = 1" using \<open>a \<noteq> b\<close> by simp finally show "aff_dim {a, b} = 1" . qed lemma aff_dim_inner_basis_exists: fixes V :: "('n::euclidean_space) set" shows "\<exists>B. B \<subseteq> V \<and> affine hull B = affine hull V \<and> \<not> affine_dependent B \<and> of_nat (card B) = aff_dim V + 1" proof - obtain B where B: "\<not> affine_dependent B" "B \<subseteq> V" "affine hull B = affine hull V" using affine_basis_exists[of V] by auto then have "of_nat(card B) = aff_dim V+1" using aff_dim_unique by auto with B show ?thesis by auto qed lemma aff_dim_le_card: fixes V :: "'n::euclidean_space set" assumes "finite V" shows "aff_dim V \<le> of_nat (card V) - 1" proof - obtain B where B: "B \<subseteq> V" "of_nat (card B) = aff_dim V + 1" using aff_dim_inner_basis_exists[of V] by auto then have "card B \<le> card V" using assms card_mono by auto with B show ?thesis by auto qed lemma aff_dim_parallel_eq: fixes S T :: "'n::euclidean_space set" assumes "affine_parallel (affine hull S) (affine hull T)" shows "aff_dim S = aff_dim T" proof - { assume "T \<noteq> {}" "S \<noteq> {}" then obtain L where L: "subspace L \<and> affine_parallel (affine hull T) L" using affine_parallel_subspace[of "affine hull T"] affine_affine_hull[of T] by auto then have "aff_dim T = int (dim L)" using aff_dim_parallel_subspace \<open>T \<noteq> {}\<close> by auto moreover have *: "subspace L \<and> affine_parallel (affine hull S) L" using L affine_parallel_assoc[of "affine hull S" "affine hull T" L] assms by auto moreover from * have "aff_dim S = int (dim L)" using aff_dim_parallel_subspace \<open>S \<noteq> {}\<close> by auto ultimately have ?thesis by auto } moreover { assume "S = {}" then have "S = {}" and "T = {}" using assms unfolding affine_parallel_def by auto then have ?thesis using aff_dim_empty by auto } moreover { assume "T = {}" then have "S = {}" and "T = {}" using assms unfolding affine_parallel_def by auto then have ?thesis using aff_dim_empty by auto } ultimately show ?thesis by blast qed lemma aff_dim_translation_eq: "aff_dim ((+) a ` S) = aff_dim S" for a :: "'n::euclidean_space" proof - have "affine_parallel (affine hull S) (affine hull ((\<lambda>x. a + x) ` S))" unfolding affine_parallel_def apply (rule exI[of _ "a"]) using affine_hull_translation[of a S] apply auto done then show ?thesis using aff_dim_parallel_eq[of S "(\<lambda>x. a + x) ` S"] by auto qed lemma aff_dim_translation_eq_subtract: "aff_dim ((\<lambda>x. x - a) ` S) = aff_dim S" for a :: "'n::euclidean_space" using aff_dim_translation_eq [of "- a"] by (simp cong: image_cong_simp) lemma aff_dim_affine: fixes S L :: "'n::euclidean_space set" assumes "S \<noteq> {}" and "affine S" and "subspace L" and "affine_parallel S L" shows "aff_dim S = int (dim L)" proof - have *: "affine hull S = S" using assms affine_hull_eq[of S] by auto then have "affine_parallel (affine hull S) L" using assms by (simp add: *) then show ?thesis using assms aff_dim_parallel_subspace[of S L] by blast qed lemma dim_affine_hull: fixes S :: "'n::euclidean_space set" shows "dim (affine hull S) = dim S" proof - have "dim (affine hull S) \<ge> dim S" using dim_subset by auto moreover have "dim (span S) \<ge> dim (affine hull S)" using dim_subset affine_hull_subset_span by blast moreover have "dim (span S) = dim S" using dim_span by auto ultimately show ?thesis by auto qed lemma aff_dim_subspace: fixes S :: "'n::euclidean_space set" assumes "subspace S" shows "aff_dim S = int (dim S)" proof (cases "S={}") case True with assms show ?thesis by (simp add: subspace_affine) next case False with aff_dim_affine[of S S] assms subspace_imp_affine[of S] affine_parallel_reflex[of S] subspace_affine show ?thesis by auto qed lemma aff_dim_zero: fixes S :: "'n::euclidean_space set" assumes "0 \<in> affine hull S" shows "aff_dim S = int (dim S)" proof - have "subspace (affine hull S)" using subspace_affine[of "affine hull S"] affine_affine_hull assms by auto then have "aff_dim (affine hull S) = int (dim (affine hull S))" using assms aff_dim_subspace[of "affine hull S"] by auto then show ?thesis using aff_dim_affine_hull[of S] dim_affine_hull[of S] by auto qed lemma aff_dim_eq_dim: "aff_dim S = int (dim ((+) (- a) ` S))" if "a \<in> affine hull S" for S :: "'n::euclidean_space set" proof - have "0 \<in> affine hull (+) (- a) ` S" unfolding affine_hull_translation using that by (simp add: ac_simps) with aff_dim_zero show ?thesis by (metis aff_dim_translation_eq) qed lemma aff_dim_eq_dim_subtract: "aff_dim S = int (dim ((\<lambda>x. x - a) ` S))" if "a \<in> affine hull S" for S :: "'n::euclidean_space set" using aff_dim_eq_dim [of a] that by (simp cong: image_cong_simp) lemma aff_dim_UNIV [simp]: "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))" using aff_dim_subspace[of "(UNIV :: 'n::euclidean_space set)"] dim_UNIV[where 'a="'n::euclidean_space"] by auto lemma aff_dim_geq: fixes V :: "'n::euclidean_space set" shows "aff_dim V \<ge> -1" proof - obtain B where "affine hull B = affine hull V" and "\<not> affine_dependent B" and "int (card B) = aff_dim V + 1" using aff_dim_basis_exists by auto then show ?thesis by auto qed lemma aff_dim_negative_iff [simp]: fixes S :: "'n::euclidean_space set" shows "aff_dim S < 0 \<longleftrightarrow>S = {}" by (metis aff_dim_empty aff_dim_geq diff_0 eq_iff zle_diff1_eq) lemma aff_lowdim_subset_hyperplane: fixes S :: "'a::euclidean_space set" assumes "aff_dim S < DIM('a)" obtains a b where "a \<noteq> 0" "S \<subseteq> {x. a \<bullet> x = b}" proof (cases "S={}") case True moreover have "(SOME b. b \<in> Basis) \<noteq> 0" by (metis norm_some_Basis norm_zero zero_neq_one) ultimately show ?thesis using that by blast next case False then obtain c S' where "c \<notin> S'" "S = insert c S'" by (meson equals0I mk_disjoint_insert) have "dim ((+) (-c) ` S) < DIM('a)" by (metis \<open>S = insert c S'\<close> aff_dim_eq_dim assms hull_inc insertI1 of_nat_less_imp_less) then obtain a where "a \<noteq> 0" "span ((+) (-c) ` S) \<subseteq> {x. a \<bullet> x = 0}" using lowdim_subset_hyperplane by blast moreover have "a \<bullet> w = a \<bullet> c" if "span ((+) (- c) ` S) \<subseteq> {x. a \<bullet> x = 0}" "w \<in> S" for w proof - have "w-c \<in> span ((+) (- c) ` S)" by (simp add: span_base \<open>w \<in> S\<close>) with that have "w-c \<in> {x. a \<bullet> x = 0}" by blast then show ?thesis by (auto simp: algebra_simps) qed ultimately have "S \<subseteq> {x. a \<bullet> x = a \<bullet> c}" by blast then show ?thesis by (rule that[OF \<open>a \<noteq> 0\<close>]) qed lemma affine_independent_card_dim_diffs: fixes S :: "'a :: euclidean_space set" assumes "\<not> affine_dependent S" "a \<in> S" shows "card S = dim ((\<lambda>x. x - a) ` S) + 1" proof - have non: "\<not> affine_dependent (insert a S)" by (simp add: assms insert_absorb) have "finite S" by (meson assms aff_independent_finite) with \<open>a \<in> S\<close> have "card S \<noteq> 0" by auto moreover have "dim ((\<lambda>x. x - a) ` S) = card S - 1" using aff_dim_eq_dim_subtract aff_dim_unique \<open>a \<in> S\<close> hull_inc insert_absorb non by fastforce ultimately show ?thesis by auto qed lemma independent_card_le_aff_dim: fixes B :: "'n::euclidean_space set" assumes "B \<subseteq> V" assumes "\<not> affine_dependent B" shows "int (card B) \<le> aff_dim V + 1" proof - obtain T where T: "\<not> affine_dependent T \<and> B \<subseteq> T \<and> T \<subseteq> V \<and> affine hull T = affine hull V" by (metis assms extend_to_affine_basis[of B V]) then have "of_nat (card T) = aff_dim V + 1" using aff_dim_unique by auto then show ?thesis using T card_mono[of T B] aff_independent_finite[of T] by auto qed lemma aff_dim_subset: fixes S T :: "'n::euclidean_space set" assumes "S \<subseteq> T" shows "aff_dim S \<le> aff_dim T" proof - obtain B where B: "\<not> affine_dependent B" "B \<subseteq> S" "affine hull B = affine hull S" "of_nat (card B) = aff_dim S + 1" using aff_dim_inner_basis_exists[of S] by auto then have "int (card B) \<le> aff_dim T + 1" using assms independent_card_le_aff_dim[of B T] by auto with B show ?thesis by auto qed lemma aff_dim_le_DIM: fixes S :: "'n::euclidean_space set" shows "aff_dim S \<le> int (DIM('n))" proof - have "aff_dim (UNIV :: 'n::euclidean_space set) = int(DIM('n))" using aff_dim_UNIV by auto then show "aff_dim (S:: 'n::euclidean_space set) \<le> int(DIM('n))" using aff_dim_subset[of S "(UNIV :: ('n::euclidean_space) set)"] subset_UNIV by auto qed lemma affine_dim_equal: fixes S :: "'n::euclidean_space set" assumes "affine S" "affine T" "S \<noteq> {}" "S \<subseteq> T" "aff_dim S = aff_dim T" shows "S = T" proof - obtain a where "a \<in> S" using assms by auto then have "a \<in> T" using assms by auto define LS where "LS = {y. \<exists>x \<in> S. (-a) + x = y}" then have ls: "subspace LS" "affine_parallel S LS" using assms parallel_subspace_explicit[of S a LS] \<open>a \<in> S\<close> by auto then have h1: "int(dim LS) = aff_dim S" using assms aff_dim_affine[of S LS] by auto have "T \<noteq> {}" using assms by auto define LT where "LT = {y. \<exists>x \<in> T. (-a) + x = y}" then have lt: "subspace LT \<and> affine_parallel T LT" using assms parallel_subspace_explicit[of T a LT] \<open>a \<in> T\<close> by auto then have "int(dim LT) = aff_dim T" using assms aff_dim_affine[of T LT] \<open>T \<noteq> {}\<close> by auto then have "dim LS = dim LT" using h1 assms by auto moreover have "LS \<le> LT" using LS_def LT_def assms by auto ultimately have "LS = LT" using subspace_dim_equal[of LS LT] ls lt by auto moreover have "S = {x. \<exists>y \<in> LS. a+y=x}" using LS_def by auto moreover have "T = {x. \<exists>y \<in> LT. a+y=x}" using LT_def by auto ultimately show ?thesis by auto qed lemma aff_dim_eq_0: fixes S :: "'a::euclidean_space set" shows "aff_dim S = 0 \<longleftrightarrow> (\<exists>a. S = {a})" proof (cases "S = {}") case True then show ?thesis by auto next case False then obtain a where "a \<in> S" by auto show ?thesis proof safe assume 0: "aff_dim S = 0" have "\<not> {a,b} \<subseteq> S" if "b \<noteq> a" for b by (metis "0" aff_dim_2 aff_dim_subset not_one_le_zero that) then show "\<exists>a. S = {a}" using \<open>a \<in> S\<close> by blast qed auto qed lemma affine_hull_UNIV: fixes S :: "'n::euclidean_space set" assumes "aff_dim S = int(DIM('n))" shows "affine hull S = (UNIV :: ('n::euclidean_space) set)" proof - have "S \<noteq> {}" using assms aff_dim_empty[of S] by auto have h0: "S \<subseteq> affine hull S" using hull_subset[of S _] by auto have h1: "aff_dim (UNIV :: ('n::euclidean_space) set) = aff_dim S" using aff_dim_UNIV assms by auto then have h2: "aff_dim (affine hull S) \<le> aff_dim (UNIV :: ('n::euclidean_space) set)" using aff_dim_le_DIM[of "affine hull S"] assms h0 by auto have h3: "aff_dim S \<le> aff_dim (affine hull S)" using h0 aff_dim_subset[of S "affine hull S"] assms by auto then have h4: "aff_dim (affine hull S) = aff_dim (UNIV :: ('n::euclidean_space) set)" using h0 h1 h2 by auto then show ?thesis using affine_dim_equal[of "affine hull S" "(UNIV :: ('n::euclidean_space) set)"] affine_affine_hull[of S] affine_UNIV assms h4 h0 \<open>S \<noteq> {}\<close> by auto qed lemma disjoint_affine_hull: fixes s :: "'n::euclidean_space set" assumes "\<not> affine_dependent s" "t \<subseteq> s" "u \<subseteq> s" "t \<inter> u = {}" shows "(affine hull t) \<inter> (affine hull u) = {}" proof - from assms(1) have "finite s" by (simp add: aff_independent_finite) with assms(2,3) have "finite t" "finite u" by (blast intro: finite_subset)+ have False if "y \<in> affine hull t" and "y \<in> affine hull u" for y proof - from that obtain a b where a1 [simp]: "sum a t = 1" and [simp]: "sum (\<lambda>v. a v *\<^sub>R v) t = y" and [simp]: "sum b u = 1" "sum (\<lambda>v. b v *\<^sub>R v) u = y" by (auto simp: affine_hull_finite \<open>finite t\<close> \<open>finite u\<close>) define c where "c x = (if x \<in> t then a x else if x \<in> u then -(b x) else 0)" for x from assms(2,3,4) have [simp]: "s \<inter> t = t" "s \<inter> - t \<inter> u = u" by auto have "sum c s = 0" by (simp add: c_def comm_monoid_add_class.sum.If_cases \<open>finite s\<close> sum_negf) moreover have "\<not> (\<forall>v\<in>s. c v = 0)" by (metis (no_types) IntD1 \<open>s \<inter> t = t\<close> a1 c_def sum.neutral zero_neq_one) moreover have "(\<Sum>v\<in>s. c v *\<^sub>R v) = 0" by (simp add: c_def if_smult sum_negf comm_monoid_add_class.sum.If_cases \<open>finite s\<close>) ultimately show ?thesis using assms(1) \<open>finite s\<close> by (auto simp: affine_dependent_explicit) qed then show ?thesis by blast qed end