| author | wenzelm |
| Fri, 05 Aug 2022 13:23:52 +0200 | |
| changeset 75760 | f8be63d2ec6f |
| parent 73932 | fd21b4a93043 |
| child 76786 | 50672d2d78db |
| permissions | -rw-r--r-- |
(* Author: John Harrison Author: Robert Himmelmann, TU Muenchen (Translation from HOL light) and LCP *) (* At the moment this is just Brouwer's fixpoint theorem. The proof is from *) (* Kuhn: "some combinatorial lemmas in topology", IBM J. v4. (1960) p. 518 *) (* See "http://www.research.ibm.com/journal/rd/045/ibmrd0405K.pdf". *) (* *) (* The script below is quite messy, but at least we avoid formalizing any *) (* topological machinery; we don't even use barycentric subdivision; this is *) (* the big advantage of Kuhn's proof over the usual Sperner's lemma one. *) (* *) (* (c) Copyright, John Harrison 1998-2008 *) section \<open>Brouwer's Fixed Point Theorem\<close> theory Brouwer_Fixpoint imports Homeomorphism Derivative begin subsection \<open>Retractions\<close> lemma retract_of_contractible: assumes "contractible T" "S retract_of T" shows "contractible S" using assms apply (clarsimp simp add: retract_of_def contractible_def retraction_def homotopic_with) apply (rule_tac x="r a" in exI) apply (rule_tac x="r \<circ> h" in exI) apply (intro conjI continuous_intros continuous_on_compose) apply (erule continuous_on_subset | force)+ done lemma retract_of_path_connected: "\<lbrakk>path_connected T; S retract_of T\<rbrakk> \<Longrightarrow> path_connected S" by (metis path_connected_continuous_image retract_of_def retraction) lemma retract_of_simply_connected: "\<lbrakk>simply_connected T; S retract_of T\<rbrakk> \<Longrightarrow> simply_connected S" apply (simp add: retract_of_def retraction_def, clarify) apply (rule simply_connected_retraction_gen) apply (force elim!: continuous_on_subset)+ done lemma retract_of_homotopically_trivial: assumes ts: "T retract_of S" and hom: "\<And>f g. \<lbrakk>continuous_on U f; f ` U \<subseteq> S; continuous_on U g; g ` U \<subseteq> S\<rbrakk> \<Longrightarrow> homotopic_with_canon (\<lambda>x. True) U S f g" and "continuous_on U f" "f ` U \<subseteq> T" and "continuous_on U g" "g ` U \<subseteq> T" shows "homotopic_with_canon (\<lambda>x. True) U T f g" proof - obtain r where "r ` S \<subseteq> S" "continuous_on S r" "\<forall>x\<in>S. r (r x) = r x" "T = r ` S" using ts by (auto simp: retract_of_def retraction) then obtain k where "Retracts S r T k" unfolding Retracts_def by (metis continuous_on_subset dual_order.trans image_iff image_mono) then show ?thesis apply (rule Retracts.homotopically_trivial_retraction_gen) using assms apply (force simp: hom)+ done qed lemma retract_of_homotopically_trivial_null: assumes ts: "T retract_of S" and hom: "\<And>f. \<lbrakk>continuous_on U f; f ` U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>c. homotopic_with_canon (\<lambda>x. True) U S f (\<lambda>x. c)" and "continuous_on U f" "f ` U \<subseteq> T" obtains c where "homotopic_with_canon (\<lambda>x. True) U T f (\<lambda>x. c)" proof - obtain r where "r ` S \<subseteq> S" "continuous_on S r" "\<forall>x\<in>S. r (r x) = r x" "T = r ` S" using ts by (auto simp: retract_of_def retraction) then obtain k where "Retracts S r T k" unfolding Retracts_def by (metis continuous_on_subset dual_order.trans image_iff image_mono) then show ?thesis apply (rule Retracts.homotopically_trivial_retraction_null_gen) apply (rule TrueI refl assms that | assumption)+ done qed lemma retraction_openin_vimage_iff: "openin (top_of_set S) (S \<inter> r -` U) \<longleftrightarrow> openin (top_of_set T) U" if retraction: "retraction S T r" and "U \<subseteq> T" using retraction apply (rule retractionE) apply (rule continuous_right_inverse_imp_quotient_map [where g=r]) using \<open>U \<subseteq> T\<close> apply (auto elim: continuous_on_subset) done lemma retract_of_locally_compact: fixes S :: "'a :: {heine_borel,real_normed_vector} set" shows "\<lbrakk> locally compact S; T retract_of S\<rbrakk> \<Longrightarrow> locally compact T" by (metis locally_compact_closedin closedin_retract) lemma homotopic_into_retract: "\<lbrakk>f ` S \<subseteq> T; g ` S \<subseteq> T; T retract_of U; homotopic_with_canon (\<lambda>x. True) S U f g\<rbrakk> \<Longrightarrow> homotopic_with_canon (\<lambda>x. True) S T f g" apply (subst (asm) homotopic_with_def) apply (simp add: homotopic_with retract_of_def retraction_def, clarify) apply (rule_tac x="r \<circ> h" in exI) apply (rule conjI continuous_intros | erule continuous_on_subset | force simp: image_subset_iff)+ done lemma retract_of_locally_connected: assumes "locally connected T" "S retract_of T" shows "locally connected S" using assms by (auto simp: idempotent_imp_retraction intro!: retraction_openin_vimage_iff elim!: locally_connected_quotient_image retract_ofE) lemma retract_of_locally_path_connected: assumes "locally path_connected T" "S retract_of T" shows "locally path_connected S" using assms by (auto simp: idempotent_imp_retraction intro!: retraction_openin_vimage_iff elim!: locally_path_connected_quotient_image retract_ofE) text \<open>A few simple lemmas about deformation retracts\<close> lemma deformation_retract_imp_homotopy_eqv: fixes S :: "'a::euclidean_space set" assumes "homotopic_with_canon (\<lambda>x. True) S S id r" and r: "retraction S T r" shows "S homotopy_eqv T" proof - have "homotopic_with_canon (\<lambda>x. True) S S (id \<circ> r) id" by (simp add: assms(1) homotopic_with_symD) moreover have "homotopic_with_canon (\<lambda>x. True) T T (r \<circ> id) id" using r unfolding retraction_def by (metis eq_id_iff homotopic_with_id2 topspace_euclidean_subtopology) ultimately show ?thesis unfolding homotopy_equivalent_space_def by (metis (no_types, lifting) continuous_map_subtopology_eu continuous_on_id' id_def image_id r retraction_def) qed lemma deformation_retract: fixes S :: "'a::euclidean_space set" shows "(\<exists>r. homotopic_with_canon (\<lambda>x. True) S S id r \<and> retraction S T r) \<longleftrightarrow> T retract_of S \<and> (\<exists>f. homotopic_with_canon (\<lambda>x. True) S S id f \<and> f ` S \<subseteq> T)" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs by (auto simp: retract_of_def retraction_def) next assume ?rhs then show ?lhs apply (clarsimp simp add: retract_of_def retraction_def) apply (rule_tac x=r in exI, simp) apply (rule homotopic_with_trans, assumption) apply (rule_tac f = "r \<circ> f" and g="r \<circ> id" in homotopic_with_eq) apply (rule_tac Y=S in homotopic_with_compose_continuous_left) apply (auto simp: homotopic_with_sym) done qed lemma deformation_retract_of_contractible_sing: fixes S :: "'a::euclidean_space set" assumes "contractible S" "a \<in> S" obtains r where "homotopic_with_canon (\<lambda>x. True) S S id r" "retraction S {a} r" proof - have "{a} retract_of S" by (simp add: \<open>a \<in> S\<close>) moreover have "homotopic_with_canon (\<lambda>x. True) S S id (\<lambda>x. a)" using assms by (auto simp: contractible_def homotopic_into_contractible image_subset_iff) moreover have "(\<lambda>x. a) ` S \<subseteq> {a}" by (simp add: image_subsetI) ultimately show ?thesis using that deformation_retract by metis qed lemma continuous_on_compact_surface_projection_aux: fixes S :: "'a::t2_space set" assumes "compact S" "S \<subseteq> T" "image q T \<subseteq> S" and contp: "continuous_on T p" and "\<And>x. x \<in> S \<Longrightarrow> q x = x" and [simp]: "\<And>x. x \<in> T \<Longrightarrow> q(p x) = q x" and "\<And>x. x \<in> T \<Longrightarrow> p(q x) = p x" shows "continuous_on T q" proof - have *: "image p T = image p S" using assms by auto (metis imageI subset_iff) have contp': "continuous_on S p" by (rule continuous_on_subset [OF contp \<open>S \<subseteq> T\<close>]) have "continuous_on (p ` T) q" by (simp add: "*" assms(1) assms(2) assms(5) continuous_on_inv contp' rev_subsetD) then have "continuous_on T (q \<circ> p)" by (rule continuous_on_compose [OF contp]) then show ?thesis by (rule continuous_on_eq [of _ "q \<circ> p"]) (simp add: o_def) qed lemma continuous_on_compact_surface_projection: fixes S :: "'a::real_normed_vector set" assumes "compact S" and S: "S \<subseteq> V - {0}" and "cone V" and iff: "\<And>x k. x \<in> V - {0} \<Longrightarrow> 0 < k \<and> (k *\<^sub>R x) \<in> S \<longleftrightarrow> d x = k" shows "continuous_on (V - {0}) (\<lambda>x. d x *\<^sub>R x)" proof (rule continuous_on_compact_surface_projection_aux [OF \<open>compact S\<close> S]) show "(\<lambda>x. d x *\<^sub>R x) ` (V - {0}) \<subseteq> S" using iff by auto show "continuous_on (V - {0}) (\<lambda>x. inverse(norm x) *\<^sub>R x)" by (intro continuous_intros) force show "\<And>x. x \<in> S \<Longrightarrow> d x *\<^sub>R x = x" by (metis S zero_less_one local.iff scaleR_one subset_eq) show "d (x /\<^sub>R norm x) *\<^sub>R (x /\<^sub>R norm x) = d x *\<^sub>R x" if "x \<in> V - {0}" for x using iff [of "inverse(norm x) *\<^sub>R x" "norm x * d x", symmetric] iff that \<open>cone V\<close> by (simp add: field_simps cone_def zero_less_mult_iff) show "d x *\<^sub>R x /\<^sub>R norm (d x *\<^sub>R x) = x /\<^sub>R norm x" if "x \<in> V - {0}" for x proof - have "0 < d x" using local.iff that by blast then show ?thesis by simp qed qed subsection \<open>Kuhn Simplices\<close> lemma bij_betw_singleton_eq: assumes f: "bij_betw f A B" and g: "bij_betw g A B" and a: "a \<in> A" assumes eq: "(\<And>x. x \<in> A \<Longrightarrow> x \<noteq> a \<Longrightarrow> f x = g x)" shows "f a = g a" proof - have "f ` (A - {a}) = g ` (A - {a})" by (intro image_cong) (simp_all add: eq) then have "B - {f a} = B - {g a}" using f g a by (auto simp: bij_betw_def inj_on_image_set_diff set_eq_iff) moreover have "f a \<in> B" "g a \<in> B" using f g a by (auto simp: bij_betw_def) ultimately show ?thesis by auto qed lemmas swap_apply1 = swap_apply(1) lemmas swap_apply2 = swap_apply(2) lemma pointwise_minimal_pointwise_maximal: fixes s :: "(nat \<Rightarrow> nat) set" assumes "finite s" and "s \<noteq> {}" and "\<forall>x\<in>s. \<forall>y\<in>s. x \<le> y \<or> y \<le> x" shows "\<exists>a\<in>s. \<forall>x\<in>s. a \<le> x" and "\<exists>a\<in>s. \<forall>x\<in>s. x \<le> a" using assms proof (induct s rule: finite_ne_induct) case (insert b s) assume *: "\<forall>x\<in>insert b s. \<forall>y\<in>insert b s. x \<le> y \<or> y \<le> x" then obtain u l where "l \<in> s" "\<forall>b\<in>s. l \<le> b" "u \<in> s" "\<forall>b\<in>s. b \<le> u" using insert by auto with * show "\<exists>a\<in>insert b s. \<forall>x\<in>insert b s. a \<le> x" "\<exists>a\<in>insert b s. \<forall>x\<in>insert b s. x \<le> a" using *[rule_format, of b u] *[rule_format, of b l] by (metis insert_iff order.trans)+ qed auto lemma kuhn_labelling_lemma: fixes P Q :: "'a::euclidean_space \<Rightarrow> bool" assumes "\<forall>x. P x \<longrightarrow> P (f x)" and "\<forall>x. P x \<longrightarrow> (\<forall>i\<in>Basis. Q i \<longrightarrow> 0 \<le> x\<bullet>i \<and> x\<bullet>i \<le> 1)" shows "\<exists>l. (\<forall>x.\<forall>i\<in>Basis. l x i \<le> (1::nat)) \<and> (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (x\<bullet>i = 0) \<longrightarrow> (l x i = 0)) \<and> (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (x\<bullet>i = 1) \<longrightarrow> (l x i = 1)) \<and> (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (l x i = 0) \<longrightarrow> x\<bullet>i \<le> f x\<bullet>i) \<and> (\<forall>x.\<forall>i\<in>Basis. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f x\<bullet>i \<le> x\<bullet>i)" proof - { fix x i let ?R = "\<lambda>y. (P x \<and> Q i \<and> x \<bullet> i = 0 \<longrightarrow> y = (0::nat)) \<and> (P x \<and> Q i \<and> x \<bullet> i = 1 \<longrightarrow> y = 1) \<and> (P x \<and> Q i \<and> y = 0 \<longrightarrow> x \<bullet> i \<le> f x \<bullet> i) \<and> (P x \<and> Q i \<and> y = 1 \<longrightarrow> f x \<bullet> i \<le> x \<bullet> i)" { assume "P x" "Q i" "i \<in> Basis" with assms have "0 \<le> f x \<bullet> i \<and> f x \<bullet> i \<le> 1" by auto } then have "i \<in> Basis \<Longrightarrow> ?R 0 \<or> ?R 1" by auto } then show ?thesis unfolding all_conj_distrib[symmetric] Ball_def (* FIXME: shouldn't this work by metis? *) by (subst choice_iff[symmetric])+ blast qed subsubsection \<open>The key "counting" observation, somewhat abstracted\<close> lemma kuhn_counting_lemma: fixes bnd compo compo' face S F defines "nF s == card {f\<in>F. face f s \<and> compo' f}" assumes [simp, intro]: "finite F" \<comment> \<open>faces\<close> and [simp, intro]: "finite S" \<comment> \<open>simplices\<close> and "\<And>f. f \<in> F \<Longrightarrow> bnd f \<Longrightarrow> card {s\<in>S. face f s} = 1" and "\<And>f. f \<in> F \<Longrightarrow> \<not> bnd f \<Longrightarrow> card {s\<in>S. face f s} = 2" and "\<And>s. s \<in> S \<Longrightarrow> compo s \<Longrightarrow> nF s = 1" and "\<And>s. s \<in> S \<Longrightarrow> \<not> compo s \<Longrightarrow> nF s = 0 \<or> nF s = 2" and "odd (card {f\<in>F. compo' f \<and> bnd f})" shows "odd (card {s\<in>S. compo s})" proof - have "(\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) + (\<Sum>s | s \<in> S \<and> compo s. nF s) = (\<Sum>s\<in>S. nF s)" by (subst sum.union_disjoint[symmetric]) (auto intro!: sum.cong) also have "\<dots> = (\<Sum>s\<in>S. card {f \<in> {f\<in>F. compo' f \<and> bnd f}. face f s}) + (\<Sum>s\<in>S. card {f \<in> {f\<in>F. compo' f \<and> \<not> bnd f}. face f s})" unfolding sum.distrib[symmetric] by (subst card_Un_disjoint[symmetric]) (auto simp: nF_def intro!: sum.cong arg_cong[where f=card]) also have "\<dots> = 1 * card {f\<in>F. compo' f \<and> bnd f} + 2 * card {f\<in>F. compo' f \<and> \<not> bnd f}" using assms(4,5) by (fastforce intro!: arg_cong2[where f="(+)"] sum_multicount) finally have "odd ((\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) + card {s\<in>S. compo s})" using assms(6,8) by simp moreover have "(\<Sum>s | s \<in> S \<and> \<not> compo s. nF s) = (\<Sum>s | s \<in> S \<and> \<not> compo s \<and> nF s = 0. nF s) + (\<Sum>s | s \<in> S \<and> \<not> compo s \<and> nF s = 2. nF s)" using assms(7) by (subst sum.union_disjoint[symmetric]) (fastforce intro!: sum.cong)+ ultimately show ?thesis by auto qed subsubsection \<open>The odd/even result for faces of complete vertices, generalized\<close> lemma kuhn_complete_lemma: assumes [simp]: "finite simplices" and face: "\<And>f s. face f s \<longleftrightarrow> (\<exists>a\<in>s. f = s - {a})" and card_s[simp]: "\<And>s. s \<in> simplices \<Longrightarrow> card s = n + 2" and rl_bd: "\<And>s. s \<in> simplices \<Longrightarrow> rl ` s \<subseteq> {..Suc n}" and bnd: "\<And>f s. s \<in> simplices \<Longrightarrow> face f s \<Longrightarrow> bnd f \<Longrightarrow> card {s\<in>simplices. face f s} = 1" and nbnd: "\<And>f s. s \<in> simplices \<Longrightarrow> face f s \<Longrightarrow> \<not> bnd f \<Longrightarrow> card {s\<in>simplices. face f s} = 2" and odd_card: "odd (card {f. (\<exists>s\<in>simplices. face f s) \<and> rl ` f = {..n} \<and> bnd f})" shows "odd (card {s\<in>simplices. (rl ` s = {..Suc n})})" proof (rule kuhn_counting_lemma) have finite_s[simp]: "\<And>s. s \<in> simplices \<Longrightarrow> finite s" by (metis add_is_0 zero_neq_numeral card.infinite assms(3)) let ?F = "{f. \<exists>s\<in>simplices. face f s}" have F_eq: "?F = (\<Union>s\<in>simplices. \<Union>a\<in>s. {s - {a}})" by (auto simp: face) show "finite ?F" using \<open>finite simplices\<close> unfolding F_eq by auto show "card {s \<in> simplices. face f s} = 1" if "f \<in> ?F" "bnd f" for f using bnd that by auto show "card {s \<in> simplices. face f s} = 2" if "f \<in> ?F" "\<not> bnd f" for f using nbnd that by auto show "odd (card {f \<in> {f. \<exists>s\<in>simplices. face f s}. rl ` f = {..n} \<and> bnd f})" using odd_card by simp fix s assume s[simp]: "s \<in> simplices" let ?S = "{f \<in> {f. \<exists>s\<in>simplices. face f s}. face f s \<and> rl ` f = {..n}}" have "?S = (\<lambda>a. s - {a}) ` {a\<in>s. rl ` (s - {a}) = {..n}}" using s by (fastforce simp: face) then have card_S: "card ?S = card {a\<in>s. rl ` (s - {a}) = {..n}}" by (auto intro!: card_image inj_onI) { assume rl: "rl ` s = {..Suc n}" then have inj_rl: "inj_on rl s" by (intro eq_card_imp_inj_on) auto moreover obtain a where "rl a = Suc n" "a \<in> s" by (metis atMost_iff image_iff le_Suc_eq rl) ultimately have n: "{..n} = rl ` (s - {a})" by (auto simp: inj_on_image_set_diff rl) have "{a\<in>s. rl ` (s - {a}) = {..n}} = {a}" using inj_rl \<open>a \<in> s\<close> by (auto simp: n inj_on_image_eq_iff[OF inj_rl]) then show "card ?S = 1" unfolding card_S by simp } { assume rl: "rl ` s \<noteq> {..Suc n}" show "card ?S = 0 \<or> card ?S = 2" proof cases assume *: "{..n} \<subseteq> rl ` s" with rl rl_bd[OF s] have rl_s: "rl ` s = {..n}" by (auto simp: atMost_Suc subset_insert_iff split: if_split_asm) then have "\<not> inj_on rl s" by (intro pigeonhole) simp then obtain a b where ab: "a \<in> s" "b \<in> s" "rl a = rl b" "a \<noteq> b" by (auto simp: inj_on_def) then have eq: "rl ` (s - {a}) = rl ` s" by auto with ab have inj: "inj_on rl (s - {a})" by (intro eq_card_imp_inj_on) (auto simp: rl_s card_Diff_singleton_if) { fix x assume "x \<in> s" "x \<notin> {a, b}" then have "rl ` s - {rl x} = rl ` ((s - {a}) - {x})" by (auto simp: eq inj_on_image_set_diff[OF inj]) also have "\<dots> = rl ` (s - {x})" using ab \<open>x \<notin> {a, b}\<close> by auto also assume "\<dots> = rl ` s" finally have False using \<open>x\<in>s\<close> by auto } moreover { fix x assume "x \<in> {a, b}" with ab have "x \<in> s \<and> rl ` (s - {x}) = rl ` s" by (simp add: set_eq_iff image_iff Bex_def) metis } ultimately have "{a\<in>s. rl ` (s - {a}) = {..n}} = {a, b}" unfolding rl_s[symmetric] by fastforce with \<open>a \<noteq> b\<close> show "card ?S = 0 \<or> card ?S = 2" unfolding card_S by simp next assume "\<not> {..n} \<subseteq> rl ` s" then have "\<And>x. rl ` (s - {x}) \<noteq> {..n}" by auto then show "card ?S = 0 \<or> card ?S = 2" unfolding card_S by simp qed } qed fact locale kuhn_simplex = fixes p n and base upd and s :: "(nat \<Rightarrow> nat) set" assumes base: "base \<in> {..< n} \<rightarrow> {..< p}" assumes base_out: "\<And>i. n \<le> i \<Longrightarrow> base i = p" assumes upd: "bij_betw upd {..< n} {..< n}" assumes s_pre: "s = (\<lambda>i j. if j \<in> upd`{..< i} then Suc (base j) else base j) ` {.. n}" begin definition "enum i j = (if j \<in> upd`{..< i} then Suc (base j) else base j)" lemma s_eq: "s = enum ` {.. n}" unfolding s_pre enum_def[abs_def] .. lemma upd_space: "i < n \<Longrightarrow> upd i < n" using upd by (auto dest!: bij_betwE) lemma s_space: "s \<subseteq> {..< n} \<rightarrow> {.. p}" proof - { fix i assume "i \<le> n" then have "enum i \<in> {..< n} \<rightarrow> {.. p}" proof (induct i) case 0 then show ?case using base by (auto simp: Pi_iff less_imp_le enum_def) next case (Suc i) with base show ?case by (auto simp: Pi_iff Suc_le_eq less_imp_le enum_def intro: upd_space) qed } then show ?thesis by (auto simp: s_eq) qed lemma inj_upd: "inj_on upd {..< n}" using upd by (simp add: bij_betw_def) lemma inj_enum: "inj_on enum {.. n}" proof - { fix x y :: nat assume "x \<noteq> y" "x \<le> n" "y \<le> n" with upd have "upd ` {..< x} \<noteq> upd ` {..< y}" by (subst inj_on_image_eq_iff[where C="{..< n}"]) (auto simp: bij_betw_def) then have "enum x \<noteq> enum y" by (auto simp: enum_def fun_eq_iff) } then show ?thesis by (auto simp: inj_on_def) qed lemma enum_0: "enum 0 = base" by (simp add: enum_def[abs_def]) lemma base_in_s: "base \<in> s" unfolding s_eq by (subst enum_0[symmetric]) auto lemma enum_in: "i \<le> n \<Longrightarrow> enum i \<in> s" unfolding s_eq by auto lemma one_step: assumes a: "a \<in> s" "j < n" assumes *: "\<And>a'. a' \<in> s \<Longrightarrow> a' \<noteq> a \<Longrightarrow> a' j = p'" shows "a j \<noteq> p'" proof assume "a j = p'" with * a have "\<And>a'. a' \<in> s \<Longrightarrow> a' j = p'" by auto then have "\<And>i. i \<le> n \<Longrightarrow> enum i j = p'" unfolding s_eq by auto from this[of 0] this[of n] have "j \<notin> upd ` {..< n}" by (auto simp: enum_def fun_eq_iff split: if_split_asm) with upd \<open>j < n\<close> show False by (auto simp: bij_betw_def) qed lemma upd_inj: "i < n \<Longrightarrow> j < n \<Longrightarrow> upd i = upd j \<longleftrightarrow> i = j" using upd by (auto simp: bij_betw_def inj_on_eq_iff) lemma upd_surj: "upd ` {..< n} = {..< n}" using upd by (auto simp: bij_betw_def) lemma in_upd_image: "A \<subseteq> {..< n} \<Longrightarrow> i < n \<Longrightarrow> upd i \<in> upd ` A \<longleftrightarrow> i \<in> A" using inj_on_image_mem_iff[of upd "{..< n}"] upd by (auto simp: bij_betw_def) lemma enum_inj: "i \<le> n \<Longrightarrow> j \<le> n \<Longrightarrow> enum i = enum j \<longleftrightarrow> i = j" using inj_enum by (auto simp: inj_on_eq_iff) lemma in_enum_image: "A \<subseteq> {.. n} \<Longrightarrow> i \<le> n \<Longrightarrow> enum i \<in> enum ` A \<longleftrightarrow> i \<in> A" using inj_on_image_mem_iff[OF inj_enum] by auto lemma enum_mono: "i \<le> n \<Longrightarrow> j \<le> n \<Longrightarrow> enum i \<le> enum j \<longleftrightarrow> i \<le> j" by (auto simp: enum_def le_fun_def in_upd_image Ball_def[symmetric]) lemma enum_strict_mono: "i \<le> n \<Longrightarrow> j \<le> n \<Longrightarrow> enum i < enum j \<longleftrightarrow> i < j" using enum_mono[of i j] enum_inj[of i j] by (auto simp: le_less) lemma chain: "a \<in> s \<Longrightarrow> b \<in> s \<Longrightarrow> a \<le> b \<or> b \<le> a" by (auto simp: s_eq enum_mono) lemma less: "a \<in> s \<Longrightarrow> b \<in> s \<Longrightarrow> a i < b i \<Longrightarrow> a < b" using chain[of a b] by (auto simp: less_fun_def le_fun_def not_le[symmetric]) lemma enum_0_bot: "a \<in> s \<Longrightarrow> a = enum 0 \<longleftrightarrow> (\<forall>a'\<in>s. a \<le> a')" unfolding s_eq by (auto simp: enum_mono Ball_def) lemma enum_n_top: "a \<in> s \<Longrightarrow> a = enum n \<longleftrightarrow> (\<forall>a'\<in>s. a' \<le> a)" unfolding s_eq by (auto simp: enum_mono Ball_def) lemma enum_Suc: "i < n \<Longrightarrow> enum (Suc i) = (enum i)(upd i := Suc (enum i (upd i)))" by (auto simp: fun_eq_iff enum_def upd_inj) lemma enum_eq_p: "i \<le> n \<Longrightarrow> n \<le> j \<Longrightarrow> enum i j = p" by (induct i) (auto simp: enum_Suc enum_0 base_out upd_space not_less[symmetric]) lemma out_eq_p: "a \<in> s \<Longrightarrow> n \<le> j \<Longrightarrow> a j = p" unfolding s_eq by (auto simp: enum_eq_p) lemma s_le_p: "a \<in> s \<Longrightarrow> a j \<le> p" using out_eq_p[of a j] s_space by (cases "j < n") auto lemma le_Suc_base: "a \<in> s \<Longrightarrow> a j \<le> Suc (base j)" unfolding s_eq by (auto simp: enum_def) lemma base_le: "a \<in> s \<Longrightarrow> base j \<le> a j" unfolding s_eq by (auto simp: enum_def) lemma enum_le_p: "i \<le> n \<Longrightarrow> j < n \<Longrightarrow> enum i j \<le> p" using enum_in[of i] s_space by auto lemma enum_less: "a \<in> s \<Longrightarrow> i < n \<Longrightarrow> enum i < a \<longleftrightarrow> enum (Suc i) \<le> a" unfolding s_eq by (auto simp: enum_strict_mono enum_mono) lemma ksimplex_0: "n = 0 \<Longrightarrow> s = {(\<lambda>x. p)}" using s_eq enum_def base_out by auto lemma replace_0: assumes "j < n" "a \<in> s" and p: "\<forall>x\<in>s - {a}. x j = 0" and "x \<in> s" shows "x \<le> a" proof cases assume "x \<noteq> a" have "a j \<noteq> 0" using assms by (intro one_step[where a=a]) auto with less[OF \<open>x\<in>s\<close> \<open>a\<in>s\<close>, of j] p[rule_format, of x] \<open>x \<in> s\<close> \<open>x \<noteq> a\<close> show ?thesis by auto qed simp lemma replace_1: assumes "j < n" "a \<in> s" and p: "\<forall>x\<in>s - {a}. x j = p" and "x \<in> s" shows "a \<le> x" proof cases assume "x \<noteq> a" have "a j \<noteq> p" using assms by (intro one_step[where a=a]) auto with enum_le_p[of _ j] \<open>j < n\<close> \<open>a\<in>s\<close> have "a j < p" by (auto simp: less_le s_eq) with less[OF \<open>a\<in>s\<close> \<open>x\<in>s\<close>, of j] p[rule_format, of x] \<open>x \<in> s\<close> \<open>x \<noteq> a\<close> show ?thesis by auto qed simp end locale kuhn_simplex_pair = s: kuhn_simplex p n b_s u_s s + t: kuhn_simplex p n b_t u_t t for p n b_s u_s s b_t u_t t begin lemma enum_eq: assumes l: "i \<le> l" "l \<le> j" and "j + d \<le> n" assumes eq: "s.enum ` {i .. j} = t.enum ` {i + d .. j + d}" shows "s.enum l = t.enum (l + d)" using l proof (induct l rule: dec_induct) case base then have s: "s.enum i \<in> t.enum ` {i + d .. j + d}" and t: "t.enum (i + d) \<in> s.enum ` {i .. j}" using eq by auto from t \<open>i \<le> j\<close> \<open>j + d \<le> n\<close> have "s.enum i \<le> t.enum (i + d)" by (auto simp: s.enum_mono) moreover from s \<open>i \<le> j\<close> \<open>j + d \<le> n\<close> have "t.enum (i + d) \<le> s.enum i" by (auto simp: t.enum_mono) ultimately show ?case by auto next case (step l) moreover from step.prems \<open>j + d \<le> n\<close> have "s.enum l < s.enum (Suc l)" "t.enum (l + d) < t.enum (Suc l + d)" by (simp_all add: s.enum_strict_mono t.enum_strict_mono) moreover have "s.enum (Suc l) \<in> t.enum ` {i + d .. j + d}" "t.enum (Suc l + d) \<in> s.enum ` {i .. j}" using step \<open>j + d \<le> n\<close> eq by (auto simp: s.enum_inj t.enum_inj) ultimately have "s.enum (Suc l) = t.enum (Suc (l + d))" using \<open>j + d \<le> n\<close> by (intro antisym s.enum_less[THEN iffD1] t.enum_less[THEN iffD1]) (auto intro!: s.enum_in t.enum_in) then show ?case by simp qed lemma ksimplex_eq_bot: assumes a: "a \<in> s" "\<And>a'. a' \<in> s \<Longrightarrow> a \<le> a'" assumes b: "b \<in> t" "\<And>b'. b' \<in> t \<Longrightarrow> b \<le> b'" assumes eq: "s - {a} = t - {b}" shows "s = t" proof cases assume "n = 0" with s.ksimplex_0 t.ksimplex_0 show ?thesis by simp next assume "n \<noteq> 0" have "s.enum 0 = (s.enum (Suc 0)) (u_s 0 := s.enum (Suc 0) (u_s 0) - 1)" "t.enum 0 = (t.enum (Suc 0)) (u_t 0 := t.enum (Suc 0) (u_t 0) - 1)" using \<open>n \<noteq> 0\<close> by (simp_all add: s.enum_Suc t.enum_Suc) moreover have e0: "a = s.enum 0" "b = t.enum 0" using a b by (simp_all add: s.enum_0_bot t.enum_0_bot) moreover { fix j assume "0 < j" "j \<le> n" moreover have "s - {a} = s.enum ` {Suc 0 .. n}" "t - {b} = t.enum ` {Suc 0 .. n}" unfolding s.s_eq t.s_eq e0 by (auto simp: s.enum_inj t.enum_inj) ultimately have "s.enum j = t.enum j" using enum_eq[of "1" j n 0] eq by auto } note enum_eq = this then have "s.enum (Suc 0) = t.enum (Suc 0)" using \<open>n \<noteq> 0\<close> by auto moreover { fix j assume "Suc j < n" with enum_eq[of "Suc j"] enum_eq[of "Suc (Suc j)"] have "u_s (Suc j) = u_t (Suc j)" using s.enum_Suc[of "Suc j"] t.enum_Suc[of "Suc j"] by (auto simp: fun_eq_iff split: if_split_asm) } then have "\<And>j. 0 < j \<Longrightarrow> j < n \<Longrightarrow> u_s j = u_t j" by (auto simp: gr0_conv_Suc) with \<open>n \<noteq> 0\<close> have "u_t 0 = u_s 0" by (intro bij_betw_singleton_eq[OF t.upd s.upd, of 0]) auto ultimately have "a = b" by simp with assms show "s = t" by auto qed lemma ksimplex_eq_top: assumes a: "a \<in> s" "\<And>a'. a' \<in> s \<Longrightarrow> a' \<le> a" assumes b: "b \<in> t" "\<And>b'. b' \<in> t \<Longrightarrow> b' \<le> b" assumes eq: "s - {a} = t - {b}" shows "s = t" proof (cases n) assume "n = 0" with s.ksimplex_0 t.ksimplex_0 show ?thesis by simp next case (Suc n') have "s.enum n = (s.enum n') (u_s n' := Suc (s.enum n' (u_s n')))" "t.enum n = (t.enum n') (u_t n' := Suc (t.enum n' (u_t n')))" using Suc by (simp_all add: s.enum_Suc t.enum_Suc) moreover have en: "a = s.enum n" "b = t.enum n" using a b by (simp_all add: s.enum_n_top t.enum_n_top) moreover { fix j assume "j < n" moreover have "s - {a} = s.enum ` {0 .. n'}" "t - {b} = t.enum ` {0 .. n'}" unfolding s.s_eq t.s_eq en by (auto simp: s.enum_inj t.enum_inj Suc) ultimately have "s.enum j = t.enum j" using enum_eq[of "0" j n' 0] eq Suc by auto } note enum_eq = this then have "s.enum n' = t.enum n'" using Suc by auto moreover { fix j assume "j < n'" with enum_eq[of j] enum_eq[of "Suc j"] have "u_s j = u_t j" using s.enum_Suc[of j] t.enum_Suc[of j] by (auto simp: Suc fun_eq_iff split: if_split_asm) } then have "\<And>j. j < n' \<Longrightarrow> u_s j = u_t j" by (auto simp: gr0_conv_Suc) then have "u_t n' = u_s n'" by (intro bij_betw_singleton_eq[OF t.upd s.upd, of n']) (auto simp: Suc) ultimately have "a = b" by simp with assms show "s = t" by auto qed end inductive ksimplex for p n :: nat where ksimplex: "kuhn_simplex p n base upd s \<Longrightarrow> ksimplex p n s" lemma finite_ksimplexes: "finite {s. ksimplex p n s}" proof (rule finite_subset) { fix a s assume "ksimplex p n s" "a \<in> s" then obtain b u where "kuhn_simplex p n b u s" by (auto elim: ksimplex.cases) then interpret kuhn_simplex p n b u s . from s_space \<open>a \<in> s\<close> out_eq_p[OF \<open>a \<in> s\<close>] have "a \<in> (\<lambda>f x. if n \<le> x then p else f x) ` ({..< n} \<rightarrow>\<^sub>E {.. p})" by (auto simp: image_iff subset_eq Pi_iff split: if_split_asm intro!: bexI[of _ "restrict a {..< n}"]) } then show "{s. ksimplex p n s} \<subseteq> Pow ((\<lambda>f x. if n \<le> x then p else f x) ` ({..< n} \<rightarrow>\<^sub>E {.. p}))" by auto qed (simp add: finite_PiE) lemma ksimplex_card: assumes "ksimplex p n s" shows "card s = Suc n" using assms proof cases case (ksimplex u b) then interpret kuhn_simplex p n u b s . show ?thesis by (simp add: card_image s_eq inj_enum) qed lemma simplex_top_face: assumes "0 < p" "\<forall>x\<in>s'. x n = p" shows "ksimplex p n s' \<longleftrightarrow> (\<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> s' = s - {a})" using assms proof safe fix s a assume "ksimplex p (Suc n) s" and a: "a \<in> s" and na: "\<forall>x\<in>s - {a}. x n = p" then show "ksimplex p n (s - {a})" proof cases case (ksimplex base upd) then interpret kuhn_simplex p "Suc n" base upd "s" . have "a n < p" using one_step[of a n p] na \<open>a\<in>s\<close> s_space by (auto simp: less_le) then have "a = enum 0" using \<open>a \<in> s\<close> na by (subst enum_0_bot) (auto simp: le_less intro!: less[of a _ n]) then have s_eq: "s - {a} = enum ` Suc ` {.. n}" using s_eq by (simp add: atMost_Suc_eq_insert_0 insert_ident in_enum_image subset_eq) then have "enum 1 \<in> s - {a}" by auto then have "upd 0 = n" using \<open>a n < p\<close> \<open>a = enum 0\<close> na[rule_format, of "enum 1"] by (auto simp: fun_eq_iff enum_Suc split: if_split_asm) then have "bij_betw upd (Suc ` {..< n}) {..< n}" using upd by (subst notIn_Un_bij_betw3[where b=0]) (auto simp: lessThan_Suc[symmetric] lessThan_Suc_eq_insert_0) then have "bij_betw (upd\<circ>Suc) {..<n} {..<n}" by (rule bij_betw_trans[rotated]) (auto simp: bij_betw_def) have "a n = p - 1" using enum_Suc[of 0] na[rule_format, OF \<open>enum 1 \<in> s - {a}\<close>] \<open>a = enum 0\<close> by (auto simp: \<open>upd 0 = n\<close>) show ?thesis proof (rule ksimplex.intros, standard) show "bij_betw (upd\<circ>Suc) {..< n} {..< n}" by fact show "base(n := p) \<in> {..<n} \<rightarrow> {..<p}" "\<And>i. n\<le>i \<Longrightarrow> (base(n := p)) i = p" using base base_out by (auto simp: Pi_iff) have "\<And>i. Suc ` {..< i} = {..< Suc i} - {0}" by (auto simp: image_iff Ball_def) arith then have upd_Suc: "\<And>i. i \<le> n \<Longrightarrow> (upd\<circ>Suc) ` {..< i} = upd ` {..< Suc i} - {n}" using \<open>upd 0 = n\<close> upd_inj by (auto simp add: image_iff less_Suc_eq_0_disj) have n_in_upd: "\<And>i. n \<in> upd ` {..< Suc i}" using \<open>upd 0 = n\<close> by auto define f' where "f' i j = (if j \<in> (upd\<circ>Suc)`{..< i} then Suc ((base(n := p)) j) else (base(n := p)) j)" for i j { fix x i assume i [arith]: "i \<le> n" with upd_Suc have "(upd \<circ> Suc) ` {..<i} = upd ` {..<Suc i} - {n}" . with \<open>a n < p\<close> \<open>a = enum 0\<close> \<open>upd 0 = n\<close> \<open>a n = p - 1\<close> have "enum (Suc i) x = f' i x" by (auto simp add: f'_def enum_def) } then show "s - {a} = f' ` {.. n}" unfolding s_eq image_comp by (intro image_cong) auto qed qed next assume "ksimplex p n s'" and *: "\<forall>x\<in>s'. x n = p" then show "\<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> s' = s - {a}" proof cases case (ksimplex base upd) then interpret kuhn_simplex p n base upd s' . define b where "b = base (n := p - 1)" define u where "u i = (case i of 0 \<Rightarrow> n | Suc i \<Rightarrow> upd i)" for i have "ksimplex p (Suc n) (s' \<union> {b})" proof (rule ksimplex.intros, standard) show "b \<in> {..<Suc n} \<rightarrow> {..<p}" using base \<open>0 < p\<close> unfolding lessThan_Suc b_def by (auto simp: PiE_iff) show "\<And>i. Suc n \<le> i \<Longrightarrow> b i = p" using base_out by (auto simp: b_def) have "bij_betw u (Suc ` {..< n} \<union> {0}) ({..<n} \<union> {u 0})" using upd by (intro notIn_Un_bij_betw) (auto simp: u_def bij_betw_def image_comp comp_def inj_on_def) then show "bij_betw u {..<Suc n} {..<Suc n}" by (simp add: u_def lessThan_Suc[symmetric] lessThan_Suc_eq_insert_0) define f' where "f' i j = (if j \<in> u`{..< i} then Suc (b j) else b j)" for i j have u_eq: "\<And>i. i \<le> n \<Longrightarrow> u ` {..< Suc i} = upd ` {..< i} \<union> { n }" by (auto simp: u_def image_iff upd_inj Ball_def split: nat.split) arith { fix x have "x \<le> n \<Longrightarrow> n \<notin> upd ` {..<x}" using upd_space by (simp add: image_iff neq_iff) } note n_not_upd = this have *: "f' ` {.. Suc n} = f' ` (Suc ` {.. n} \<union> {0})" unfolding atMost_Suc_eq_insert_0 by simp also have "\<dots> = (f' \<circ> Suc) ` {.. n} \<union> {b}" by (auto simp: f'_def) also have "(f' \<circ> Suc) ` {.. n} = s'" using \<open>0 < p\<close> base_out[of n] unfolding s_eq enum_def[abs_def] f'_def[abs_def] upd_space by (intro image_cong) (simp_all add: u_eq b_def fun_eq_iff n_not_upd) finally show "s' \<union> {b} = f' ` {.. Suc n}" .. qed moreover have "b \<notin> s'" using * \<open>0 < p\<close> by (auto simp: b_def) ultimately show ?thesis by auto qed qed lemma ksimplex_replace_0: assumes s: "ksimplex p n s" and a: "a \<in> s" assumes j: "j < n" and p: "\<forall>x\<in>s - {a}. x j = 0" shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 1" using s proof cases case (ksimplex b_s u_s) { fix t b assume "ksimplex p n t" then obtain b_t u_t where "kuhn_simplex p n b_t u_t t" by (auto elim: ksimplex.cases) interpret kuhn_simplex_pair p n b_s u_s s b_t u_t t by intro_locales fact+ assume b: "b \<in> t" "t - {b} = s - {a}" with a j p s.replace_0[of _ a] t.replace_0[of _ b] have "s = t" by (intro ksimplex_eq_top[of a b]) auto } then have "{s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = {s}" using s \<open>a \<in> s\<close> by auto then show ?thesis by simp qed lemma ksimplex_replace_1: assumes s: "ksimplex p n s" and a: "a \<in> s" assumes j: "j < n" and p: "\<forall>x\<in>s - {a}. x j = p" shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 1" using s proof cases case (ksimplex b_s u_s) { fix t b assume "ksimplex p n t" then obtain b_t u_t where "kuhn_simplex p n b_t u_t t" by (auto elim: ksimplex.cases) interpret kuhn_simplex_pair p n b_s u_s s b_t u_t t by intro_locales fact+ assume b: "b \<in> t" "t - {b} = s - {a}" with a j p s.replace_1[of _ a] t.replace_1[of _ b] have "s = t" by (intro ksimplex_eq_bot[of a b]) auto } then have "{s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = {s}" using s \<open>a \<in> s\<close> by auto then show ?thesis by simp qed lemma ksimplex_replace_2: assumes s: "ksimplex p n s" and "a \<in> s" and "n \<noteq> 0" and lb: "\<forall>j<n. \<exists>x\<in>s - {a}. x j \<noteq> 0" and ub: "\<forall>j<n. \<exists>x\<in>s - {a}. x j \<noteq> p" shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 2" using s proof cases case (ksimplex base upd) then interpret kuhn_simplex p n base upd s . from \<open>a \<in> s\<close> obtain i where "i \<le> n" "a = enum i" unfolding s_eq by auto from \<open>i \<le> n\<close> have "i = 0 \<or> i = n \<or> (0 < i \<and> i < n)" by linarith then have "\<exists>!s'. s' \<noteq> s \<and> ksimplex p n s' \<and> (\<exists>b\<in>s'. s - {a} = s'- {b})" proof (elim disjE conjE) assume "i = 0" define rot where [abs_def]: "rot i = (if i + 1 = n then 0 else i + 1)" for i let ?upd = "upd \<circ> rot" have rot: "bij_betw rot {..< n} {..< n}" by (auto simp: bij_betw_def inj_on_def image_iff Ball_def rot_def) arith+ from rot upd have "bij_betw ?upd {..<n} {..<n}" by (rule bij_betw_trans) define f' where [abs_def]: "f' i j = (if j \<in> ?upd`{..< i} then Suc (enum (Suc 0) j) else enum (Suc 0) j)" for i j interpret b: kuhn_simplex p n "enum (Suc 0)" "upd \<circ> rot" "f' ` {.. n}" proof from \<open>a = enum i\<close> ub \<open>n \<noteq> 0\<close> \<open>i = 0\<close> obtain i' where "i' \<le> n" "enum i' \<noteq> enum 0" "enum i' (upd 0) \<noteq> p" unfolding s_eq by (auto intro: upd_space simp: enum_inj) then have "enum 1 \<le> enum i'" "enum i' (upd 0) < p" using enum_le_p[of i' "upd 0"] by (auto simp: enum_inj enum_mono upd_space) then have "enum 1 (upd 0) < p" by (auto simp: le_fun_def intro: le_less_trans) then show "enum (Suc 0) \<in> {..<n} \<rightarrow> {..<p}" using base \<open>n \<noteq> 0\<close> by (auto simp: enum_0 enum_Suc PiE_iff extensional_def upd_space) { fix i assume "n \<le> i" then show "enum (Suc 0) i = p" using \<open>n \<noteq> 0\<close> by (auto simp: enum_eq_p) } show "bij_betw ?upd {..<n} {..<n}" by fact qed (simp add: f'_def) have ks_f': "ksimplex p n (f' ` {.. n})" by rule unfold_locales have b_enum: "b.enum = f'" unfolding f'_def b.enum_def[abs_def] .. with b.inj_enum have inj_f': "inj_on f' {.. n}" by simp have f'_eq_enum: "f' j = enum (Suc j)" if "j < n" for j proof - from that have "rot ` {..< j} = {0 <..< Suc j}" by (auto simp: rot_def image_Suc_lessThan cong: image_cong_simp) with that \<open>n \<noteq> 0\<close> show ?thesis by (simp only: f'_def enum_def fun_eq_iff image_comp [symmetric]) (auto simp add: upd_inj) qed then have "enum ` Suc ` {..< n} = f' ` {..< n}" by (force simp: enum_inj) also have "Suc ` {..< n} = {.. n} - {0}" by (auto simp: image_iff Ball_def) arith also have "{..< n} = {.. n} - {n}" by auto finally have eq: "s - {a} = f' ` {.. n} - {f' n}" unfolding s_eq \<open>a = enum i\<close> \<open>i = 0\<close> by (simp add: inj_on_image_set_diff[OF inj_enum] inj_on_image_set_diff[OF inj_f']) have "enum 0 < f' 0" using \<open>n \<noteq> 0\<close> by (simp add: enum_strict_mono f'_eq_enum) also have "\<dots> < f' n" using \<open>n \<noteq> 0\<close> b.enum_strict_mono[of 0 n] unfolding b_enum by simp finally have "a \<noteq> f' n" using \<open>a = enum i\<close> \<open>i = 0\<close> by auto { fix t c assume "ksimplex p n t" "c \<in> t" and eq_sma: "s - {a} = t - {c}" obtain b u where "kuhn_simplex p n b u t" using \<open>ksimplex p n t\<close> by (auto elim: ksimplex.cases) then interpret t: kuhn_simplex p n b u t . { fix x assume "x \<in> s" "x \<noteq> a" then have "x (upd 0) = enum (Suc 0) (upd 0)" by (auto simp: \<open>a = enum i\<close> \<open>i = 0\<close> s_eq enum_def enum_inj) } then have eq_upd0: "\<forall>x\<in>t-{c}. x (upd 0) = enum (Suc 0) (upd 0)" unfolding eq_sma[symmetric] by auto then have "c (upd 0) \<noteq> enum (Suc 0) (upd 0)" using \<open>n \<noteq> 0\<close> by (intro t.one_step[OF \<open>c\<in>t\<close> ]) (auto simp: upd_space) then have "c (upd 0) < enum (Suc 0) (upd 0) \<or> c (upd 0) > enum (Suc 0) (upd 0)" by auto then have "t = s \<or> t = f' ` {..n}" proof (elim disjE conjE) assume *: "c (upd 0) < enum (Suc 0) (upd 0)" interpret st: kuhn_simplex_pair p n base upd s b u t .. { fix x assume "x \<in> t" with * \<open>c\<in>t\<close> eq_upd0[rule_format, of x] have "c \<le> x" by (auto simp: le_less intro!: t.less[of _ _ "upd 0"]) } note top = this have "s = t" using \<open>a = enum i\<close> \<open>i = 0\<close> \<open>c \<in> t\<close> by (intro st.ksimplex_eq_bot[OF _ _ _ _ eq_sma]) (auto simp: s_eq enum_mono t.s_eq t.enum_mono top) then show ?thesis by simp next assume *: "c (upd 0) > enum (Suc 0) (upd 0)" interpret st: kuhn_simplex_pair p n "enum (Suc 0)" "upd \<circ> rot" "f' ` {.. n}" b u t .. have eq: "f' ` {..n} - {f' n} = t - {c}" using eq_sma eq by simp { fix x assume "x \<in> t" with * \<open>c\<in>t\<close> eq_upd0[rule_format, of x] have "x \<le> c" by (auto simp: le_less intro!: t.less[of _ _ "upd 0"]) } note top = this have "f' ` {..n} = t" using \<open>a = enum i\<close> \<open>i = 0\<close> \<open>c \<in> t\<close> by (intro st.ksimplex_eq_top[OF _ _ _ _ eq]) (auto simp: b.s_eq b.enum_mono t.s_eq t.enum_mono b_enum[symmetric] top) then show ?thesis by simp qed } with ks_f' eq \<open>a \<noteq> f' n\<close> \<open>n \<noteq> 0\<close> show ?thesis apply (intro ex1I[of _ "f' ` {.. n}"]) apply auto [] apply metis done next assume "i = n" from \<open>n \<noteq> 0\<close> obtain n' where n': "n = Suc n'" by (cases n) auto define rot where "rot i = (case i of 0 \<Rightarrow> n' | Suc i \<Rightarrow> i)" for i let ?upd = "upd \<circ> rot" have rot: "bij_betw rot {..< n} {..< n}" by (auto simp: bij_betw_def inj_on_def image_iff Bex_def rot_def n' split: nat.splits) arith from rot upd have "bij_betw ?upd {..<n} {..<n}" by (rule bij_betw_trans) define b where "b = base (upd n' := base (upd n') - 1)" define f' where [abs_def]: "f' i j = (if j \<in> ?upd`{..< i} then Suc (b j) else b j)" for i j interpret b: kuhn_simplex p n b "upd \<circ> rot" "f' ` {.. n}" proof { fix i assume "n \<le> i" then show "b i = p" using base_out[of i] upd_space[of n'] by (auto simp: b_def n') } show "b \<in> {..<n} \<rightarrow> {..<p}" using base \<open>n \<noteq> 0\<close> upd_space[of n'] by (auto simp: b_def PiE_def Pi_iff Ball_def upd_space extensional_def n') show "bij_betw ?upd {..<n} {..<n}" by fact qed (simp add: f'_def) have f': "b.enum = f'" unfolding f'_def b.enum_def[abs_def] .. have ks_f': "ksimplex p n (b.enum ` {.. n})" unfolding f' by rule unfold_locales have "0 < n" using \<open>n \<noteq> 0\<close> by auto { from \<open>a = enum i\<close> \<open>n \<noteq> 0\<close> \<open>i = n\<close> lb upd_space[of n'] obtain i' where "i' \<le> n" "enum i' \<noteq> enum n" "0 < enum i' (upd n')" unfolding s_eq by (auto simp: enum_inj n') moreover have "enum i' (upd n') = base (upd n')" unfolding enum_def using \<open>i' \<le> n\<close> \<open>enum i' \<noteq> enum n\<close> by (auto simp: n' upd_inj enum_inj) ultimately have "0 < base (upd n')" by auto } then have benum1: "b.enum (Suc 0) = base" unfolding b.enum_Suc[OF \<open>0<n\<close>] b.enum_0 by (auto simp: b_def rot_def) have [simp]: "\<And>j. Suc j < n \<Longrightarrow> rot ` {..< Suc j} = {n'} \<union> {..< j}" by (auto simp: rot_def image_iff Ball_def split: nat.splits) have rot_simps: "\<And>j. rot (Suc j) = j" "rot 0 = n'" by (simp_all add: rot_def) { fix j assume j: "Suc j \<le> n" then have "b.enum (Suc j) = enum j" by (induct j) (auto simp: benum1 enum_0 b.enum_Suc enum_Suc rot_simps) } note b_enum_eq_enum = this then have "enum ` {..< n} = b.enum ` Suc ` {..< n}" by (auto simp: image_comp intro!: image_cong) also have "Suc ` {..< n} = {.. n} - {0}" by (auto simp: image_iff Ball_def) arith also have "{..< n} = {.. n} - {n}" by auto finally have eq: "s - {a} = b.enum ` {.. n} - {b.enum 0}" unfolding s_eq \<open>a = enum i\<close> \<open>i = n\<close> using inj_on_image_set_diff[OF inj_enum Diff_subset, of "{n}"] inj_on_image_set_diff[OF b.inj_enum Diff_subset, of "{0}"] by (simp add: comp_def) have "b.enum 0 \<le> b.enum n" by (simp add: b.enum_mono) also have "b.enum n < enum n" using \<open>n \<noteq> 0\<close> by (simp add: enum_strict_mono b_enum_eq_enum n') finally have "a \<noteq> b.enum 0" using \<open>a = enum i\<close> \<open>i = n\<close> by auto { fix t c assume "ksimplex p n t" "c \<in> t" and eq_sma: "s - {a} = t - {c}" obtain b' u where "kuhn_simplex p n b' u t" using \<open>ksimplex p n t\<close> by (auto elim: ksimplex.cases) then interpret t: kuhn_simplex p n b' u t . { fix x assume "x \<in> s" "x \<noteq> a" then have "x (upd n') = enum n' (upd n')" by (auto simp: \<open>a = enum i\<close> n' \<open>i = n\<close> s_eq enum_def enum_inj in_upd_image) } then have eq_upd0: "\<forall>x\<in>t-{c}. x (upd n') = enum n' (upd n')" unfolding eq_sma[symmetric] by auto then have "c (upd n') \<noteq> enum n' (upd n')" using \<open>n \<noteq> 0\<close> by (intro t.one_step[OF \<open>c\<in>t\<close> ]) (auto simp: n' upd_space[unfolded n']) then have "c (upd n') < enum n' (upd n') \<or> c (upd n') > enum n' (upd n')" by auto then have "t = s \<or> t = b.enum ` {..n}" proof (elim disjE conjE) assume *: "c (upd n') > enum n' (upd n')" interpret st: kuhn_simplex_pair p n base upd s b' u t .. { fix x assume "x \<in> t" with * \<open>c\<in>t\<close> eq_upd0[rule_format, of x] have "x \<le> c" by (auto simp: le_less intro!: t.less[of _ _ "upd n'"]) } note top = this have "s = t" using \<open>a = enum i\<close> \<open>i = n\<close> \<open>c \<in> t\<close> by (intro st.ksimplex_eq_top[OF _ _ _ _ eq_sma]) (auto simp: s_eq enum_mono t.s_eq t.enum_mono top) then show ?thesis by simp next assume *: "c (upd n') < enum n' (upd n')" interpret st: kuhn_simplex_pair p n b "upd \<circ> rot" "f' ` {.. n}" b' u t .. have eq: "f' ` {..n} - {b.enum 0} = t - {c}" using eq_sma eq f' by simp { fix x assume "x \<in> t" with * \<open>c\<in>t\<close> eq_upd0[rule_format, of x] have "c \<le> x" by (auto simp: le_less intro!: t.less[of _ _ "upd n'"]) } note bot = this have "f' ` {..n} = t" using \<open>a = enum i\<close> \<open>i = n\<close> \<open>c \<in> t\<close> by (intro st.ksimplex_eq_bot[OF _ _ _ _ eq]) (auto simp: b.s_eq b.enum_mono t.s_eq t.enum_mono bot) with f' show ?thesis by simp qed } with ks_f' eq \<open>a \<noteq> b.enum 0\<close> \<open>n \<noteq> 0\<close> show ?thesis apply (intro ex1I[of _ "b.enum ` {.. n}"]) apply auto [] apply metis done next assume i: "0 < i" "i < n" define i' where "i' = i - 1" with i have "Suc i' < n" by simp with i have Suc_i': "Suc i' = i" by (simp add: i'_def) let ?upd = "Fun.swap i' i upd" from i upd have "bij_betw ?upd {..< n} {..< n}" by (subst bij_betw_swap_iff) (auto simp: i'_def) define f' where [abs_def]: "f' i j = (if j \<in> ?upd`{..< i} then Suc (base j) else base j)" for i j interpret b: kuhn_simplex p n base ?upd "f' ` {.. n}" proof show "base \<in> {..<n} \<rightarrow> {..<p}" by (rule base) { fix i assume "n \<le> i" then show "base i = p" by (rule base_out) } show "bij_betw ?upd {..<n} {..<n}" by fact qed (simp add: f'_def) have f': "b.enum = f'" unfolding f'_def b.enum_def[abs_def] .. have ks_f': "ksimplex p n (b.enum ` {.. n})" unfolding f' by rule unfold_locales have "{i} \<subseteq> {..n}" using i by auto { fix j assume "j \<le> n" moreover have "j < i \<or> i = j \<or> i < j" by arith moreover note i ultimately have "enum j = b.enum j \<longleftrightarrow> j \<noteq> i" apply (simp only: fun_eq_iff enum_def b.enum_def flip: image_comp) apply (cases \<open>i = j\<close>) apply simp apply (metis Suc_i' \<open>i \<le> n\<close> imageI in_upd_image lessI lessThan_iff lessThan_subset_iff less_irrefl_nat transpose_apply_second transpose_commute) apply (subst transpose_image_eq) apply (auto simp add: i'_def) done } note enum_eq_benum = this then have "enum ` ({.. n} - {i}) = b.enum ` ({.. n} - {i})" by (intro image_cong) auto then have eq: "s - {a} = b.enum ` {.. n} - {b.enum i}" unfolding s_eq \<open>a = enum i\<close> using inj_on_image_set_diff[OF inj_enum Diff_subset \<open>{i} \<subseteq> {..n}\<close>] inj_on_image_set_diff[OF b.inj_enum Diff_subset \<open>{i} \<subseteq> {..n}\<close>] by (simp add: comp_def) have "a \<noteq> b.enum i" using \<open>a = enum i\<close> enum_eq_benum i by auto { fix t c assume "ksimplex p n t" "c \<in> t" and eq_sma: "s - {a} = t - {c}" obtain b' u where "kuhn_simplex p n b' u t" using \<open>ksimplex p n t\<close> by (auto elim: ksimplex.cases) then interpret t: kuhn_simplex p n b' u t . have "enum i' \<in> s - {a}" "enum (i + 1) \<in> s - {a}" using \<open>a = enum i\<close> i enum_in by (auto simp: enum_inj i'_def) then obtain l k where l: "t.enum l = enum i'" "l \<le> n" "t.enum l \<noteq> c" and k: "t.enum k = enum (i + 1)" "k \<le> n" "t.enum k \<noteq> c" unfolding eq_sma by (auto simp: t.s_eq) with i have "t.enum l < t.enum k" by (simp add: enum_strict_mono i'_def) with \<open>l \<le> n\<close> \<open>k \<le> n\<close> have "l < k" by (simp add: t.enum_strict_mono) { assume "Suc l = k" have "enum (Suc (Suc i')) = t.enum (Suc l)" using i by (simp add: k \<open>Suc l = k\<close> i'_def) then have False using \<open>l < k\<close> \<open>k \<le> n\<close> \<open>Suc i' < n\<close> by (auto simp: t.enum_Suc enum_Suc l upd_inj fun_eq_iff split: if_split_asm) (metis Suc_lessD n_not_Suc_n upd_inj) } with \<open>l < k\<close> have "Suc l < k" by arith have c_eq: "c = t.enum (Suc l)" proof (rule ccontr) assume "c \<noteq> t.enum (Suc l)" then have "t.enum (Suc l) \<in> s - {a}" using \<open>l < k\<close> \<open>k \<le> n\<close> by (simp add: t.s_eq eq_sma) then obtain j where "t.enum (Suc l) = enum j" "j \<le> n" "enum j \<noteq> enum i" unfolding s_eq \<open>a = enum i\<close> by auto with i have "t.enum (Suc l) \<le> t.enum l \<or> t.enum k \<le> t.enum (Suc l)" by (auto simp: i'_def enum_mono enum_inj l k) with \<open>Suc l < k\<close> \<open>k \<le> n\<close> show False by (simp add: t.enum_mono) qed { have "t.enum (Suc (Suc l)) \<in> s - {a}" unfolding eq_sma c_eq t.s_eq using \<open>Suc l < k\<close> \<open>k \<le> n\<close> by (auto simp: t.enum_inj) then obtain j where eq: "t.enum (Suc (Suc l)) = enum j" and "j \<le> n" "j \<noteq> i" by (auto simp: s_eq \<open>a = enum i\<close>) moreover have "enum i' < t.enum (Suc (Suc l))" unfolding l(1)[symmetric] using \<open>Suc l < k\<close> \<open>k \<le> n\<close> by (auto simp: t.enum_strict_mono) ultimately have "i' < j" using i by (simp add: enum_strict_mono i'_def) with \<open>j \<noteq> i\<close> \<open>j \<le> n\<close> have "t.enum k \<le> t.enum (Suc (Suc l))" unfolding i'_def by (simp add: enum_mono k eq) then have "k \<le> Suc (Suc l)" using \<open>k \<le> n\<close> \<open>Suc l < k\<close> by (simp add: t.enum_mono) } with \<open>Suc l < k\<close> have "Suc (Suc l) = k" by simp then have "enum (Suc (Suc i')) = t.enum (Suc (Suc l))" using i by (simp add: k i'_def) also have "\<dots> = (enum i') (u l := Suc (enum i' (u l)), u (Suc l) := Suc (enum i' (u (Suc l))))" using \<open>Suc l < k\<close> \<open>k \<le> n\<close> by (simp add: t.enum_Suc l t.upd_inj) finally have "(u l = upd i' \<and> u (Suc l) = upd (Suc i')) \<or> (u l = upd (Suc i') \<and> u (Suc l) = upd i')" using \<open>Suc i' < n\<close> by (auto simp: enum_Suc fun_eq_iff split: if_split_asm) then have "t = s \<or> t = b.enum ` {..n}" proof (elim disjE conjE) assume u: "u l = upd i'" have "c = t.enum (Suc l)" unfolding c_eq .. also have "t.enum (Suc l) = enum (Suc i')" using u \<open>l < k\<close> \<open>k \<le> n\<close> \<open>Suc i' < n\<close> by (simp add: enum_Suc t.enum_Suc l) also have "\<dots> = a" using \<open>a = enum i\<close> i by (simp add: i'_def) finally show ?thesis using eq_sma \<open>a \<in> s\<close> \<open>c \<in> t\<close> by auto next assume u: "u l = upd (Suc i')" define B where "B = b.enum ` {..n}" have "b.enum i' = enum i'" using enum_eq_benum[of i'] i by (auto simp: i'_def gr0_conv_Suc) have "c = t.enum (Suc l)" unfolding c_eq .. also have "t.enum (Suc l) = b.enum (Suc i')" using u \<open>l < k\<close> \<open>k \<le> n\<close> \<open>Suc i' < n\<close> by (simp_all add: enum_Suc t.enum_Suc l b.enum_Suc \<open>b.enum i' = enum i'\<close>) (simp add: Suc_i') also have "\<dots> = b.enum i" using i by (simp add: i'_def) finally have "c = b.enum i" . then have "t - {c} = B - {c}" "c \<in> B" unfolding eq_sma[symmetric] eq B_def using i by auto with \<open>c \<in> t\<close> have "t = B" by auto then show ?thesis by (simp add: B_def) qed } with ks_f' eq \<open>a \<noteq> b.enum i\<close> \<open>n \<noteq> 0\<close> \<open>i \<le> n\<close> show ?thesis apply (intro ex1I[of _ "b.enum ` {.. n}"]) apply auto [] apply metis done qed then show ?thesis using s \<open>a \<in> s\<close> by (simp add: card_2_iff' Ex1_def) metis qed text \<open>Hence another step towards concreteness.\<close> lemma kuhn_simplex_lemma: assumes "\<forall>s. ksimplex p (Suc n) s \<longrightarrow> rl ` s \<subseteq> {.. Suc n}" and "odd (card {f. \<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> (f = s - {a}) \<and> rl ` f = {..n} \<and> ((\<exists>j\<le>n. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<le>n. \<forall>x\<in>f. x j = p))})" shows "odd (card {s. ksimplex p (Suc n) s \<and> rl ` s = {..Suc n}})" proof (rule kuhn_complete_lemma[OF finite_ksimplexes refl, unfolded mem_Collect_eq, where bnd="\<lambda>f. (\<exists>j\<in>{..n}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{..n}. \<forall>x\<in>f. x j = p)"], safe del: notI) have *: "\<And>x y. x = y \<Longrightarrow> odd (card x) \<Longrightarrow> odd (card y)" by auto show "odd (card {f. (\<exists>s\<in>{s. ksimplex p (Suc n) s}. \<exists>a\<in>s. f = s - {a}) \<and> rl ` f = {..n} \<and> ((\<exists>j\<in>{..n}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{..n}. \<forall>x\<in>f. x j = p))})" apply (rule *[OF _ assms(2)]) apply (auto simp: atLeast0AtMost) done next fix s assume s: "ksimplex p (Suc n) s" then show "card s = n + 2" by (simp add: ksimplex_card) fix a assume a: "a \<in> s" then show "rl a \<le> Suc n" using assms(1) s by (auto simp: subset_eq) let ?S = "{t. ksimplex p (Suc n) t \<and> (\<exists>b\<in>t. s - {a} = t - {b})}" { fix j assume j: "j \<le> n" "\<forall>x\<in>s - {a}. x j = 0" with s a show "card ?S = 1" using ksimplex_replace_0[of p "n + 1" s a j] by (subst eq_commute) simp } { fix j assume j: "j \<le> n" "\<forall>x\<in>s - {a}. x j = p" with s a show "card ?S = 1" using ksimplex_replace_1[of p "n + 1" s a j] by (subst eq_commute) simp } { assume "card ?S \<noteq> 2" "\<not> (\<exists>j\<in>{..n}. \<forall>x\<in>s - {a}. x j = p)" with s a show "\<exists>j\<in>{..n}. \<forall>x\<in>s - {a}. x j = 0" using ksimplex_replace_2[of p "n + 1" s a] by (subst (asm) eq_commute) auto } qed subsubsection \<open>Reduced labelling\<close> definition reduced :: "nat \<Rightarrow> (nat \<Rightarrow> nat) \<Rightarrow> nat" where "reduced n x = (LEAST k. k = n \<or> x k \<noteq> 0)" lemma reduced_labelling: shows "reduced n x \<le> n" and "\<forall>i<reduced n x. x i = 0" and "reduced n x = n \<or> x (reduced n x) \<noteq> 0" proof - show "reduced n x \<le> n" unfolding reduced_def by (rule LeastI2_wellorder[where a=n]) auto show "\<forall>i<reduced n x. x i = 0" unfolding reduced_def by (rule LeastI2_wellorder[where a=n]) fastforce+ show "reduced n x = n \<or> x (reduced n x) \<noteq> 0" unfolding reduced_def by (rule LeastI2_wellorder[where a=n]) fastforce+ qed lemma reduced_labelling_unique: "r \<le> n \<Longrightarrow> \<forall>i<r. x i = 0 \<Longrightarrow> r = n \<or> x r \<noteq> 0 \<Longrightarrow> reduced n x = r" unfolding reduced_def by (rule LeastI2_wellorder[where a=n]) (metis le_less not_le)+ lemma reduced_labelling_zero: "j < n \<Longrightarrow> x j = 0 \<Longrightarrow> reduced n x \<noteq> j" using reduced_labelling[of n x] by auto lemma reduce_labelling_zero[simp]: "reduced 0 x = 0" by (rule reduced_labelling_unique) auto lemma reduced_labelling_nonzero: "j < n \<Longrightarrow> x j \<noteq> 0 \<Longrightarrow> reduced n x \<le> j" using reduced_labelling[of n x] by (elim allE[where x=j]) auto lemma reduced_labelling_Suc: "reduced (Suc n) x \<noteq> Suc n \<Longrightarrow> reduced (Suc n) x = reduced n x" using reduced_labelling[of "Suc n" x] by (intro reduced_labelling_unique[symmetric]) auto lemma complete_face_top: assumes "\<forall>x\<in>f. \<forall>j\<le>n. x j = 0 \<longrightarrow> lab x j = 0" and "\<forall>x\<in>f. \<forall>j\<le>n. x j = p \<longrightarrow> lab x j = 1" and eq: "(reduced (Suc n) \<circ> lab) ` f = {..n}" shows "((\<exists>j\<le>n. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<le>n. \<forall>x\<in>f. x j = p)) \<longleftrightarrow> (\<forall>x\<in>f. x n = p)" proof (safe del: disjCI) fix x j assume j: "j \<le> n" "\<forall>x\<in>f. x j = 0" { fix x assume "x \<in> f" with assms j have "reduced (Suc n) (lab x) \<noteq> j" by (intro reduced_labelling_zero) auto } moreover have "j \<in> (reduced (Suc n) \<circ> lab) ` f" using j eq by auto ultimately show "x n = p" by force next fix x j assume j: "j \<le> n" "\<forall>x\<in>f. x j = p" and x: "x \<in> f" have "j = n" proof (rule ccontr) assume "\<not> ?thesis" { fix x assume "x \<in> f" with assms j have "reduced (Suc n) (lab x) \<le> j" by (intro reduced_labelling_nonzero) auto then have "reduced (Suc n) (lab x) \<noteq> n" using \<open>j \<noteq> n\<close> \<open>j \<le> n\<close> by simp } moreover have "n \<in> (reduced (Suc n) \<circ> lab) ` f" using eq by auto ultimately show False by force qed moreover have "j \<in> (reduced (Suc n) \<circ> lab) ` f" using j eq by auto ultimately show "x n = p" using j x by auto qed auto text \<open>Hence we get just about the nice induction.\<close> lemma kuhn_induction: assumes "0 < p" and lab_0: "\<forall>x. \<forall>j\<le>n. (\<forall>j. x j \<le> p) \<and> x j = 0 \<longrightarrow> lab x j = 0" and lab_1: "\<forall>x. \<forall>j\<le>n. (\<forall>j. x j \<le> p) \<and> x j = p \<longrightarrow> lab x j = 1" and odd: "odd (card {s. ksimplex p n s \<and> (reduced n\<circ>lab) ` s = {..n}})" shows "odd (card {s. ksimplex p (Suc n) s \<and> (reduced (Suc n)\<circ>lab) ` s = {..Suc n}})" proof - let ?rl = "reduced (Suc n) \<circ> lab" and ?ext = "\<lambda>f v. \<exists>j\<le>n. \<forall>x\<in>f. x j = v" let ?ext = "\<lambda>s. (\<exists>j\<le>n. \<forall>x\<in>s. x j = 0) \<or> (\<exists>j\<le>n. \<forall>x\<in>s. x j = p)" have "\<forall>s. ksimplex p (Suc n) s \<longrightarrow> ?rl ` s \<subseteq> {..Suc n}" by (simp add: reduced_labelling subset_eq) moreover have "{s. ksimplex p n s \<and> (reduced n \<circ> lab) ` s = {..n}} = {f. \<exists>s a. ksimplex p (Suc n) s \<and> a \<in> s \<and> f = s - {a} \<and> ?rl ` f = {..n} \<and> ?ext f}" proof (intro set_eqI, safe del: disjCI equalityI disjE) fix s assume s: "ksimplex p n s" and rl: "(reduced n \<circ> lab) ` s = {..n}" from s obtain u b where "kuhn_simplex p n u b s" by (auto elim: ksimplex.cases) then interpret kuhn_simplex p n u b s . have all_eq_p: "\<forall>x\<in>s. x n = p" by (auto simp: out_eq_p) moreover { fix x assume "x \<in> s" with lab_1[rule_format, of n x] all_eq_p s_le_p[of x] have "?rl x \<le> n" by (auto intro!: reduced_labelling_nonzero) then have "?rl x = reduced n (lab x)" by (auto intro!: reduced_labelling_Suc) } then have "?rl ` s = {..n}" using rl by (simp cong: image_cong) moreover obtain t a where "ksimplex p (Suc n) t" "a \<in> t" "s = t - {a}" using s unfolding simplex_top_face[OF \<open>0 < p\<close> all_eq_p] by auto ultimately show "\<exists>t a. ksimplex p (Suc n) t \<and> a \<in> t \<and> s = t - {a} \<and> ?rl ` s = {..n} \<and> ?ext s" by auto next fix x s a assume s: "ksimplex p (Suc n) s" and rl: "?rl ` (s - {a}) = {.. n}" and a: "a \<in> s" and "?ext (s - {a})" from s obtain u b where "kuhn_simplex p (Suc n) u b s" by (auto elim: ksimplex.cases) then interpret kuhn_simplex p "Suc n" u b s . have all_eq_p: "\<forall>x\<in>s. x (Suc n) = p" by (auto simp: out_eq_p) { fix x assume "x \<in> s - {a}" then have "?rl x \<in> ?rl ` (s - {a})" by auto then have "?rl x \<le> n" unfolding rl by auto then have "?rl x = reduced n (lab x)" by (auto intro!: reduced_labelling_Suc) } then show rl': "(reduced n\<circ>lab) ` (s - {a}) = {..n}" unfolding rl[symmetric] by (intro image_cong) auto from \<open>?ext (s - {a})\<close> have all_eq_p: "\<forall>x\<in>s - {a}. x n = p" proof (elim disjE exE conjE) fix j assume "j \<le> n" "\<forall>x\<in>s - {a}. x j = 0" with lab_0[rule_format, of j] all_eq_p s_le_p have "\<And>x. x \<in> s - {a} \<Longrightarrow> reduced (Suc n) (lab x) \<noteq> j" by (intro reduced_labelling_zero) auto moreover have "j \<in> ?rl ` (s - {a})" using \<open>j \<le> n\<close> unfolding rl by auto ultimately show ?thesis by force next fix j assume "j \<le> n" and eq_p: "\<forall>x\<in>s - {a}. x j = p" show ?thesis proof cases assume "j = n" with eq_p show ?thesis by simp next assume "j \<noteq> n" { fix x assume x: "x \<in> s - {a}" have "reduced n (lab x) \<le> j" proof (rule reduced_labelling_nonzero) show "lab x j \<noteq> 0" using lab_1[rule_format, of j x] x s_le_p[of x] eq_p \<open>j \<le> n\<close> by auto show "j < n" using \<open>j \<le> n\<close> \<open>j \<noteq> n\<close> by simp qed then have "reduced n (lab x) \<noteq> n" using \<open>j \<le> n\<close> \<open>j \<noteq> n\<close> by simp } moreover have "n \<in> (reduced n\<circ>lab) ` (s - {a})" unfolding rl' by auto ultimately show ?thesis by force qed qed show "ksimplex p n (s - {a})" unfolding simplex_top_face[OF \<open>0 < p\<close> all_eq_p] using s a by auto qed ultimately show ?thesis using assms by (intro kuhn_simplex_lemma) auto qed text \<open>And so we get the final combinatorial result.\<close> lemma ksimplex_0: "ksimplex p 0 s \<longleftrightarrow> s = {(\<lambda>x. p)}" proof assume "ksimplex p 0 s" then show "s = {(\<lambda>x. p)}" by (blast dest: kuhn_simplex.ksimplex_0 elim: ksimplex.cases) next assume s: "s = {(\<lambda>x. p)}" show "ksimplex p 0 s" proof (intro ksimplex, unfold_locales) show "(\<lambda>_. p) \<in> {..<0::nat} \<rightarrow> {..<p}" by auto show "bij_betw id {..<0} {..<0}" by simp qed (auto simp: s) qed lemma kuhn_combinatorial: assumes "0 < p" and "\<forall>x j. (\<forall>j. x j \<le> p) \<and> j < n \<and> x j = 0 \<longrightarrow> lab x j = 0" and "\<forall>x j. (\<forall>j. x j \<le> p) \<and> j < n \<and> x j = p \<longrightarrow> lab x j = 1" shows "odd (card {s. ksimplex p n s \<and> (reduced n\<circ>lab) ` s = {..n}})" (is "odd (card (?M n))") using assms proof (induct n) case 0 then show ?case by (simp add: ksimplex_0 cong: conj_cong) next case (Suc n) then have "odd (card (?M n))" by force with Suc show ?case using kuhn_induction[of p n] by (auto simp: comp_def) qed lemma kuhn_lemma: fixes n p :: nat assumes "0 < p" and "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. label x i = (0::nat) \<or> label x i = 1)" and "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = 0 \<longrightarrow> label x i = 0)" and "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = p \<longrightarrow> label x i = 1)" obtains q where "\<forall>i<n. q i < p" and "\<forall>i<n. \<exists>r s. (\<forall>j<n. q j \<le> r j \<and> r j \<le> q j + 1) \<and> (\<forall>j<n. q j \<le> s j \<and> s j \<le> q j + 1) \<and> label r i \<noteq> label s i" proof - let ?rl = "reduced n \<circ> label" let ?A = "{s. ksimplex p n s \<and> ?rl ` s = {..n}}" have "odd (card ?A)" using assms by (intro kuhn_combinatorial[of p n label]) auto then have "?A \<noteq> {}" by (rule odd_card_imp_not_empty) then obtain s b u where "kuhn_simplex p n b u s" and rl: "?rl ` s = {..n}" by (auto elim: ksimplex.cases) interpret kuhn_simplex p n b u s by fact show ?thesis proof (intro that[of b] allI impI) fix i assume "i < n" then show "b i < p" using base by auto next fix i assume "i < n" then have "i \<in> {.. n}" "Suc i \<in> {.. n}" by auto then obtain u v where u: "u \<in> s" "Suc i = ?rl u" and v: "v \<in> s" "i = ?rl v" unfolding rl[symmetric] by blast have "label u i \<noteq> label v i" using reduced_labelling [of n "label u"] reduced_labelling [of n "label v"] u(2)[symmetric] v(2)[symmetric] \<open>i < n\<close> by auto moreover have "b j \<le> u j" "u j \<le> b j + 1" "b j \<le> v j" "v j \<le> b j + 1" if "j < n" for j using that base_le[OF \<open>u\<in>s\<close>] le_Suc_base[OF \<open>u\<in>s\<close>] base_le[OF \<open>v\<in>s\<close>] le_Suc_base[OF \<open>v\<in>s\<close>] by auto ultimately show "\<exists>r s. (\<forall>j<n. b j \<le> r j \<and> r j \<le> b j + 1) \<and> (\<forall>j<n. b j \<le> s j \<and> s j \<le> b j + 1) \<and> label r i \<noteq> label s i" by blast qed qed subsubsection \<open>Main result for the unit cube\<close> lemma kuhn_labelling_lemma': assumes "(\<forall>x::nat\<Rightarrow>real. P x \<longrightarrow> P (f x))" and "\<forall>x. P x \<longrightarrow> (\<forall>i::nat. Q i \<longrightarrow> 0 \<le> x i \<and> x i \<le> 1)" shows "\<exists>l. (\<forall>x i. l x i \<le> (1::nat)) \<and> (\<forall>x i. P x \<and> Q i \<and> x i = 0 \<longrightarrow> l x i = 0) \<and> (\<forall>x i. P x \<and> Q i \<and> x i = 1 \<longrightarrow> l x i = 1) \<and> (\<forall>x i. P x \<and> Q i \<and> l x i = 0 \<longrightarrow> x i \<le> f x i) \<and> (\<forall>x i. P x \<and> Q i \<and> l x i = 1 \<longrightarrow> f x i \<le> x i)" proof - have and_forall_thm: "\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)" by auto have *: "\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x" by auto show ?thesis unfolding and_forall_thm apply (subst choice_iff[symmetric])+ apply rule apply rule proof - fix x x' let ?R = "\<lambda>y::nat. (P x \<and> Q x' \<and> x x' = 0 \<longrightarrow> y = 0) \<and> (P x \<and> Q x' \<and> x x' = 1 \<longrightarrow> y = 1) \<and> (P x \<and> Q x' \<and> y = 0 \<longrightarrow> x x' \<le> (f x) x') \<and> (P x \<and> Q x' \<and> y = 1 \<longrightarrow> (f x) x' \<le> x x')" have "0 \<le> f x x' \<and> f x x' \<le> 1" if "P x" "Q x'" using assms(2)[rule_format,of "f x" x'] that apply (drule_tac assms(1)[rule_format]) apply auto done then have "?R 0 \<or> ?R 1" by auto then show "\<exists>y\<le>1. ?R y" by auto qed qed subsection \<open>Brouwer's fixed point theorem\<close> text \<open>We start proving Brouwer's fixed point theorem for the unit cube = \<open>cbox 0 One\<close>.\<close> lemma brouwer_cube: fixes f :: "'a::euclidean_space \<Rightarrow> 'a" assumes "continuous_on (cbox 0 One) f" and "f ` cbox 0 One \<subseteq> cbox 0 One" shows "\<exists>x\<in>cbox 0 One. f x = x" proof (rule ccontr) define n where "n = DIM('a)" have n: "1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def by (auto simp: Suc_le_eq) assume "\<not> ?thesis" then have *: "\<not> (\<exists>x\<in>cbox 0 One. f x - x = 0)" by auto obtain d where d: "d > 0" "\<And>x. x \<in> cbox 0 One \<Longrightarrow> d \<le> norm (f x - x)" apply (rule brouwer_compactness_lemma[OF compact_cbox _ *]) apply (rule continuous_intros assms)+ apply blast done have *: "\<forall>x. x \<in> cbox 0 One \<longrightarrow> f x \<in> cbox 0 One" "\<forall>x. x \<in> (cbox 0 One::'a set) \<longrightarrow> (\<forall>i\<in>Basis. True \<longrightarrow> 0 \<le> x \<bullet> i \<and> x \<bullet> i \<le> 1)" using assms(2)[unfolded image_subset_iff Ball_def] unfolding cbox_def by auto obtain label :: "'a \<Rightarrow> 'a \<Rightarrow> nat" where label [rule_format]: "\<forall>x. \<forall>i\<in>Basis. label x i \<le> 1" "\<forall>x. \<forall>i\<in>Basis. x \<in> cbox 0 One \<and> x \<bullet> i = 0 \<longrightarrow> label x i = 0" "\<forall>x. \<forall>i\<in>Basis. x \<in> cbox 0 One \<and> x \<bullet> i = 1 \<longrightarrow> label x i = 1" "\<forall>x. \<forall>i\<in>Basis. x \<in> cbox 0 One \<and> label x i = 0 \<longrightarrow> x \<bullet> i \<le> f x \<bullet> i" "\<forall>x. \<forall>i\<in>Basis. x \<in> cbox 0 One \<and> label x i = 1 \<longrightarrow> f x \<bullet> i \<le> x \<bullet> i" using kuhn_labelling_lemma[OF *] by auto note label = this [rule_format] have lem1: "\<forall>x\<in>cbox 0 One. \<forall>y\<in>cbox 0 One. \<forall>i\<in>Basis. label x i \<noteq> label y i \<longrightarrow> \<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y - f x) + norm (y - x)" proof safe fix x y :: 'a assume x: "x \<in> cbox 0 One" and y: "y \<in> cbox 0 One" fix i assume i: "label x i \<noteq> label y i" "i \<in> Basis" have *: "\<And>x y fx fy :: real. x \<le> fx \<and> fy \<le> y \<or> fx \<le> x \<and> y \<le> fy \<Longrightarrow> \<bar>fx - x\<bar> \<le> \<bar>fy - fx\<bar> + \<bar>y - x\<bar>" by auto have "\<bar>(f x - x) \<bullet> i\<bar> \<le> \<bar>(f y - f x)\<bullet>i\<bar> + \<bar>(y - x)\<bullet>i\<bar>" proof (cases "label x i = 0") case True then have fxy: "\<not> f y \<bullet> i \<le> y \<bullet> i \<Longrightarrow> f x \<bullet> i \<le> x \<bullet> i" by (metis True i label(1) label(5) le_antisym less_one not_le_imp_less y) show ?thesis unfolding inner_simps by (rule *) (auto simp: True i label x y fxy) next case False then show ?thesis using label [OF \<open>i \<in> Basis\<close>] i(1) x y apply (auto simp: inner_diff_left le_Suc_eq) by (metis "*") qed also have "\<dots> \<le> norm (f y - f x) + norm (y - x)" by (simp add: add_mono i(2) norm_bound_Basis_le) finally show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y - f x) + norm (y - x)" unfolding inner_simps . qed have "\<exists>e>0. \<forall>x\<in>cbox 0 One. \<forall>y\<in>cbox 0 One. \<forall>z\<in>cbox 0 One. \<forall>i\<in>Basis. norm (x - z) < e \<longrightarrow> norm (y - z) < e \<longrightarrow> label x i \<noteq> label y i \<longrightarrow> \<bar>(f(z) - z)\<bullet>i\<bar> < d / (real n)" proof - have d': "d / real n / 8 > 0" using d(1) by (simp add: n_def) have *: "uniformly_continuous_on (cbox 0 One) f" by (rule compact_uniformly_continuous[OF assms(1) compact_cbox]) obtain e where e: "e > 0" "\<And>x x'. x \<in> cbox 0 One \<Longrightarrow> x' \<in> cbox 0 One \<Longrightarrow> norm (x' - x) < e \<Longrightarrow> norm (f x' - f x) < d / real n / 8" using *[unfolded uniformly_continuous_on_def,rule_format,OF d'] unfolding dist_norm by blast show ?thesis proof (intro exI conjI ballI impI) show "0 < min (e / 2) (d / real n / 8)" using d' e by auto fix x y z i assume as: "x \<in> cbox 0 One" "y \<in> cbox 0 One" "z \<in> cbox 0 One" "norm (x - z) < min (e / 2) (d / real n / 8)" "norm (y - z) < min (e / 2) (d / real n / 8)" "label x i \<noteq> label y i" assume i: "i \<in> Basis" have *: "\<And>z fz x fx n1 n2 n3 n4 d4 d :: real. \<bar>fx - x\<bar> \<le> n1 + n2 \<Longrightarrow> \<bar>fx - fz\<bar> \<le> n3 \<Longrightarrow> \<bar>x - z\<bar> \<le> n4 \<Longrightarrow> n1 < d4 \<Longrightarrow> n2 < 2 * d4 \<Longrightarrow> n3 < d4 \<Longrightarrow> n4 < d4 \<Longrightarrow> (8 * d4 = d) \<Longrightarrow> \<bar>fz - z\<bar> < d" by auto show "\<bar>(f z - z) \<bullet> i\<bar> < d / real n" unfolding inner_simps proof (rule *) show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y -f x) + norm (y - x)" using as(1) as(2) as(6) i lem1 by blast show "norm (f x - f z) < d / real n / 8" using d' e as by auto show "\<bar>f x \<bullet> i - f z \<bullet> i\<bar> \<le> norm (f x - f z)" "\<bar>x \<bullet> i - z \<bullet> i\<bar> \<le> norm (x - z)" unfolding inner_diff_left[symmetric] by (rule Basis_le_norm[OF i])+ have tria: "norm (y - x) \<le> norm (y - z) + norm (x - z)" using dist_triangle[of y x z, unfolded dist_norm] unfolding norm_minus_commute by auto also have "\<dots> < e / 2 + e / 2" using as(4) as(5) by auto finally show "norm (f y - f x) < d / real n / 8" using as(1) as(2) e(2) by auto have "norm (y - z) + norm (x - z) < d / real n / 8 + d / real n / 8" using as(4) as(5) by auto with tria show "norm (y - x) < 2 * (d / real n / 8)" by auto qed (use as in auto) qed qed then obtain e where e: "e > 0" "\<And>x y z i. x \<in> cbox 0 One \<Longrightarrow> y \<in> cbox 0 One \<Longrightarrow> z \<in> cbox 0 One \<Longrightarrow> i \<in> Basis \<Longrightarrow> norm (x - z) < e \<and> norm (y - z) < e \<and> label x i \<noteq> label y i \<Longrightarrow> \<bar>(f z - z) \<bullet> i\<bar> < d / real n" by blast obtain p :: nat where p: "1 + real n / e \<le> real p" using real_arch_simple .. have "1 + real n / e > 0" using e(1) n by (simp add: add_pos_pos) then have "p > 0" using p by auto obtain b :: "nat \<Rightarrow> 'a" where b: "bij_betw b {..< n} Basis" by atomize_elim (auto simp: n_def intro!: finite_same_card_bij) define b' where "b' = inv_into {..< n} b" then have b': "bij_betw b' Basis {..< n}" using bij_betw_inv_into[OF b] by auto then have b'_Basis: "\<And>i. i \<in> Basis \<Longrightarrow> b' i \<in> {..< n}" unfolding bij_betw_def by (auto simp: set_eq_iff) have bb'[simp]:"\<And>i. i \<in> Basis \<Longrightarrow> b (b' i) = i" unfolding b'_def using b by (auto simp: f_inv_into_f bij_betw_def) have b'b[simp]:"\<And>i. i < n \<Longrightarrow> b' (b i) = i" unfolding b'_def using b by (auto simp: inv_into_f_eq bij_betw_def) have *: "\<And>x :: nat. x = 0 \<or> x = 1 \<longleftrightarrow> x \<le> 1" by auto have b'': "\<And>j. j < n \<Longrightarrow> b j \<in> Basis" using b unfolding bij_betw_def by auto have q1: "0 < p" "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0 \<or> (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1)" unfolding * using \<open>p > 0\<close> \<open>n > 0\<close> using label(1)[OF b''] by auto { fix x :: "nat \<Rightarrow> nat" and i assume "\<forall>i<n. x i \<le> p" "i < n" "x i = p \<or> x i = 0" then have "(\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<in> (cbox 0 One::'a set)" using b'_Basis by (auto simp: cbox_def bij_betw_def zero_le_divide_iff divide_le_eq_1) } note cube = this have q2: "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = 0 \<longrightarrow> (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0)" unfolding o_def using cube \<open>p > 0\<close> by (intro allI impI label(2)) (auto simp: b'') have q3: "\<forall>x. (\<forall>i<n. x i \<le> p) \<longrightarrow> (\<forall>i<n. x i = p \<longrightarrow> (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1)" using cube \<open>p > 0\<close> unfolding o_def by (intro allI impI label(3)) (auto simp: b'') obtain q where q: "\<forall>i<n. q i < p" "\<forall>i<n. \<exists>r s. (\<forall>j<n. q j \<le> r j \<and> r j \<le> q j + 1) \<and> (\<forall>j<n. q j \<le> s j \<and> s j \<le> q j + 1) \<and> (label (\<Sum>i\<in>Basis. (real (r (b' i)) / real p) *\<^sub>R i) \<circ> b) i \<noteq> (label (\<Sum>i\<in>Basis. (real (s (b' i)) / real p) *\<^sub>R i) \<circ> b) i" by (rule kuhn_lemma[OF q1 q2 q3]) define z :: 'a where "z = (\<Sum>i\<in>Basis. (real (q (b' i)) / real p) *\<^sub>R i)" have "\<exists>i\<in>Basis. d / real n \<le> \<bar>(f z - z)\<bullet>i\<bar>" proof (rule ccontr) have "\<forall>i\<in>Basis. q (b' i) \<in> {0..p}" using q(1) b' by (auto intro: less_imp_le simp: bij_betw_def) then have "z \<in> cbox 0 One" unfolding z_def cbox_def using b'_Basis by (auto simp: bij_betw_def zero_le_divide_iff divide_le_eq_1) then have d_fz_z: "d \<le> norm (f z - z)" by (rule d) assume "\<not> ?thesis" then have as: "\<forall>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar> < d / real n" using \<open>n > 0\<close> by (auto simp: not_le inner_diff) have "norm (f z - z) \<le> (\<Sum>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar>)" unfolding inner_diff_left[symmetric] by (rule norm_le_l1) also have "\<dots> < (\<Sum>(i::'a) \<in> Basis. d / real n)" by (meson as finite_Basis nonempty_Basis sum_strict_mono) also have "\<dots> = d" using DIM_positive[where 'a='a] by (auto simp: n_def) finally show False using d_fz_z by auto qed then obtain i where i: "i \<in> Basis" "d / real n \<le> \<bar>(f z - z) \<bullet> i\<bar>" .. have *: "b' i < n" using i and b'[unfolded bij_betw_def] by auto obtain r s where rs: "\<And>j. j < n \<Longrightarrow> q j \<le> r j \<and> r j \<le> q j + 1" "\<And>j. j < n \<Longrightarrow> q j \<le> s j \<and> s j \<le> q j + 1" "(label (\<Sum>i\<in>Basis. (real (r (b' i)) / real p) *\<^sub>R i) \<circ> b) (b' i) \<noteq> (label (\<Sum>i\<in>Basis. (real (s (b' i)) / real p) *\<^sub>R i) \<circ> b) (b' i)" using q(2)[rule_format,OF *] by blast have b'_im: "\<And>i. i \<in> Basis \<Longrightarrow> b' i < n" using b' unfolding bij_betw_def by auto define r' ::'a where "r' = (\<Sum>i\<in>Basis. (real (r (b' i)) / real p) *\<^sub>R i)" have "\<And>i. i \<in> Basis \<Longrightarrow> r (b' i) \<le> p" apply (rule order_trans) apply (rule rs(1)[OF b'_im,THEN conjunct2]) using q(1)[rule_format,OF b'_im] apply (auto simp: Suc_le_eq) done then have "r' \<in> cbox 0 One" unfolding r'_def cbox_def using b'_Basis by (auto simp: bij_betw_def zero_le_divide_iff divide_le_eq_1) define s' :: 'a where "s' = (\<Sum>i\<in>Basis. (real (s (b' i)) / real p) *\<^sub>R i)" have "\<And>i. i \<in> Basis \<Longrightarrow> s (b' i) \<le> p" using b'_im q(1) rs(2) by fastforce then have "s' \<in> cbox 0 One" unfolding s'_def cbox_def using b'_Basis by (auto simp: bij_betw_def zero_le_divide_iff divide_le_eq_1) have "z \<in> cbox 0 One" unfolding z_def cbox_def using b'_Basis q(1)[rule_format,OF b'_im] \<open>p > 0\<close> by (auto simp: bij_betw_def zero_le_divide_iff divide_le_eq_1 less_imp_le) { have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)" by (rule sum_mono) (use rs(1)[OF b'_im] in force) also have "\<dots> < e * real p" using p \<open>e > 0\<close> \<open>p > 0\<close> by (auto simp: field_simps n_def) finally have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) < e * real p" . } moreover { have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)" by (rule sum_mono) (use rs(2)[OF b'_im] in force) also have "\<dots> < e * real p" using p \<open>e > 0\<close> \<open>p > 0\<close> by (auto simp: field_simps n_def) finally have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) < e * real p" . } ultimately have "norm (r' - z) < e" and "norm (s' - z) < e" unfolding r'_def s'_def z_def using \<open>p > 0\<close> apply (rule_tac[!] le_less_trans[OF norm_le_l1]) apply (auto simp: field_simps sum_divide_distrib[symmetric] inner_diff_left) done then have "\<bar>(f z - z) \<bullet> i\<bar> < d / real n" using rs(3) i unfolding r'_def[symmetric] s'_def[symmetric] o_def bb' by (intro e(2)[OF \<open>r'\<in>cbox 0 One\<close> \<open>s'\<in>cbox 0 One\<close> \<open>z\<in>cbox 0 One\<close>]) auto then show False using i by auto qed text \<open>Next step is to prove it for nonempty interiors.\<close> lemma brouwer_weak: fixes f :: "'a::euclidean_space \<Rightarrow> 'a" assumes "compact S" and "convex S" and "interior S \<noteq> {}" and "continuous_on S f" and "f ` S \<subseteq> S" obtains x where "x \<in> S" and "f x = x" proof - let ?U = "cbox 0 One :: 'a set" have "\<Sum>Basis /\<^sub>R 2 \<in> interior ?U" proof (rule interiorI) let ?I = "(\<Inter>i\<in>Basis. {x::'a. 0 < x \<bullet> i} \<inter> {x. x \<bullet> i < 1})" show "open ?I" by (intro open_INT finite_Basis ballI open_Int, auto intro: open_Collect_less simp: continuous_on_inner) show "\<Sum>Basis /\<^sub>R 2 \<in> ?I" by simp show "?I \<subseteq> cbox 0 One" unfolding cbox_def by force qed then have *: "interior ?U \<noteq> {}" by fast have *: "?U homeomorphic S" using homeomorphic_convex_compact[OF convex_box(1) compact_cbox * assms(2,1,3)] . have "\<forall>f. continuous_on ?U f \<and> f ` ?U \<subseteq> ?U \<longrightarrow> (\<exists>x\<in>?U. f x = x)" using brouwer_cube by auto then show ?thesis unfolding homeomorphic_fixpoint_property[OF *] using assms by (auto intro: that) qed text \<open>Then the particular case for closed balls.\<close> lemma brouwer_ball: fixes f :: "'a::euclidean_space \<Rightarrow> 'a" assumes "e > 0" and "continuous_on (cball a e) f" and "f ` cball a e \<subseteq> cball a e" obtains x where "x \<in> cball a e" and "f x = x" using brouwer_weak[OF compact_cball convex_cball, of a e f] unfolding interior_cball ball_eq_empty using assms by auto text \<open>And finally we prove Brouwer's fixed point theorem in its general version.\<close> theorem brouwer: fixes f :: "'a::euclidean_space \<Rightarrow> 'a" assumes S: "compact S" "convex S" "S \<noteq> {}" and contf: "continuous_on S f" and fim: "f ` S \<subseteq> S" obtains x where "x \<in> S" and "f x = x" proof - have "\<exists>e>0. S \<subseteq> cball 0 e" using compact_imp_bounded[OF \<open>compact S\<close>] unfolding bounded_pos by auto then obtain e where e: "e > 0" "S \<subseteq> cball 0 e" by blast have "\<exists>x\<in> cball 0 e. (f \<circ> closest_point S) x = x" proof (rule_tac brouwer_ball[OF e(1)]) show "continuous_on (cball 0 e) (f \<circ> closest_point S)" apply (rule continuous_on_compose) using S compact_eq_bounded_closed continuous_on_closest_point apply blast by (meson S contf closest_point_in_set compact_imp_closed continuous_on_subset image_subsetI) show "(f \<circ> closest_point S) ` cball 0 e \<subseteq> cball 0 e" by clarsimp (metis S fim closest_point_exists(1) compact_eq_bounded_closed e(2) image_subset_iff mem_cball_0 subsetCE) qed (use assms in auto) then obtain x where x: "x \<in> cball 0 e" "(f \<circ> closest_point S) x = x" .. have "x \<in> S" by (metis closest_point_in_set comp_apply compact_imp_closed fim image_eqI S(1) S(3) subset_iff x(2)) then have *: "closest_point S x = x" by (rule closest_point_self) show thesis proof show "closest_point S x \<in> S" by (simp add: "*" \<open>x \<in> S\<close>) show "f (closest_point S x) = closest_point S x" using "*" x(2) by auto qed qed subsection \<open>Applications\<close> text \<open>So we get the no-retraction theorem.\<close> corollary no_retraction_cball: fixes a :: "'a::euclidean_space" assumes "e > 0" shows "\<not> (frontier (cball a e) retract_of (cball a e))" proof assume *: "frontier (cball a e) retract_of (cball a e)" have **: "\<And>xa. a - (2 *\<^sub>R a - xa) = - (a - xa)" using scaleR_left_distrib[of 1 1 a] by auto obtain x where x: "x \<in> {x. norm (a - x) = e}" "2 *\<^sub>R a - x = x" proof (rule retract_fixpoint_property[OF *, of "\<lambda>x. scaleR 2 a - x"]) show "continuous_on (frontier (cball a e)) ((-) (2 *\<^sub>R a))" by (intro continuous_intros) show "(-) (2 *\<^sub>R a) ` frontier (cball a e) \<subseteq> frontier (cball a e)" by clarsimp (metis "**" dist_norm norm_minus_cancel) qed (auto simp: dist_norm intro: brouwer_ball[OF assms]) then have "scaleR 2 a = scaleR 1 x + scaleR 1 x" by (auto simp: algebra_simps) then have "a = x" unfolding scaleR_left_distrib[symmetric] by auto then show False using x assms by auto qed corollary contractible_sphere: fixes a :: "'a::euclidean_space" shows "contractible(sphere a r) \<longleftrightarrow> r \<le> 0" proof (cases "0 < r") case True then show ?thesis unfolding contractible_def nullhomotopic_from_sphere_extension using no_retraction_cball [OF True, of a] by (auto simp: retract_of_def retraction_def) next case False then show ?thesis unfolding contractible_def nullhomotopic_from_sphere_extension using less_eq_real_def by auto qed corollary connected_sphere_eq: fixes a :: "'a :: euclidean_space" shows "connected(sphere a r) \<longleftrightarrow> 2 \<le> DIM('a) \<or> r \<le> 0" (is "?lhs = ?rhs") proof (cases r "0::real" rule: linorder_cases) case less then show ?thesis by auto next case equal then show ?thesis by auto next case greater show ?thesis proof assume L: ?lhs have "False" if 1: "DIM('a) = 1" proof - obtain x y where xy: "sphere a r = {x,y}" "x \<noteq> y" using sphere_1D_doubleton [OF 1 greater] by (metis dist_self greater insertI1 less_add_same_cancel1 mem_sphere mult_2 not_le zero_le_dist) then have "finite (sphere a r)" by auto with L \<open>r > 0\<close> xy show "False" using connected_finite_iff_sing by auto qed with greater show ?rhs by (metis DIM_ge_Suc0 One_nat_def Suc_1 le_antisym not_less_eq_eq) next assume ?rhs then show ?lhs using connected_sphere greater by auto qed qed corollary path_connected_sphere_eq: fixes a :: "'a :: euclidean_space" shows "path_connected(sphere a r) \<longleftrightarrow> 2 \<le> DIM('a) \<or> r \<le> 0" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs using connected_sphere_eq path_connected_imp_connected by blast next assume R: ?rhs then show ?lhs by (auto simp: contractible_imp_path_connected contractible_sphere path_connected_sphere) qed proposition frontier_subset_retraction: fixes S :: "'a::euclidean_space set" assumes "bounded S" and fros: "frontier S \<subseteq> T" and contf: "continuous_on (closure S) f" and fim: "f ` S \<subseteq> T" and fid: "\<And>x. x \<in> T \<Longrightarrow> f x = x" shows "S \<subseteq> T" proof (rule ccontr) assume "\<not> S \<subseteq> T" then obtain a where "a \<in> S" "a \<notin> T" by blast define g where "g \<equiv> \<lambda>z. if z \<in> closure S then f z else z" have "continuous_on (closure S \<union> closure(-S)) g" unfolding g_def apply (rule continuous_on_cases) using fros fid frontier_closures by (auto simp: contf) moreover have "closure S \<union> closure(- S) = UNIV" using closure_Un by fastforce ultimately have contg: "continuous_on UNIV g" by metis obtain B where "0 < B" and B: "closure S \<subseteq> ball a B" using \<open>bounded S\<close> bounded_subset_ballD by blast have notga: "g x \<noteq> a" for x unfolding g_def using fros fim \<open>a \<notin> T\<close> apply (auto simp: frontier_def) using fid interior_subset apply fastforce by (simp add: \<open>a \<in> S\<close> closure_def) define h where "h \<equiv> (\<lambda>y. a + (B / norm(y - a)) *\<^sub>R (y - a)) \<circ> g" have "\<not> (frontier (cball a B) retract_of (cball a B))" by (metis no_retraction_cball \<open>0 < B\<close>) then have "\<And>k. \<not> retraction (cball a B) (frontier (cball a B)) k" by (simp add: retract_of_def) moreover have "retraction (cball a B) (frontier (cball a B)) h" unfolding retraction_def proof (intro conjI ballI) show "frontier (cball a B) \<subseteq> cball a B" by force show "continuous_on (cball a B) h" unfolding h_def by (intro continuous_intros) (use contg continuous_on_subset notga in auto) show "h ` cball a B \<subseteq> frontier (cball a B)" using \<open>0 < B\<close> by (auto simp: h_def notga dist_norm) show "\<And>x. x \<in> frontier (cball a B) \<Longrightarrow> h x = x" apply (auto simp: h_def algebra_simps) apply (simp add: vector_add_divide_simps notga) by (metis (no_types, opaque_lifting) B add.commute dist_commute dist_norm g_def mem_ball not_less_iff_gr_or_eq subset_eq) qed ultimately show False by simp qed subsubsection \<open>Punctured affine hulls, etc\<close> lemma rel_frontier_deformation_retract_of_punctured_convex: fixes S :: "'a::euclidean_space set" assumes "convex S" "convex T" "bounded S" and arelS: "a \<in> rel_interior S" and relS: "rel_frontier S \<subseteq> T" and affS: "T \<subseteq> affine hull S" obtains r where "homotopic_with_canon (\<lambda>x. True) (T - {a}) (T - {a}) id r" "retraction (T - {a}) (rel_frontier S) r" proof - have "\<exists>d. 0 < d \<and> (a + d *\<^sub>R l) \<in> rel_frontier S \<and> (\<forall>e. 0 \<le> e \<and> e < d \<longrightarrow> (a + e *\<^sub>R l) \<in> rel_interior S)" if "(a + l) \<in> affine hull S" "l \<noteq> 0" for l apply (rule ray_to_rel_frontier [OF \<open>bounded S\<close> arelS]) apply (rule that)+ by metis then obtain dd where dd1: "\<And>l. \<lbrakk>(a + l) \<in> affine hull S; l \<noteq> 0\<rbrakk> \<Longrightarrow> 0 < dd l \<and> (a + dd l *\<^sub>R l) \<in> rel_frontier S" and dd2: "\<And>l e. \<lbrakk>(a + l) \<in> affine hull S; e < dd l; 0 \<le> e; l \<noteq> 0\<rbrakk> \<Longrightarrow> (a + e *\<^sub>R l) \<in> rel_interior S" by metis+ have aaffS: "a \<in> affine hull S" by (meson arelS subsetD hull_inc rel_interior_subset) have "((\<lambda>z. z - a) ` (affine hull S - {a})) = ((\<lambda>z. z - a) ` (affine hull S)) - {0}" by auto moreover have "continuous_on (((\<lambda>z. z - a) ` (affine hull S)) - {0}) (\<lambda>x. dd x *\<^sub>R x)" proof (rule continuous_on_compact_surface_projection) show "compact (rel_frontier ((\<lambda>z. z - a) ` S))" by (simp add: \<open>bounded S\<close> bounded_translation_minus compact_rel_frontier_bounded) have releq: "rel_frontier ((\<lambda>z. z - a) ` S) = (\<lambda>z. z - a) ` rel_frontier S" using rel_frontier_translation [of "-a"] add.commute by simp also have "\<dots> \<subseteq> (\<lambda>z. z - a) ` (affine hull S) - {0}" using rel_frontier_affine_hull arelS rel_frontier_def by fastforce finally show "rel_frontier ((\<lambda>z. z - a) ` S) \<subseteq> (\<lambda>z. z - a) ` (affine hull S) - {0}" . show "cone ((\<lambda>z. z - a) ` (affine hull S))" by (rule subspace_imp_cone) (use aaffS in \<open>simp add: subspace_affine image_comp o_def affine_translation_aux [of a]\<close>) show "(0 < k \<and> k *\<^sub>R x \<in> rel_frontier ((\<lambda>z. z - a) ` S)) \<longleftrightarrow> (dd x = k)" if x: "x \<in> (\<lambda>z. z - a) ` (affine hull S) - {0}" for k x proof show "dd x = k \<Longrightarrow> 0 < k \<and> k *\<^sub>R x \<in> rel_frontier ((\<lambda>z. z - a) ` S)" using dd1 [of x] that image_iff by (fastforce simp add: releq) next assume k: "0 < k \<and> k *\<^sub>R x \<in> rel_frontier ((\<lambda>z. z - a) ` S)" have False if "dd x < k" proof - have "k \<noteq> 0" "a + k *\<^sub>R x \<in> closure S" using k closure_translation [of "-a"] by (auto simp: rel_frontier_def cong: image_cong_simp) then have segsub: "open_segment a (a + k *\<^sub>R x) \<subseteq> rel_interior S" by (metis rel_interior_closure_convex_segment [OF \<open>convex S\<close> arelS]) have "x \<noteq> 0" and xaffS: "a + x \<in> affine hull S" using x by auto then have "0 < dd x" and inS: "a + dd x *\<^sub>R x \<in> rel_frontier S" using dd1 by auto moreover have "a + dd x *\<^sub>R x \<in> open_segment a (a + k *\<^sub>R x)" using k \<open>x \<noteq> 0\<close> \<open>0 < dd x\<close> apply (simp add: in_segment) apply (rule_tac x = "dd x / k" in exI) apply (simp add: field_simps that) apply (simp add: vector_add_divide_simps algebra_simps) done ultimately show ?thesis using segsub by (auto simp: rel_frontier_def) qed moreover have False if "k < dd x" using x k that rel_frontier_def by (fastforce simp: algebra_simps releq dest!: dd2) ultimately show "dd x = k" by fastforce qed qed ultimately have *: "continuous_on ((\<lambda>z. z - a) ` (affine hull S - {a})) (\<lambda>x. dd x *\<^sub>R x)" by auto have "continuous_on (affine hull S - {a}) ((\<lambda>x. a + dd x *\<^sub>R x) \<circ> (\<lambda>z. z - a))" by (intro * continuous_intros continuous_on_compose) with affS have contdd: "continuous_on (T - {a}) ((\<lambda>x. a + dd x *\<^sub>R x) \<circ> (\<lambda>z. z - a))" by (blast intro: continuous_on_subset) show ?thesis proof show "homotopic_with_canon (\<lambda>x. True) (T - {a}) (T - {a}) id (\<lambda>x. a + dd (x - a) *\<^sub>R (x - a))" proof (rule homotopic_with_linear) show "continuous_on (T - {a}) id" by (intro continuous_intros continuous_on_compose) show "continuous_on (T - {a}) (\<lambda>x. a + dd (x - a) *\<^sub>R (x - a))" using contdd by (simp add: o_def) show "closed_segment (id x) (a + dd (x - a) *\<^sub>R (x - a)) \<subseteq> T - {a}" if "x \<in> T - {a}" for x proof (clarsimp simp: in_segment, intro conjI) fix u::real assume u: "0 \<le> u" "u \<le> 1" have "a + dd (x - a) *\<^sub>R (x - a) \<in> T" by (metis DiffD1 DiffD2 add.commute add.right_neutral affS dd1 diff_add_cancel relS singletonI subsetCE that) then show "(1 - u) *\<^sub>R x + u *\<^sub>R (a + dd (x - a) *\<^sub>R (x - a)) \<in> T" using convexD [OF \<open>convex T\<close>] that u by simp have iff: "(1 - u) *\<^sub>R x + u *\<^sub>R (a + d *\<^sub>R (x - a)) = a \<longleftrightarrow> (1 - u + u * d) *\<^sub>R (x - a) = 0" for d by (auto simp: algebra_simps) have "x \<in> T" "x \<noteq> a" using that by auto then have axa: "a + (x - a) \<in> affine hull S" by (metis (no_types) add.commute affS diff_add_cancel rev_subsetD) then have "\<not> dd (x - a) \<le> 0 \<and> a + dd (x - a) *\<^sub>R (x - a) \<in> rel_frontier S" using \<open>x \<noteq> a\<close> dd1 by fastforce with \<open>x \<noteq> a\<close> show "(1 - u) *\<^sub>R x + u *\<^sub>R (a + dd (x - a) *\<^sub>R (x - a)) \<noteq> a" apply (auto simp: iff) using less_eq_real_def mult_le_0_iff not_less u by fastforce qed qed show "retraction (T - {a}) (rel_frontier S) (\<lambda>x. a + dd (x - a) *\<^sub>R (x - a))" proof (simp add: retraction_def, intro conjI ballI) show "rel_frontier S \<subseteq> T - {a}" using arelS relS rel_frontier_def by fastforce show "continuous_on (T - {a}) (\<lambda>x. a + dd (x - a) *\<^sub>R (x - a))" using contdd by (simp add: o_def) show "(\<lambda>x. a + dd (x - a) *\<^sub>R (x - a)) ` (T - {a}) \<subseteq> rel_frontier S" apply (auto simp: rel_frontier_def) apply (metis Diff_subset add.commute affS dd1 diff_add_cancel eq_iff_diff_eq_0 rel_frontier_def subset_iff) by (metis DiffE add.commute affS dd1 diff_add_cancel eq_iff_diff_eq_0 rel_frontier_def rev_subsetD) show "a + dd (x - a) *\<^sub>R (x - a) = x" if x: "x \<in> rel_frontier S" for x proof - have "x \<noteq> a" using that arelS by (auto simp: rel_frontier_def) have False if "dd (x - a) < 1" proof - have "x \<in> closure S" using x by (auto simp: rel_frontier_def) then have segsub: "open_segment a x \<subseteq> rel_interior S" by (metis rel_interior_closure_convex_segment [OF \<open>convex S\<close> arelS]) have xaffS: "x \<in> affine hull S" using affS relS x by auto then have "0 < dd (x - a)" and inS: "a + dd (x - a) *\<^sub>R (x - a) \<in> rel_frontier S" using dd1 by (auto simp: \<open>x \<noteq> a\<close>) moreover have "a + dd (x - a) *\<^sub>R (x - a) \<in> open_segment a x" using \<open>x \<noteq> a\<close> \<open>0 < dd (x - a)\<close> apply (simp add: in_segment) apply (rule_tac x = "dd (x - a)" in exI) apply (simp add: algebra_simps that) done ultimately show ?thesis using segsub by (auto simp: rel_frontier_def) qed moreover have False if "1 < dd (x - a)" using x that dd2 [of "x - a" 1] \<open>x \<noteq> a\<close> closure_affine_hull by (auto simp: rel_frontier_def) ultimately have "dd (x - a) = 1" \<comment> \<open>similar to another proof above\<close> by fastforce with that show ?thesis by (simp add: rel_frontier_def) qed qed qed qed corollary rel_frontier_retract_of_punctured_affine_hull: fixes S :: "'a::euclidean_space set" assumes "bounded S" "convex S" "a \<in> rel_interior S" shows "rel_frontier S retract_of (affine hull S - {a})" apply (rule rel_frontier_deformation_retract_of_punctured_convex [of S "affine hull S" a]) apply (auto simp: affine_imp_convex rel_frontier_affine_hull retract_of_def assms) done corollary rel_boundary_retract_of_punctured_affine_hull: fixes S :: "'a::euclidean_space set" assumes "compact S" "convex S" "a \<in> rel_interior S" shows "(S - rel_interior S) retract_of (affine hull S - {a})" by (metis assms closure_closed compact_eq_bounded_closed rel_frontier_def rel_frontier_retract_of_punctured_affine_hull) lemma homotopy_eqv_rel_frontier_punctured_convex: fixes S :: "'a::euclidean_space set" assumes "convex S" "bounded S" "a \<in> rel_interior S" "convex T" "rel_frontier S \<subseteq> T" "T \<subseteq> affine hull S" shows "(rel_frontier S) homotopy_eqv (T - {a})" apply (rule rel_frontier_deformation_retract_of_punctured_convex [of S T]) using assms apply auto using deformation_retract_imp_homotopy_eqv homotopy_equivalent_space_sym by blast lemma homotopy_eqv_rel_frontier_punctured_affine_hull: fixes S :: "'a::euclidean_space set" assumes "convex S" "bounded S" "a \<in> rel_interior S" shows "(rel_frontier S) homotopy_eqv (affine hull S - {a})" apply (rule homotopy_eqv_rel_frontier_punctured_convex) using assms rel_frontier_affine_hull by force+ lemma path_connected_sphere_gen: assumes "convex S" "bounded S" "aff_dim S \<noteq> 1" shows "path_connected(rel_frontier S)" proof (cases "rel_interior S = {}") case True then show ?thesis by (simp add: \<open>convex S\<close> convex_imp_path_connected rel_frontier_def) next case False then show ?thesis by (metis aff_dim_affine_hull affine_affine_hull affine_imp_convex all_not_in_conv assms path_connected_punctured_convex rel_frontier_retract_of_punctured_affine_hull retract_of_path_connected) qed lemma connected_sphere_gen: assumes "convex S" "bounded S" "aff_dim S \<noteq> 1" shows "connected(rel_frontier S)" by (simp add: assms path_connected_imp_connected path_connected_sphere_gen) subsubsection\<open>Borsuk-style characterization of separation\<close> lemma continuous_on_Borsuk_map: "a \<notin> s \<Longrightarrow> continuous_on s (\<lambda>x. inverse(norm (x - a)) *\<^sub>R (x - a))" by (rule continuous_intros | force)+ lemma Borsuk_map_into_sphere: "(\<lambda>x. inverse(norm (x - a)) *\<^sub>R (x - a)) ` s \<subseteq> sphere 0 1 \<longleftrightarrow> (a \<notin> s)" by auto (metis eq_iff_diff_eq_0 left_inverse norm_eq_zero) lemma Borsuk_maps_homotopic_in_path_component: assumes "path_component (- s) a b" shows "homotopic_with_canon (\<lambda>x. True) s (sphere 0 1) (\<lambda>x. inverse(norm(x - a)) *\<^sub>R (x - a)) (\<lambda>x. inverse(norm(x - b)) *\<^sub>R (x - b))" proof - obtain g where "path g" "path_image g \<subseteq> -s" "pathstart g = a" "pathfinish g = b" using assms by (auto simp: path_component_def) then show ?thesis apply (simp add: path_def path_image_def pathstart_def pathfinish_def homotopic_with_def) apply (rule_tac x = "\<lambda>z. inverse(norm(snd z - (g \<circ> fst)z)) *\<^sub>R (snd z - (g \<circ> fst)z)" in exI) apply (intro conjI continuous_intros) apply (rule continuous_intros | erule continuous_on_subset | fastforce simp: divide_simps sphere_def)+ done qed lemma non_extensible_Borsuk_map: fixes a :: "'a :: euclidean_space" assumes "compact s" and cin: "c \<in> components(- s)" and boc: "bounded c" and "a \<in> c" shows "\<not> (\<exists>g. continuous_on (s \<union> c) g \<and> g ` (s \<union> c) \<subseteq> sphere 0 1 \<and> (\<forall>x \<in> s. g x = inverse(norm(x - a)) *\<^sub>R (x - a)))" proof - have "closed s" using assms by (simp add: compact_imp_closed) have "c \<subseteq> -s" using assms by (simp add: in_components_subset) with \<open>a \<in> c\<close> have "a \<notin> s" by blast then have ceq: "c = connected_component_set (- s) a" by (metis \<open>a \<in> c\<close> cin components_iff connected_component_eq) then have "bounded (s \<union> connected_component_set (- s) a)" using \<open>compact s\<close> boc compact_imp_bounded by auto with bounded_subset_ballD obtain r where "0 < r" and r: "(s \<union> connected_component_set (- s) a) \<subseteq> ball a r" by blast { fix g assume "continuous_on (s \<union> c) g" "g ` (s \<union> c) \<subseteq> sphere 0 1" and [simp]: "\<And>x. x \<in> s \<Longrightarrow> g x = (x - a) /\<^sub>R norm (x - a)" then have [simp]: "\<And>x. x \<in> s \<union> c \<Longrightarrow> norm (g x) = 1" by force have cb_eq: "cball a r = (s \<union> connected_component_set (- s) a) \<union> (cball a r - connected_component_set (- s) a)" using ball_subset_cball [of a r] r by auto have cont1: "continuous_on (s \<union> connected_component_set (- s) a) (\<lambda>x. a + r *\<^sub>R g x)" apply (rule continuous_intros)+ using \<open>continuous_on (s \<union> c) g\<close> ceq by blast have cont2: "continuous_on (cball a r - connected_component_set (- s) a) (\<lambda>x. a + r *\<^sub>R ((x - a) /\<^sub>R norm (x - a)))" by (rule continuous_intros | force simp: \<open>a \<notin> s\<close>)+ have 1: "continuous_on (cball a r) (\<lambda>x. if connected_component (- s) a x then a + r *\<^sub>R g x else a + r *\<^sub>R ((x - a) /\<^sub>R norm (x - a)))" apply (subst cb_eq) apply (rule continuous_on_cases [OF _ _ cont1 cont2]) using ceq cin apply (auto intro: closed_Un_complement_component simp: \<open>closed s\<close> open_Compl open_connected_component) done have 2: "(\<lambda>x. a + r *\<^sub>R g x) ` (cball a r \<inter> connected_component_set (- s) a) \<subseteq> sphere a r " using \<open>0 < r\<close> by (force simp: dist_norm ceq) have "retraction (cball a r) (sphere a r) (\<lambda>x. if x \<in> connected_component_set (- s) a then a + r *\<^sub>R g x else a + r *\<^sub>R ((x - a) /\<^sub>R norm (x - a)))" using \<open>0 < r\<close> apply (simp add: retraction_def dist_norm 1 2, safe) apply (force simp: dist_norm abs_if mult_less_0_iff divide_simps \<open>a \<notin> s\<close>) using r by (auto simp: dist_norm norm_minus_commute) then have False using no_retraction_cball [OF \<open>0 < r\<close>, of a, unfolded retract_of_def, simplified, rule_format, of "\<lambda>x. if x \<in> connected_component_set (- s) a then a + r *\<^sub>R g x else a + r *\<^sub>R inverse(norm(x - a)) *\<^sub>R (x - a)"] by blast } then show ?thesis by blast qed subsubsection \<open>Proving surjectivity via Brouwer fixpoint theorem\<close> lemma brouwer_surjective: fixes f :: "'n::euclidean_space \<Rightarrow> 'n" assumes "compact T" and "convex T" and "T \<noteq> {}" and "continuous_on T f" and "\<And>x y. \<lbrakk>x\<in>S; y\<in>T\<rbrakk> \<Longrightarrow> x + (y - f y) \<in> T" and "x \<in> S" shows "\<exists>y\<in>T. f y = x" proof - have *: "\<And>x y. f y = x \<longleftrightarrow> x + (y - f y) = y" by (auto simp add: algebra_simps) show ?thesis unfolding * apply (rule brouwer[OF assms(1-3), of "\<lambda>y. x + (y - f y)"]) apply (intro continuous_intros) using assms apply auto done qed lemma brouwer_surjective_cball: fixes f :: "'n::euclidean_space \<Rightarrow> 'n" assumes "continuous_on (cball a e) f" and "e > 0" and "x \<in> S" and "\<And>x y. \<lbrakk>x\<in>S; y\<in>cball a e\<rbrakk> \<Longrightarrow> x + (y - f y) \<in> cball a e" shows "\<exists>y\<in>cball a e. f y = x" apply (rule brouwer_surjective) apply (rule compact_cball convex_cball)+ unfolding cball_eq_empty using assms apply auto done subsubsection \<open>Inverse function theorem\<close> text \<open>See Sussmann: "Multidifferential calculus", Theorem 2.1.1\<close> lemma sussmann_open_mapping: fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space" assumes "open S" and contf: "continuous_on S f" and "x \<in> S" and derf: "(f has_derivative f') (at x)" and "bounded_linear g'" "f' \<circ> g' = id" and "T \<subseteq> S" and x: "x \<in> interior T" shows "f x \<in> interior (f ` T)" proof - interpret f': bounded_linear f' using assms unfolding has_derivative_def by auto interpret g': bounded_linear g' using assms by auto obtain B where B: "0 < B" "\<forall>x. norm (g' x) \<le> norm x * B" using bounded_linear.pos_bounded[OF assms(5)] by blast hence *: "1 / (2 * B) > 0" by auto obtain e0 where e0: "0 < e0" "\<forall>y. norm (y - x) < e0 \<longrightarrow> norm (f y - f x - f' (y - x)) \<le> 1 / (2 * B) * norm (y - x)" using derf unfolding has_derivative_at_alt using * by blast obtain e1 where e1: "0 < e1" "cball x e1 \<subseteq> T" using mem_interior_cball x by blast have *: "0 < e0 / B" "0 < e1 / B" using e0 e1 B by auto obtain e where e: "0 < e" "e < e0 / B" "e < e1 / B" using field_lbound_gt_zero[OF *] by blast have lem: "\<exists>y\<in>cball (f x) e. f (x + g' (y - f x)) = z" if "z\<in>cball (f x) (e / 2)" for z proof (rule brouwer_surjective_cball) have z: "z \<in> S" if as: "y \<in>cball (f x) e" "z = x + (g' y - g' (f x))" for y z proof- have "dist x z = norm (g' (f x) - g' y)" unfolding as(2) and dist_norm by auto also have "\<dots> \<le> norm (f x - y) * B" by (metis B(2) g'.diff) also have "\<dots> \<le> e * B" by (metis B(1) dist_norm mem_cball mult_le_cancel_iff1 that(1)) also have "\<dots> \<le> e1" using B(1) e(3) pos_less_divide_eq by fastforce finally have "z \<in> cball x e1" by force then show "z \<in> S" using e1 assms(7) by auto qed show "continuous_on (cball (f x) e) (\<lambda>y. f (x + g' (y - f x)))" unfolding g'.diff proof (rule continuous_on_compose2 [OF _ _ order_refl, of _ _ f]) show "continuous_on ((\<lambda>y. x + (g' y - g' (f x))) ` cball (f x) e) f" by (rule continuous_on_subset[OF contf]) (use z in blast) show "continuous_on (cball (f x) e) (\<lambda>y. x + (g' y - g' (f x)))" by (intro continuous_intros linear_continuous_on[OF \<open>bounded_linear g'\<close>]) qed next fix y z assume y: "y \<in> cball (f x) (e / 2)" and z: "z \<in> cball (f x) e" have "norm (g' (z - f x)) \<le> norm (z - f x) * B" using B by auto also have "\<dots> \<le> e * B" by (metis B(1) z dist_norm mem_cball norm_minus_commute mult_le_cancel_iff1) also have "\<dots> < e0" using B(1) e(2) pos_less_divide_eq by blast finally have *: "norm (x + g' (z - f x) - x) < e0" by auto have **: "f x + f' (x + g' (z - f x) - x) = z" using assms(6)[unfolded o_def id_def,THEN cong] by auto have "norm (f x - (y + (z - f (x + g' (z - f x))))) \<le> norm (f (x + g' (z - f x)) - z) + norm (f x - y)" using norm_triangle_ineq[of "f (x + g'(z - f x)) - z" "f x - y"] by (auto simp add: algebra_simps) also have "\<dots> \<le> 1 / (B * 2) * norm (g' (z - f x)) + norm (f x - y)" using e0(2)[rule_format, OF *] by (simp only: algebra_simps **) auto also have "\<dots> \<le> 1 / (B * 2) * norm (g' (z - f x)) + e/2" using y by (auto simp: dist_norm) also have "\<dots> \<le> 1 / (B * 2) * B * norm (z - f x) + e/2" using * B by (auto simp add: field_simps) also have "\<dots> \<le> 1 / 2 * norm (z - f x) + e/2" by auto also have "\<dots> \<le> e/2 + e/2" using B(1) \<open>norm (z - f x) * B \<le> e * B\<close> by auto finally show "y + (z - f (x + g' (z - f x))) \<in> cball (f x) e" by (auto simp: dist_norm) qed (use e that in auto) show ?thesis unfolding mem_interior proof (intro exI conjI subsetI) fix y assume "y \<in> ball (f x) (e / 2)" then have *: "y \<in> cball (f x) (e / 2)" by auto obtain z where z: "z \<in> cball (f x) e" "f (x + g' (z - f x)) = y" using lem * by blast then have "norm (g' (z - f x)) \<le> norm (z - f x) * B" using B by (auto simp add: field_simps) also have "\<dots> \<le> e * B" by (metis B(1) dist_norm mem_cball norm_minus_commute mult_le_cancel_iff1 z(1)) also have "\<dots> \<le> e1" using e B unfolding less_divide_eq by auto finally have "x + g'(z - f x) \<in> T" by (metis add_diff_cancel diff_diff_add dist_norm e1(2) mem_cball norm_minus_commute subset_eq) then show "y \<in> f ` T" using z by auto qed (use e in auto) qed text \<open>Hence the following eccentric variant of the inverse function theorem. This has no continuity assumptions, but we do need the inverse function. We could put \<open>f' \<circ> g = I\<close> but this happens to fit with the minimal linear algebra theory I've set up so far.\<close> lemma has_derivative_inverse_strong: fixes f :: "'n::euclidean_space \<Rightarrow> 'n" assumes "open S" and "x \<in> S" and contf: "continuous_on S f" and gf: "\<And>x. x \<in> S \<Longrightarrow> g (f x) = x" and derf: "(f has_derivative f') (at x)" and id: "f' \<circ> g' = id" shows "(g has_derivative g') (at (f x))" proof - have linf: "bounded_linear f'" using derf unfolding has_derivative_def by auto then have ling: "bounded_linear g'" unfolding linear_conv_bounded_linear[symmetric] using id right_inverse_linear by blast moreover have "g' \<circ> f' = id" using id linf ling unfolding linear_conv_bounded_linear[symmetric] using linear_inverse_left by auto moreover have *: "\<And>T. \<lbrakk>T \<subseteq> S; x \<in> interior T\<rbrakk> \<Longrightarrow> f x \<in> interior (f ` T)" apply (rule sussmann_open_mapping) apply (rule assms ling)+ apply auto done have "continuous (at (f x)) g" unfolding continuous_at Lim_at proof (rule, rule) fix e :: real assume "e > 0" then have "f x \<in> interior (f ` (ball x e \<inter> S))" using *[rule_format,of "ball x e \<inter> S"] \<open>x \<in> S\<close> by (auto simp add: interior_open[OF open_ball] interior_open[OF assms(1)]) then obtain d where d: "0 < d" "ball (f x) d \<subseteq> f ` (ball x e \<inter> S)" unfolding mem_interior by blast show "\<exists>d>0. \<forall>y. 0 < dist y (f x) \<and> dist y (f x) < d \<longrightarrow> dist (g y) (g (f x)) < e" proof (intro exI allI impI conjI) fix y assume "0 < dist y (f x) \<and> dist y (f x) < d" then have "g y \<in> g ` f ` (ball x e \<inter> S)" by (metis d(2) dist_commute mem_ball rev_image_eqI subset_iff) then show "dist (g y) (g (f x)) < e" using gf[OF \<open>x \<in> S\<close>] by (simp add: assms(4) dist_commute image_iff) qed (use d in auto) qed moreover have "f x \<in> interior (f ` S)" apply (rule sussmann_open_mapping) apply (rule assms ling)+ using interior_open[OF assms(1)] and \<open>x \<in> S\<close> apply auto done moreover have "f (g y) = y" if "y \<in> interior (f ` S)" for y by (metis gf imageE interiorE subsetD that) ultimately show ?thesis using assms by (metis has_derivative_inverse_basic_x open_interior) qed text \<open>A rewrite based on the other domain.\<close> lemma has_derivative_inverse_strong_x: fixes f :: "'a::euclidean_space \<Rightarrow> 'a" assumes "open S" and "g y \<in> S" and "continuous_on S f" and "\<And>x. x \<in> S \<Longrightarrow> g (f x) = x" and "(f has_derivative f') (at (g y))" and "f' \<circ> g' = id" and "f (g y) = y" shows "(g has_derivative g') (at y)" using has_derivative_inverse_strong[OF assms(1-6)] unfolding assms(7) by simp text \<open>On a region.\<close> theorem has_derivative_inverse_on: fixes f :: "'n::euclidean_space \<Rightarrow> 'n" assumes "open S" and derf: "\<And>x. x \<in> S \<Longrightarrow> (f has_derivative f'(x)) (at x)" and "\<And>x. x \<in> S \<Longrightarrow> g (f x) = x" and "f' x \<circ> g' x = id" and "x \<in> S" shows "(g has_derivative g'(x)) (at (f x))" proof (rule has_derivative_inverse_strong[where g'="g' x" and f=f]) show "continuous_on S f" unfolding continuous_on_eq_continuous_at[OF \<open>open S\<close>] using derf has_derivative_continuous by blast qed (use assms in auto) end