| author | wenzelm |
| Fri, 05 Aug 2022 13:23:52 +0200 | |
| changeset 75760 | f8be63d2ec6f |
| parent 74729 | 64b3d8d9bd10 |
| child 77490 | 2c86ea8961b5 |
| permissions | -rw-r--r-- |
(* Title: HOL/Analysis/Convex.thy Author: L C Paulson, University of Cambridge Author: Robert Himmelmann, TU Muenchen Author: Bogdan Grechuk, University of Edinburgh Author: Armin Heller, TU Muenchen Author: Johannes Hoelzl, TU Muenchen *) section \<open>Convex Sets and Functions\<close> theory Convex imports Affine "HOL-Library.Set_Algebras" begin subsection \<open>Convex Sets\<close> definition\<^marker>\<open>tag important\<close> convex :: "'a::real_vector set \<Rightarrow> bool" where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" lemma convexI: assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" shows "convex s" using assms unfolding convex_def by fast lemma convexD: assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1" shows "u *\<^sub>R x + v *\<^sub>R y \<in> s" using assms unfolding convex_def by fast lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" (is "_ \<longleftrightarrow> ?alt") proof show "convex s" if alt: ?alt proof - { fix x y and u v :: real assume mem: "x \<in> s" "y \<in> s" assume "0 \<le> u" "0 \<le> v" moreover assume "u + v = 1" then have "u = 1 - v" by auto ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" using alt [rule_format, OF mem] by auto } then show ?thesis unfolding convex_def by auto qed show ?alt if "convex s" using that by (auto simp: convex_def) qed lemma convexD_alt: assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" using assms unfolding convex_alt by auto lemma mem_convex_alt: assumes "convex S" "x \<in> S" "y \<in> S" "u \<ge> 0" "v \<ge> 0" "u + v > 0" shows "((u/(u+v)) *\<^sub>R x + (v/(u+v)) *\<^sub>R y) \<in> S" using assms by (simp add: convex_def zero_le_divide_iff add_divide_distrib [symmetric]) lemma convex_empty[intro,simp]: "convex {}" unfolding convex_def by simp lemma convex_singleton[intro,simp]: "convex {a}" unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) lemma convex_UNIV[intro,simp]: "convex UNIV" unfolding convex_def by auto lemma convex_Inter: "(\<And>s. s\<in>f \<Longrightarrow> convex s) \<Longrightarrow> convex(\<Inter>f)" unfolding convex_def by auto lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" unfolding convex_def by auto lemma convex_INT: "(\<And>i. i \<in> A \<Longrightarrow> convex (B i)) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)" unfolding convex_def by auto lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)" unfolding convex_def by auto lemma convex_halfspace_le: "convex {x. inner a x \<le> b}" unfolding convex_def by (auto simp: inner_add intro!: convex_bound_le) lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}" proof - have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto qed lemma convex_halfspace_abs_le: "convex {x. \<bar>inner a x\<bar> \<le> b}" proof - have *: "{x. \<bar>inner a x\<bar> \<le> b} = {x. inner a x \<le> b} \<inter> {x. -b \<le> inner a x}" by auto show ?thesis unfolding * by (simp add: convex_Int convex_halfspace_ge convex_halfspace_le) qed lemma convex_hyperplane: "convex {x. inner a x = b}" proof - have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto show ?thesis using convex_halfspace_le convex_halfspace_ge by (auto intro!: convex_Int simp: *) qed lemma convex_halfspace_lt: "convex {x. inner a x < b}" unfolding convex_def by (auto simp: convex_bound_lt inner_add) lemma convex_halfspace_gt: "convex {x. inner a x > b}" using convex_halfspace_lt[of "-a" "-b"] by auto lemma convex_halfspace_Re_ge: "convex {x. Re x \<ge> b}" using convex_halfspace_ge[of b "1::complex"] by simp lemma convex_halfspace_Re_le: "convex {x. Re x \<le> b}" using convex_halfspace_le[of "1::complex" b] by simp lemma convex_halfspace_Im_ge: "convex {x. Im x \<ge> b}" using convex_halfspace_ge[of b \<i>] by simp lemma convex_halfspace_Im_le: "convex {x. Im x \<le> b}" using convex_halfspace_le[of \<i> b] by simp lemma convex_halfspace_Re_gt: "convex {x. Re x > b}" using convex_halfspace_gt[of b "1::complex"] by simp lemma convex_halfspace_Re_lt: "convex {x. Re x < b}" using convex_halfspace_lt[of "1::complex" b] by simp lemma convex_halfspace_Im_gt: "convex {x. Im x > b}" using convex_halfspace_gt[of b \<i>] by simp lemma convex_halfspace_Im_lt: "convex {x. Im x < b}" using convex_halfspace_lt[of \<i> b] by simp lemma convex_real_interval [iff]: fixes a b :: "real" shows "convex {a..}" and "convex {..b}" and "convex {a<..}" and "convex {..<b}" and "convex {a..b}" and "convex {a<..b}" and "convex {a..<b}" and "convex {a<..<b}" proof - have "{a..} = {x. a \<le> inner 1 x}" by auto then show 1: "convex {a..}" by (simp only: convex_halfspace_ge) have "{..b} = {x. inner 1 x \<le> b}" by auto then show 2: "convex {..b}" by (simp only: convex_halfspace_le) have "{a<..} = {x. a < inner 1 x}" by auto then show 3: "convex {a<..}" by (simp only: convex_halfspace_gt) have "{..<b} = {x. inner 1 x < b}" by auto then show 4: "convex {..<b}" by (simp only: convex_halfspace_lt) have "{a..b} = {a..} \<inter> {..b}" by auto then show "convex {a..b}" by (simp only: convex_Int 1 2) have "{a<..b} = {a<..} \<inter> {..b}" by auto then show "convex {a<..b}" by (simp only: convex_Int 3 2) have "{a..<b} = {a..} \<inter> {..<b}" by auto then show "convex {a..<b}" by (simp only: convex_Int 1 4) have "{a<..<b} = {a<..} \<inter> {..<b}" by auto then show "convex {a<..<b}" by (simp only: convex_Int 3 4) qed lemma convex_Reals: "convex \<real>" by (simp add: convex_def scaleR_conv_of_real) subsection\<^marker>\<open>tag unimportant\<close> \<open>Explicit expressions for convexity in terms of arbitrary sums\<close> lemma convex_sum: fixes C :: "'a::real_vector set" assumes "finite S" and "convex C" and "(\<Sum> i \<in> S. a i) = 1" assumes "\<And>i. i \<in> S \<Longrightarrow> a i \<ge> 0" and "\<And>i. i \<in> S \<Longrightarrow> y i \<in> C" shows "(\<Sum> j \<in> S. a j *\<^sub>R y j) \<in> C" using assms(1,3,4,5) proof (induct arbitrary: a set: finite) case empty then show ?case by simp next case (insert i S) note IH = this(3) have "a i + sum a S = 1" and "0 \<le> a i" and "\<forall>j\<in>S. 0 \<le> a j" and "y i \<in> C" and "\<forall>j\<in>S. y j \<in> C" using insert.hyps(1,2) insert.prems by simp_all then have "0 \<le> sum a S" by (simp add: sum_nonneg) have "a i *\<^sub>R y i + (\<Sum>j\<in>S. a j *\<^sub>R y j) \<in> C" proof (cases "sum a S = 0") case True with \<open>a i + sum a S = 1\<close> have "a i = 1" by simp from sum_nonneg_0 [OF \<open>finite S\<close> _ True] \<open>\<forall>j\<in>S. 0 \<le> a j\<close> have "\<forall>j\<in>S. a j = 0" by simp show ?thesis using \<open>a i = 1\<close> and \<open>\<forall>j\<in>S. a j = 0\<close> and \<open>y i \<in> C\<close> by simp next case False with \<open>0 \<le> sum a S\<close> have "0 < sum a S" by simp then have "(\<Sum>j\<in>S. (a j / sum a S) *\<^sub>R y j) \<in> C" using \<open>\<forall>j\<in>S. 0 \<le> a j\<close> and \<open>\<forall>j\<in>S. y j \<in> C\<close> by (simp add: IH sum_divide_distrib [symmetric]) from \<open>convex C\<close> and \<open>y i \<in> C\<close> and this and \<open>0 \<le> a i\<close> and \<open>0 \<le> sum a S\<close> and \<open>a i + sum a S = 1\<close> have "a i *\<^sub>R y i + sum a S *\<^sub>R (\<Sum>j\<in>S. (a j / sum a S) *\<^sub>R y j) \<in> C" by (rule convexD) then show ?thesis by (simp add: scaleR_sum_right False) qed then show ?case using \<open>finite S\<close> and \<open>i \<notin> S\<close> by simp qed lemma convex: "convex S \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>S) \<and> (sum u {1..k} = 1) \<longrightarrow> sum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> S)" proof safe fix k :: nat fix u :: "nat \<Rightarrow> real" fix x assume "convex S" "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> S" "sum u {1..k} = 1" with convex_sum[of "{1 .. k}" S] show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> S" by auto next assume *: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> S) \<and> sum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> S" { fix \<mu> :: real fix x y :: 'a assume xy: "x \<in> S" "y \<in> S" assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1" let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>" let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y" have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}" by auto then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp then have "sum ?u {1 .. 2} = 1" using sum.If_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"] by auto with *[rule_format, of "2" ?u ?x] have S: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> S" using mu xy by auto have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y" using sum.atLeast_Suc_atMost[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto from sum.atLeast_Suc_atMost[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this] have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" by auto then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> S" using S by (auto simp: add.commute) } then show "convex S" unfolding convex_alt by auto qed lemma convex_explicit: fixes S :: "'a::real_vector set" shows "convex S \<longleftrightarrow> (\<forall>t u. finite t \<and> t \<subseteq> S \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> sum u t = 1 \<longrightarrow> sum (\<lambda>x. u x *\<^sub>R x) t \<in> S)" proof safe fix t fix u :: "'a \<Rightarrow> real" assume "convex S" and "finite t" and "t \<subseteq> S" "\<forall>x\<in>t. 0 \<le> u x" "sum u t = 1" then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> S" using convex_sum[of t S u "\<lambda> x. x"] by auto next assume *: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> S \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> sum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> S" show "convex S" unfolding convex_alt proof safe fix x y fix \<mu> :: real assume **: "x \<in> S" "y \<in> S" "0 \<le> \<mu>" "\<mu> \<le> 1" show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> S" proof (cases "x = y") case False then show ?thesis using *[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"] ** by auto next case True then show ?thesis using *[rule_format, of "{x, y}" "\<lambda> z. 1"] ** by (auto simp: field_simps real_vector.scale_left_diff_distrib) qed qed qed lemma convex_finite: assumes "finite S" shows "convex S \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<longrightarrow> sum (\<lambda>x. u x *\<^sub>R x) S \<in> S)" (is "?lhs = ?rhs") proof { have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" by simp fix T :: "'a set" and u :: "'a \<Rightarrow> real" assume sum: "\<forall>u. (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<longrightarrow> (\<Sum>x\<in>S. u x *\<^sub>R x) \<in> S" assume *: "\<forall>x\<in>T. 0 \<le> u x" "sum u T = 1" assume "T \<subseteq> S" then have "S \<inter> T = T" by auto with sum[THEN spec[where x="\<lambda>x. if x\<in>T then u x else 0"]] * have "(\<Sum>x\<in>T. u x *\<^sub>R x) \<in> S" by (auto simp: assms sum.If_cases if_distrib if_distrib_arg) } moreover assume ?rhs ultimately show ?lhs unfolding convex_explicit by auto qed (auto simp: convex_explicit assms) subsection \<open>Convex Functions on a Set\<close> definition\<^marker>\<open>tag important\<close> convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where "convex_on S f \<longleftrightarrow> (\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" definition\<^marker>\<open>tag important\<close> concave_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where "concave_on S f \<equiv> convex_on S (\<lambda>x. - f x)" lemma concave_on_iff: "concave_on S f \<longleftrightarrow> (\<forall>x\<in>S. \<forall>y\<in>S. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<ge> u * f x + v * f y)" by (auto simp: concave_on_def convex_on_def algebra_simps) lemma convex_onI [intro?]: assumes "\<And>t x y. t > 0 \<Longrightarrow> t < 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" shows "convex_on A f" unfolding convex_on_def proof clarify fix x y fix u v :: real assume A: "x \<in> A" "y \<in> A" "u \<ge> 0" "v \<ge> 0" "u + v = 1" from A(5) have [simp]: "v = 1 - u" by (simp add: algebra_simps) from A(1-4) show "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using assms[of u y x] by (cases "u = 0 \<or> u = 1") (auto simp: algebra_simps) qed lemma convex_on_linorderI [intro?]: fixes A :: "('a::{linorder,real_vector}) set" assumes "\<And>t x y. t > 0 \<Longrightarrow> t < 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x < y \<Longrightarrow> f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" shows "convex_on A f" proof fix x y fix t :: real assume A: "x \<in> A" "y \<in> A" "t > 0" "t < 1" with assms [of t x y] assms [of "1 - t" y x] show "f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" by (cases x y rule: linorder_cases) (auto simp: algebra_simps) qed lemma convex_onD: assumes "convex_on A f" shows "\<And>t x y. t \<ge> 0 \<Longrightarrow> t \<le> 1 \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" using assms by (auto simp: convex_on_def) lemma convex_onD_Icc: assumes "convex_on {x..y} f" "x \<le> (y :: _ :: {real_vector,preorder})" shows "\<And>t. t \<ge> 0 \<Longrightarrow> t \<le> 1 \<Longrightarrow> f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \<le> (1 - t) * f x + t * f y" using assms(2) by (intro convex_onD [OF assms(1)]) simp_all lemma convex_on_subset: "convex_on t f \<Longrightarrow> S \<subseteq> t \<Longrightarrow> convex_on S f" unfolding convex_on_def by auto lemma convex_on_add [intro]: assumes "convex_on S f" and "convex_on S g" shows "convex_on S (\<lambda>x. f x + g x)" proof - { fix x y assume "x \<in> S" "y \<in> S" moreover fix u v :: real assume "0 \<le> u" "0 \<le> v" "u + v = 1" ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" using assms unfolding convex_on_def by (auto simp: add_mono) then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: field_simps) } then show ?thesis unfolding convex_on_def by auto qed lemma convex_on_cmul [intro]: fixes c :: real assumes "0 \<le> c" and "convex_on S f" shows "convex_on S (\<lambda>x. c * f x)" proof - have *: "u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" for u c fx v fy :: real by (simp add: field_simps) show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] unfolding convex_on_def and * by auto qed lemma convex_lower: assumes "convex_on S f" and "x \<in> S" and "y \<in> S" and "0 \<le> u" and "0 \<le> v" and "u + v = 1" shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" proof - let ?m = "max (f x) (f y)" have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" using assms(4,5) by (auto simp: mult_left_mono add_mono) also have "\<dots> = max (f x) (f y)" using assms(6) by (simp add: distrib_right [symmetric]) finally show ?thesis using assms unfolding convex_on_def by fastforce qed lemma convex_on_dist [intro]: fixes S :: "'a::real_normed_vector set" shows "convex_on S (\<lambda>x. dist a x)" proof (auto simp: convex_on_def dist_norm) fix x y assume "x \<in> S" "y \<in> S" fix u v :: real assume "0 \<le> u" assume "0 \<le> v" assume "u + v = 1" have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[symmetric] and \<open>u + v = 1\<close> by simp then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" by (auto simp: algebra_simps) show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] using \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> by auto qed subsection\<^marker>\<open>tag unimportant\<close> \<open>Arithmetic operations on sets preserve convexity\<close> lemma convex_linear_image: assumes "linear f" and "convex S" shows "convex (f ` S)" proof - interpret f: linear f by fact from \<open>convex S\<close> show "convex (f ` S)" by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric]) qed lemma convex_linear_vimage: assumes "linear f" and "convex S" shows "convex (f -` S)" proof - interpret f: linear f by fact from \<open>convex S\<close> show "convex (f -` S)" by (simp add: convex_def f.add f.scaleR) qed lemma convex_scaling: assumes "convex S" shows "convex ((\<lambda>x. c *\<^sub>R x) ` S)" proof - have "linear (\<lambda>x. c *\<^sub>R x)" by (simp add: linearI scaleR_add_right) then show ?thesis using \<open>convex S\<close> by (rule convex_linear_image) qed lemma convex_scaled: assumes "convex S" shows "convex ((\<lambda>x. x *\<^sub>R c) ` S)" proof - have "linear (\<lambda>x. x *\<^sub>R c)" by (simp add: linearI scaleR_add_left) then show ?thesis using \<open>convex S\<close> by (rule convex_linear_image) qed lemma convex_negations: assumes "convex S" shows "convex ((\<lambda>x. - x) ` S)" proof - have "linear (\<lambda>x. - x)" by (simp add: linearI) then show ?thesis using \<open>convex S\<close> by (rule convex_linear_image) qed lemma convex_sums: assumes "convex S" and "convex T" shows "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})" proof - have "linear (\<lambda>(x, y). x + y)" by (auto intro: linearI simp: scaleR_add_right) with assms have "convex ((\<lambda>(x, y). x + y) ` (S \<times> T))" by (intro convex_linear_image convex_Times) also have "((\<lambda>(x, y). x + y) ` (S \<times> T)) = (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})" by auto finally show ?thesis . qed lemma convex_differences: assumes "convex S" "convex T" shows "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x - y})" proof - have "{x - y| x y. x \<in> S \<and> y \<in> T} = {x + y |x y. x \<in> S \<and> y \<in> uminus ` T}" by (auto simp: diff_conv_add_uminus simp del: add_uminus_conv_diff) then show ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto qed lemma convex_translation: "convex ((+) a ` S)" if "convex S" proof - have "(\<Union> x\<in> {a}. \<Union>y \<in> S. {x + y}) = (+) a ` S" by auto then show ?thesis using convex_sums [OF convex_singleton [of a] that] by auto qed lemma convex_translation_subtract: "convex ((\<lambda>b. b - a) ` S)" if "convex S" using convex_translation [of S "- a"] that by (simp cong: image_cong_simp) lemma convex_affinity: assumes "convex S" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` S)" proof - have "(\<lambda>x. a + c *\<^sub>R x) ` S = (+) a ` (*\<^sub>R) c ` S" by auto then show ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed lemma convex_on_sum: fixes a :: "'a \<Rightarrow> real" and y :: "'a \<Rightarrow> 'b::real_vector" and f :: "'b \<Rightarrow> real" assumes "finite s" "s \<noteq> {}" and "convex_on C f" and "convex C" and "(\<Sum> i \<in> s. a i) = 1" and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))" using assms proof (induct s arbitrary: a rule: finite_ne_induct) case (singleton i) then have ai: "a i = 1" by auto then show ?case by auto next case (insert i s) then have "convex_on C f" by simp from this[unfolded convex_on_def, rule_format] have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1 \<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" by simp show ?case proof (cases "a i = 1") case True then have "(\<Sum> j \<in> s. a j) = 0" using insert by auto then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0" using insert by (fastforce simp: sum_nonneg_eq_0_iff) then show ?thesis using insert by auto next case False from insert have yai: "y i \<in> C" "a i \<ge> 0" by auto have fis: "finite (insert i s)" using insert by auto then have ai1: "a i \<le> 1" using sum_nonneg_leq_bound[of "insert i s" a] insert by simp then have "a i < 1" using False by auto then have i0: "1 - a i > 0" by auto let ?a = "\<lambda>j. a j / (1 - a i)" have a_nonneg: "?a j \<ge> 0" if "j \<in> s" for j using i0 insert that by fastforce have "(\<Sum> j \<in> insert i s. a j) = 1" using insert by auto then have "(\<Sum> j \<in> s. a j) = 1 - a i" using sum.insert insert by fastforce then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding sum_divide_distrib by simp have "convex C" using insert by auto then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" using insert convex_sum [OF \<open>finite s\<close> \<open>convex C\<close> a1 a_nonneg] by auto have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))" using a_nonneg a1 insert by blast have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" using sum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF \<open>finite s\<close> \<open>i \<notin> s\<close>] insert by (auto simp only: add.commute) also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" using i0 by auto also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" using scaleR_right.sum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] by (auto simp: algebra_simps) also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" by (auto simp: divide_inverse) also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)" using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] by (auto simp: add.commute) also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)" using add_right_mono [OF mult_left_mono [of _ _ "1 - a i", OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" unfolding sum_distrib_left[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using insert by auto finally show ?thesis by simp qed qed lemma convex_on_alt: fixes C :: "'a::real_vector set" shows "convex_on C f \<longleftrightarrow> (\<forall>x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)" proof safe fix x y fix \<mu> :: real assume *: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1" from this[unfolded convex_on_def, rule_format] have "0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" for u v by auto from this [of "\<mu>" "1 - \<mu>", simplified] * show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" by auto next assume *: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" { fix x y fix u v :: real assume **: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1" then have[simp]: "1 - u = v" by auto from *[rule_format, of x y u] have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using ** by auto } then show "convex_on C f" unfolding convex_on_def by auto qed lemma convex_on_diff: fixes f :: "real \<Rightarrow> real" assumes f: "convex_on I f" and I: "x \<in> I" "y \<in> I" and t: "x < t" "t < y" shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" and "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" proof - define a where "a \<equiv> (t - y) / (x - y)" with t have "0 \<le> a" "0 \<le> 1 - a" by (auto simp: field_simps) with f \<open>x \<in> I\<close> \<open>y \<in> I\<close> have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y" by (auto simp: convex_on_def) have "a * x + (1 - a) * y = a * (x - y) + y" by (simp add: field_simps) also have "\<dots> = t" unfolding a_def using \<open>x < t\<close> \<open>t < y\<close> by simp finally have "f t \<le> a * f x + (1 - a) * f y" using cvx by simp also have "\<dots> = a * (f x - f y) + f y" by (simp add: field_simps) finally have "f t - f y \<le> a * (f x - f y)" by simp with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" by (simp add: le_divide_eq divide_le_eq field_simps a_def) with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" by (simp add: le_divide_eq divide_le_eq field_simps) qed lemma pos_convex_function: fixes f :: "real \<Rightarrow> real" assumes "convex C" and leq: "\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> f' x * (y - x) \<le> f y - f x" shows "convex_on C f" unfolding convex_on_alt using assms proof safe fix x y \<mu> :: real let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" assume *: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1" then have "1 - \<mu> \<ge> 0" by auto then have xpos: "?x \<in> C" using * unfolding convex_alt by fastforce have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) \<ge> \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)" using add_mono [OF mult_left_mono [OF leq [OF xpos *(2)] \<open>\<mu> \<ge> 0\<close>] mult_left_mono [OF leq [OF xpos *(3)] \<open>1 - \<mu> \<ge> 0\<close>]] by auto then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0" by (auto simp: field_simps) then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" by auto qed lemma atMostAtLeast_subset_convex: fixes C :: "real set" assumes "convex C" and "x \<in> C" "y \<in> C" "x < y" shows "{x .. y} \<subseteq> C" proof safe fix z assume z: "z \<in> {x .. y}" have less: "z \<in> C" if *: "x < z" "z < y" proof - let ?\<mu> = "(y - z) / (y - x)" have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms * by (auto simp: field_simps) then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C" using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] by (simp add: algebra_simps) have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" by (auto simp: field_simps) also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" using assms by (simp only: add_divide_distrib) (auto simp: field_simps) also have "\<dots> = z" using assms by (auto simp: field_simps) finally show ?thesis using comb by auto qed show "z \<in> C" using z less assms by (auto simp: le_less) qed lemma f''_imp_f': fixes f :: "real \<Rightarrow> real" assumes "convex C" and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" and x: "x \<in> C" and y: "y \<in> C" shows "f' x * (y - x) \<le> f y - f x" using assms proof - have less_imp: "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" if *: "x \<in> C" "y \<in> C" "y > x" for x y :: real proof - from * have ge: "y - x > 0" "y - x \<ge> 0" by auto from * have le: "x - y < 0" "x - y \<le> 0" by auto then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close>], THEN f', THEN MVT2[OF \<open>x < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] by auto then have "z1 \<in> C" using atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close> by fastforce from z1 have z1': "f x - f y = (x - y) * f' z1" by (simp add: field_simps) obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close>], THEN f'', THEN MVT2[OF \<open>x < z1\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 by auto obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close>], THEN f'', THEN MVT2[OF \<open>z1 < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 by auto have "f' y - (f x - f y) / (x - y) = f' y - f' z1" using * z1' by auto also have "\<dots> = (y - z1) * f'' z3" using z3 by auto finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp have A': "y - z1 \<ge> 0" using z1 by auto have "z3 \<in> C" using z3 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close> by fastforce then have B': "f'' z3 \<ge> 0" using assms by auto from A' B' have "(y - z1) * f'' z3 \<ge> 0" by auto from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto from mult_right_mono_neg[OF this le(2)] have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)" by (simp add: algebra_simps) then have "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto then have res: "f' y * (x - y) \<le> f x - f y" by auto have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" using * z1 by auto also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp have A: "z1 - x \<ge> 0" using z1 by auto have "z2 \<in> C" using z2 z1 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close> by fastforce then have B: "f'' z2 \<ge> 0" using assms by auto from A B have "(z1 - x) * f'' z2 \<ge> 0" by auto with cool have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto from mult_right_mono[OF this ge(2)] have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)" by (simp add: algebra_simps) then have "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto then show "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" using res by auto qed show ?thesis proof (cases "x = y") case True with x y show ?thesis by auto next case False with less_imp x y show ?thesis by (auto simp: neq_iff) qed qed lemma f''_ge0_imp_convex: fixes f :: "real \<Rightarrow> real" assumes conv: "convex C" and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" and 0: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" shows "convex_on C f" using f''_imp_f'[OF conv f' f'' 0] assms pos_convex_function by fastforce lemma f''_le0_imp_concave: fixes f :: "real \<Rightarrow> real" assumes "convex C" and "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" and "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" and "\<And>x. x \<in> C \<Longrightarrow> f'' x \<le> 0" shows "concave_on C f" unfolding concave_on_def by (rule assms f''_ge0_imp_convex derivative_eq_intros | simp)+ lemma log_concave: fixes b :: real assumes "b > 1" shows "concave_on {0<..} (\<lambda> x. log b x)" using assms by (intro f''_le0_imp_concave derivative_eq_intros | simp)+ lemma ln_concave: "concave_on {0<..} ln" unfolding log_ln by (simp add: log_concave) lemma minus_log_convex: fixes b :: real assumes "b > 1" shows "convex_on {0 <..} (\<lambda> x. - log b x)" using assms concave_on_def log_concave by blast lemma powr_convex: assumes "p \<ge> 1" shows "convex_on {0<..} (\<lambda>x. x powr p)" using assms by (intro f''_ge0_imp_convex derivative_eq_intros | simp)+ lemma exp_convex: "convex_on UNIV exp" by (intro f''_ge0_imp_convex derivative_eq_intros | simp)+ subsection\<^marker>\<open>tag unimportant\<close> \<open>Convexity of real functions\<close> lemma convex_on_realI: assumes "connected A" and "\<And>x. x \<in> A \<Longrightarrow> (f has_real_derivative f' x) (at x)" and "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<le> y \<Longrightarrow> f' x \<le> f' y" shows "convex_on A f" proof (rule convex_on_linorderI) fix t x y :: real assume t: "t > 0" "t < 1" assume xy: "x \<in> A" "y \<in> A" "x < y" define z where "z = (1 - t) * x + t * y" with \<open>connected A\<close> and xy have ivl: "{x..y} \<subseteq> A" using connected_contains_Icc by blast from xy t have xz: "z > x" by (simp add: z_def algebra_simps) have "y - z = (1 - t) * (y - x)" by (simp add: z_def algebra_simps) also from xy t have "\<dots> > 0" by (intro mult_pos_pos) simp_all finally have yz: "z < y" by simp from assms xz yz ivl t have "\<exists>\<xi>. \<xi> > x \<and> \<xi> < z \<and> f z - f x = (z - x) * f' \<xi>" by (intro MVT2) (auto intro!: assms(2)) then obtain \<xi> where \<xi>: "\<xi> > x" "\<xi> < z" "f' \<xi> = (f z - f x) / (z - x)" by auto from assms xz yz ivl t have "\<exists>\<eta>. \<eta> > z \<and> \<eta> < y \<and> f y - f z = (y - z) * f' \<eta>" by (intro MVT2) (auto intro!: assms(2)) then obtain \<eta> where \<eta>: "\<eta> > z" "\<eta> < y" "f' \<eta> = (f y - f z) / (y - z)" by auto from \<eta>(3) have "(f y - f z) / (y - z) = f' \<eta>" .. also from \<xi> \<eta> ivl have "\<xi> \<in> A" "\<eta> \<in> A" by auto with \<xi> \<eta> have "f' \<eta> \<ge> f' \<xi>" by (intro assms(3)) auto also from \<xi>(3) have "f' \<xi> = (f z - f x) / (z - x)" . finally have "(f y - f z) * (z - x) \<ge> (f z - f x) * (y - z)" using xz yz by (simp add: field_simps) also have "z - x = t * (y - x)" by (simp add: z_def algebra_simps) also have "y - z = (1 - t) * (y - x)" by (simp add: z_def algebra_simps) finally have "(f y - f z) * t \<ge> (f z - f x) * (1 - t)" using xy by simp then show "(1 - t) * f x + t * f y \<ge> f ((1 - t) *\<^sub>R x + t *\<^sub>R y)" by (simp add: z_def algebra_simps) qed lemma convex_on_inverse: assumes "A \<subseteq> {0<..}" shows "convex_on A (inverse :: real \<Rightarrow> real)" proof (rule convex_on_subset[OF _ assms], intro convex_on_realI[of _ _ "\<lambda>x. -inverse (x^2)"]) fix u v :: real assume "u \<in> {0<..}" "v \<in> {0<..}" "u \<le> v" with assms show "-inverse (u^2) \<le> -inverse (v^2)" by (intro le_imp_neg_le le_imp_inverse_le power_mono) (simp_all) qed (insert assms, auto intro!: derivative_eq_intros simp: field_split_simps power2_eq_square) lemma convex_onD_Icc': assumes "convex_on {x..y} f" "c \<in> {x..y}" defines "d \<equiv> y - x" shows "f c \<le> (f y - f x) / d * (c - x) + f x" proof (cases x y rule: linorder_cases) case less then have d: "d > 0" by (simp add: d_def) from assms(2) less have A: "0 \<le> (c - x) / d" "(c - x) / d \<le> 1" by (simp_all add: d_def field_split_simps) have "f c = f (x + (c - x) * 1)" by simp also from less have "1 = ((y - x) / d)" by (simp add: d_def) also from d have "x + (c - x) * \<dots> = (1 - (c - x) / d) *\<^sub>R x + ((c - x) / d) *\<^sub>R y" by (simp add: field_simps) also have "f \<dots> \<le> (1 - (c - x) / d) * f x + (c - x) / d * f y" using assms less by (intro convex_onD_Icc) simp_all also from d have "\<dots> = (f y - f x) / d * (c - x) + f x" by (simp add: field_simps) finally show ?thesis . qed (insert assms(2), simp_all) lemma convex_onD_Icc'': assumes "convex_on {x..y} f" "c \<in> {x..y}" defines "d \<equiv> y - x" shows "f c \<le> (f x - f y) / d * (y - c) + f y" proof (cases x y rule: linorder_cases) case less then have d: "d > 0" by (simp add: d_def) from assms(2) less have A: "0 \<le> (y - c) / d" "(y - c) / d \<le> 1" by (simp_all add: d_def field_split_simps) have "f c = f (y - (y - c) * 1)" by simp also from less have "1 = ((y - x) / d)" by (simp add: d_def) also from d have "y - (y - c) * \<dots> = (1 - (1 - (y - c) / d)) *\<^sub>R x + (1 - (y - c) / d) *\<^sub>R y" by (simp add: field_simps) also have "f \<dots> \<le> (1 - (1 - (y - c) / d)) * f x + (1 - (y - c) / d) * f y" using assms less by (intro convex_onD_Icc) (simp_all add: field_simps) also from d have "\<dots> = (f x - f y) / d * (y - c) + f y" by (simp add: field_simps) finally show ?thesis . qed (insert assms(2), simp_all) subsection \<open>Some inequalities\<close> lemma Youngs_inequality_0: fixes a::real assumes "0 \<le> \<alpha>" "0 \<le> \<beta>" "\<alpha>+\<beta> = 1" "a>0" "b>0" shows "a powr \<alpha> * b powr \<beta> \<le> \<alpha>*a + \<beta>*b" proof - have "\<alpha> * ln a + \<beta> * ln b \<le> ln (\<alpha> * a + \<beta> * b)" using assms ln_concave by (simp add: concave_on_iff) moreover have "0 < \<alpha> * a + \<beta> * b" using assms by (smt (verit) mult_pos_pos split_mult_pos_le) ultimately show ?thesis using assms by (simp add: powr_def mult_exp_exp flip: ln_ge_iff) qed lemma Youngs_inequality: fixes p::real assumes "p>1" "q>1" "1/p + 1/q = 1" "a\<ge>0" "b\<ge>0" shows "a * b \<le> a powr p / p + b powr q / q" proof (cases "a=0 \<or> b=0") case False then show ?thesis using Youngs_inequality_0 [of "1/p" "1/q" "a powr p" "b powr q"] assms by (simp add: powr_powr) qed (use assms in auto) lemma Cauchy_Schwarz_ineq_sum: fixes a :: "'a \<Rightarrow> 'b::linordered_field" shows "(\<Sum>i\<in>I. a i * b i)\<^sup>2 \<le> (\<Sum>i\<in>I. (a i)\<^sup>2) * (\<Sum>i\<in>I. (b i)\<^sup>2)" proof (cases "(\<Sum>i\<in>I. (b i)\<^sup>2) > 0") case False then consider "\<And>i. i\<in>I \<Longrightarrow> b i = 0" | "infinite I" by (metis (mono_tags, lifting) sum_pos2 zero_le_power2 zero_less_power2) thus ?thesis by fastforce next case True define r where "r \<equiv> (\<Sum>i\<in>I. a i * b i) / (\<Sum>i\<in>I. (b i)\<^sup>2)" with True have *: "(\<Sum>i\<in>I. a i * b i) = r * (\<Sum>i\<in>I. (b i)\<^sup>2)" by simp have "0 \<le> (\<Sum>i\<in>I. (a i - r * b i)\<^sup>2)" by (meson sum_nonneg zero_le_power2) also have "... = (\<Sum>i\<in>I. (a i)\<^sup>2) - 2 * r * (\<Sum>i\<in>I. a i * b i) + r\<^sup>2 * (\<Sum>i\<in>I. (b i)\<^sup>2)" by (simp add: algebra_simps power2_eq_square sum_distrib_left flip: sum.distrib) also have "\<dots> = (\<Sum>i\<in>I. (a i)\<^sup>2) - (\<Sum>i\<in>I. a i * b i) * r" by (simp add: * power2_eq_square) also have "\<dots> = (\<Sum>i\<in>I. (a i)\<^sup>2) - ((\<Sum>i\<in>I. a i * b i))\<^sup>2 / (\<Sum>i\<in>I. (b i)\<^sup>2)" by (simp add: r_def power2_eq_square) finally have "0 \<le> (\<Sum>i\<in>I. (a i)\<^sup>2) - ((\<Sum>i\<in>I. a i * b i))\<^sup>2 / (\<Sum>i\<in>I. (b i)\<^sup>2)" . hence "((\<Sum>i\<in>I. a i * b i))\<^sup>2 / (\<Sum>i\<in>I. (b i)\<^sup>2) \<le> (\<Sum>i\<in>I. (a i)\<^sup>2)" by (simp add: le_diff_eq) thus "((\<Sum>i\<in>I. a i * b i))\<^sup>2 \<le> (\<Sum>i\<in>I. (a i)\<^sup>2) * (\<Sum>i\<in>I. (b i)\<^sup>2)" by (simp add: pos_divide_le_eq True) qed subsection \<open>Misc related lemmas\<close> lemma convex_translation_eq [simp]: "convex ((+) a ` s) \<longleftrightarrow> convex s" by (metis convex_translation translation_galois) lemma convex_translation_subtract_eq [simp]: "convex ((\<lambda>b. b - a) ` s) \<longleftrightarrow> convex s" using convex_translation_eq [of "- a"] by (simp cong: image_cong_simp) lemma convex_linear_image_eq [simp]: fixes f :: "'a::real_vector \<Rightarrow> 'b::real_vector" shows "\<lbrakk>linear f; inj f\<rbrakk> \<Longrightarrow> convex (f ` s) \<longleftrightarrow> convex s" by (metis (no_types) convex_linear_image convex_linear_vimage inj_vimage_image_eq) lemma vector_choose_size: assumes "0 \<le> c" obtains x :: "'a::{real_normed_vector, perfect_space}" where "norm x = c" proof - obtain a::'a where "a \<noteq> 0" using UNIV_not_singleton UNIV_eq_I set_zero singletonI by fastforce then show ?thesis by (rule_tac x="scaleR (c / norm a) a" in that) (simp add: assms) qed lemma vector_choose_dist: assumes "0 \<le> c" obtains y :: "'a::{real_normed_vector, perfect_space}" where "dist x y = c" by (metis add_diff_cancel_left' assms dist_commute dist_norm vector_choose_size) lemma sum_delta'': fixes s::"'a::real_vector set" assumes "finite s" shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)" proof - have *: "\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)" by auto show ?thesis unfolding * using sum.delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto qed subsection \<open>Cones\<close> definition\<^marker>\<open>tag important\<close> cone :: "'a::real_vector set \<Rightarrow> bool" where "cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. c *\<^sub>R x \<in> s)" lemma cone_empty[intro, simp]: "cone {}" unfolding cone_def by auto lemma cone_univ[intro, simp]: "cone UNIV" unfolding cone_def by auto lemma cone_Inter[intro]: "\<forall>s\<in>f. cone s \<Longrightarrow> cone (\<Inter>f)" unfolding cone_def by auto lemma subspace_imp_cone: "subspace S \<Longrightarrow> cone S" by (simp add: cone_def subspace_scale) subsubsection \<open>Conic hull\<close> lemma cone_cone_hull: "cone (cone hull S)" unfolding hull_def by auto lemma cone_hull_eq: "cone hull S = S \<longleftrightarrow> cone S" by (metis cone_cone_hull hull_same) lemma mem_cone: assumes "cone S" "x \<in> S" "c \<ge> 0" shows "c *\<^sub>R x \<in> S" using assms cone_def[of S] by auto lemma cone_contains_0: assumes "cone S" shows "S \<noteq> {} \<longleftrightarrow> 0 \<in> S" using assms mem_cone by fastforce lemma cone_0: "cone {0}" unfolding cone_def by auto lemma cone_Union[intro]: "(\<forall>s\<in>f. cone s) \<longrightarrow> cone (\<Union>f)" unfolding cone_def by blast lemma cone_iff: assumes "S \<noteq> {}" shows "cone S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>c. c > 0 \<longrightarrow> ((*\<^sub>R) c) ` S = S)" proof - { assume "cone S" { fix c :: real assume "c > 0" { fix x assume "x \<in> S" then have "x \<in> ((*\<^sub>R) c) ` S" unfolding image_def using \<open>cone S\<close> \<open>c>0\<close> mem_cone[of S x "1/c"] exI[of "(\<lambda>t. t \<in> S \<and> x = c *\<^sub>R t)" "(1 / c) *\<^sub>R x"] by auto } moreover { fix x assume "x \<in> ((*\<^sub>R) c) ` S" then have "x \<in> S" using \<open>0 < c\<close> \<open>cone S\<close> mem_cone by fastforce } ultimately have "((*\<^sub>R) c) ` S = S" by blast } then have "0 \<in> S \<and> (\<forall>c. c > 0 \<longrightarrow> ((*\<^sub>R) c) ` S = S)" using \<open>cone S\<close> cone_contains_0[of S] assms by auto } moreover { assume a: "0 \<in> S \<and> (\<forall>c. c > 0 \<longrightarrow> ((*\<^sub>R) c) ` S = S)" { fix x assume "x \<in> S" fix c1 :: real assume "c1 \<ge> 0" then have "c1 = 0 \<or> c1 > 0" by auto then have "c1 *\<^sub>R x \<in> S" using a \<open>x \<in> S\<close> by auto } then have "cone S" unfolding cone_def by auto } ultimately show ?thesis by blast qed lemma cone_hull_empty: "cone hull {} = {}" by (metis cone_empty cone_hull_eq) lemma cone_hull_empty_iff: "S = {} \<longleftrightarrow> cone hull S = {}" by (metis bot_least cone_hull_empty hull_subset xtrans(5)) lemma cone_hull_contains_0: "S \<noteq> {} \<longleftrightarrow> 0 \<in> cone hull S" using cone_cone_hull[of S] cone_contains_0[of "cone hull S"] cone_hull_empty_iff[of S] by auto lemma mem_cone_hull: assumes "x \<in> S" "c \<ge> 0" shows "c *\<^sub>R x \<in> cone hull S" by (metis assms cone_cone_hull hull_inc mem_cone) proposition cone_hull_expl: "cone hull S = {c *\<^sub>R x | c x. c \<ge> 0 \<and> x \<in> S}" (is "?lhs = ?rhs") proof - { fix x assume "x \<in> ?rhs" then obtain cx :: real and xx where x: "x = cx *\<^sub>R xx" "cx \<ge> 0" "xx \<in> S" by auto fix c :: real assume c: "c \<ge> 0" then have "c *\<^sub>R x = (c * cx) *\<^sub>R xx" using x by (simp add: algebra_simps) moreover have "c * cx \<ge> 0" using c x by auto ultimately have "c *\<^sub>R x \<in> ?rhs" using x by auto } then have "cone ?rhs" unfolding cone_def by auto then have "?rhs \<in> Collect cone" unfolding mem_Collect_eq by auto { fix x assume "x \<in> S" then have "1 *\<^sub>R x \<in> ?rhs" using zero_le_one by blast then have "x \<in> ?rhs" by auto } then have "S \<subseteq> ?rhs" by auto then have "?lhs \<subseteq> ?rhs" using \<open>?rhs \<in> Collect cone\<close> hull_minimal[of S "?rhs" "cone"] by auto moreover { fix x assume "x \<in> ?rhs" then obtain cx :: real and xx where x: "x = cx *\<^sub>R xx" "cx \<ge> 0" "xx \<in> S" by auto then have "xx \<in> cone hull S" using hull_subset[of S] by auto then have "x \<in> ?lhs" using x cone_cone_hull[of S] cone_def[of "cone hull S"] by auto } ultimately show ?thesis by auto qed lemma convex_cone: "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" (is "?lhs = ?rhs") proof - { fix x y assume "x\<in>s" "y\<in>s" and ?lhs then have "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s" unfolding cone_def by auto then have "x + y \<in> s" using \<open>?lhs\<close>[unfolded convex_def, THEN conjunct1] apply (erule_tac x="2*\<^sub>R x" in ballE) apply (erule_tac x="2*\<^sub>R y" in ballE) apply (erule_tac x="1/2" in allE, simp) apply (erule_tac x="1/2" in allE, auto) done } then show ?thesis unfolding convex_def cone_def by blast qed subsection\<^marker>\<open>tag unimportant\<close> \<open>Connectedness of convex sets\<close> lemma convex_connected: fixes S :: "'a::real_normed_vector set" assumes "convex S" shows "connected S" proof (rule connectedI) fix A B assume "open A" "open B" "A \<inter> B \<inter> S = {}" "S \<subseteq> A \<union> B" moreover assume "A \<inter> S \<noteq> {}" "B \<inter> S \<noteq> {}" then obtain a b where a: "a \<in> A" "a \<in> S" and b: "b \<in> B" "b \<in> S" by auto define f where [abs_def]: "f u = u *\<^sub>R a + (1 - u) *\<^sub>R b" for u then have "continuous_on {0 .. 1} f" by (auto intro!: continuous_intros) then have "connected (f ` {0 .. 1})" by (auto intro!: connected_continuous_image) note connectedD[OF this, of A B] moreover have "a \<in> A \<inter> f ` {0 .. 1}" using a by (auto intro!: image_eqI[of _ _ 1] simp: f_def) moreover have "b \<in> B \<inter> f ` {0 .. 1}" using b by (auto intro!: image_eqI[of _ _ 0] simp: f_def) moreover have "f ` {0 .. 1} \<subseteq> S" using \<open>convex S\<close> a b unfolding convex_def f_def by auto ultimately show False by auto qed corollary%unimportant connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)" by (simp add: convex_connected) lemma convex_prod: assumes "\<And>i. i \<in> Basis \<Longrightarrow> convex {x. P i x}" shows "convex {x. \<forall>i\<in>Basis. P i (x\<bullet>i)}" using assms unfolding convex_def by (auto simp: inner_add_left) lemma convex_positive_orthant: "convex {x::'a::euclidean_space. (\<forall>i\<in>Basis. 0 \<le> x\<bullet>i)}" by (rule convex_prod) (simp flip: atLeast_def) subsection \<open>Convex hull\<close> lemma convex_convex_hull [iff]: "convex (convex hull s)" unfolding hull_def using convex_Inter[of "{t. convex t \<and> s \<subseteq> t}"] by auto lemma convex_hull_subset: "s \<subseteq> convex hull t \<Longrightarrow> convex hull s \<subseteq> convex hull t" by (simp add: subset_hull) lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s" by (metis convex_convex_hull hull_same) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Convex hull is "preserved" by a linear function\<close> lemma convex_hull_linear_image: assumes f: "linear f" shows "f ` (convex hull s) = convex hull (f ` s)" proof show "convex hull (f ` s) \<subseteq> f ` (convex hull s)" by (intro hull_minimal image_mono hull_subset convex_linear_image assms convex_convex_hull) show "f ` (convex hull s) \<subseteq> convex hull (f ` s)" proof (unfold image_subset_iff_subset_vimage, rule hull_minimal) show "s \<subseteq> f -` (convex hull (f ` s))" by (fast intro: hull_inc) show "convex (f -` (convex hull (f ` s)))" by (intro convex_linear_vimage [OF f] convex_convex_hull) qed qed lemma in_convex_hull_linear_image: assumes "linear f" and "x \<in> convex hull s" shows "f x \<in> convex hull (f ` s)" using convex_hull_linear_image[OF assms(1)] assms(2) by auto lemma convex_hull_Times: "convex hull (s \<times> t) = (convex hull s) \<times> (convex hull t)" proof show "convex hull (s \<times> t) \<subseteq> (convex hull s) \<times> (convex hull t)" by (intro hull_minimal Sigma_mono hull_subset convex_Times convex_convex_hull) have "(x, y) \<in> convex hull (s \<times> t)" if x: "x \<in> convex hull s" and y: "y \<in> convex hull t" for x y proof (rule hull_induct [OF x], rule hull_induct [OF y]) fix x y assume "x \<in> s" and "y \<in> t" then show "(x, y) \<in> convex hull (s \<times> t)" by (simp add: hull_inc) next fix x let ?S = "((\<lambda>y. (0, y)) -` (\<lambda>p. (- x, 0) + p) ` (convex hull s \<times> t))" have "convex ?S" by (intro convex_linear_vimage convex_translation convex_convex_hull, simp add: linear_iff) also have "?S = {y. (x, y) \<in> convex hull (s \<times> t)}" by (auto simp: image_def Bex_def) finally show "convex {y. (x, y) \<in> convex hull (s \<times> t)}" . next show "convex {x. (x, y) \<in> convex hull s \<times> t}" proof - fix y let ?S = "((\<lambda>x. (x, 0)) -` (\<lambda>p. (0, - y) + p) ` (convex hull s \<times> t))" have "convex ?S" by (intro convex_linear_vimage convex_translation convex_convex_hull, simp add: linear_iff) also have "?S = {x. (x, y) \<in> convex hull (s \<times> t)}" by (auto simp: image_def Bex_def) finally show "convex {x. (x, y) \<in> convex hull (s \<times> t)}" . qed qed then show "(convex hull s) \<times> (convex hull t) \<subseteq> convex hull (s \<times> t)" unfolding subset_eq split_paired_Ball_Sigma by blast qed subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Stepping theorems for convex hulls of finite sets\<close> lemma convex_hull_empty[simp]: "convex hull {} = {}" by (rule hull_unique) auto lemma convex_hull_singleton[simp]: "convex hull {a} = {a}" by (rule hull_unique) auto lemma convex_hull_insert: fixes S :: "'a::real_vector set" assumes "S \<noteq> {}" shows "convex hull (insert a S) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and> b \<in> (convex hull S) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}" (is "_ = ?hull") proof (intro equalityI hull_minimal subsetI) fix x assume "x \<in> insert a S" then have "\<exists>u\<ge>0. \<exists>v\<ge>0. u + v = 1 \<and> (\<exists>b. b \<in> convex hull S \<and> x = u *\<^sub>R a + v *\<^sub>R b)" unfolding insert_iff proof assume "x = a" then show ?thesis by (rule_tac x=1 in exI) (use assms hull_subset in fastforce) next assume "x \<in> S" with hull_subset[of S convex] show ?thesis by force qed then show "x \<in> ?hull" by simp next fix x assume "x \<in> ?hull" then obtain u v b where obt: "u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull S" "x = u *\<^sub>R a + v *\<^sub>R b" by auto have "a \<in> convex hull insert a S" "b \<in> convex hull insert a S" using hull_mono[of S "insert a S" convex] hull_mono[of "{a}" "insert a S" convex] and obt(4) by auto then show "x \<in> convex hull insert a S" unfolding obt(5) using obt(1-3) by (rule convexD [OF convex_convex_hull]) next show "convex ?hull" proof (rule convexI) fix x y u v assume as: "(0::real) \<le> u" "0 \<le> v" "u + v = 1" and x: "x \<in> ?hull" and y: "y \<in> ?hull" from x obtain u1 v1 b1 where obt1: "u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull S" and xeq: "x = u1 *\<^sub>R a + v1 *\<^sub>R b1" by auto from y obtain u2 v2 b2 where obt2: "u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull S" and yeq: "y = u2 *\<^sub>R a + v2 *\<^sub>R b2" by auto have *: "\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp: algebra_simps) have "\<exists>b \<in> convex hull S. u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)" proof (cases "u * v1 + v * v2 = 0") case True have *: "\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp: algebra_simps) have eq0: "u * v1 = 0" "v * v2 = 0" using True mult_nonneg_nonneg[OF \<open>u\<ge>0\<close> \<open>v1\<ge>0\<close>] mult_nonneg_nonneg[OF \<open>v\<ge>0\<close> \<open>v2\<ge>0\<close>] by arith+ then have "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto then show ?thesis using "*" eq0 as obt1(4) xeq yeq by auto next case False have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp: field_simps) also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp: field_simps) also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto let ?b = "((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" have zeroes: "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" using as(1,2) obt1(1,2) obt2(1,2) by auto show ?thesis proof show "u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (?b - (u * u1) *\<^sub>R ?b - (v * u2) *\<^sub>R ?b)" unfolding xeq yeq * ** using False by (auto simp: scaleR_left_distrib scaleR_right_distrib) show "?b \<in> convex hull S" using False zeroes obt1(4) obt2(4) by (auto simp: convexD [OF convex_convex_hull] scaleR_left_distrib scaleR_right_distrib add_divide_distrib[symmetric] zero_le_divide_iff) qed qed then obtain b where b: "b \<in> convex hull S" "u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)" .. have u1: "u1 \<le> 1" unfolding obt1(3)[symmetric] and not_le using obt1(2) by auto have u2: "u2 \<le> 1" unfolding obt2(3)[symmetric] and not_le using obt2(2) by auto have "u1 * u + u2 * v \<le> max u1 u2 * u + max u1 u2 * v" proof (rule add_mono) show "u1 * u \<le> max u1 u2 * u" "u2 * v \<le> max u1 u2 * v" by (simp_all add: as mult_right_mono) qed also have "\<dots> \<le> 1" unfolding distrib_left[symmetric] and as(3) using u1 u2 by auto finally have le1: "u1 * u + u2 * v \<le> 1" . show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" proof (intro CollectI exI conjI) show "0 \<le> u * u1 + v * u2" by (simp add: as(1) as(2) obt1(1) obt2(1)) show "0 \<le> 1 - u * u1 - v * u2" by (simp add: le1 diff_diff_add mult.commute) qed (use b in \<open>auto simp: algebra_simps\<close>) qed qed lemma convex_hull_insert_alt: "convex hull (insert a S) = (if S = {} then {a} else {(1 - u) *\<^sub>R a + u *\<^sub>R x |x u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> convex hull S})" apply (auto simp: convex_hull_insert) using diff_eq_eq apply fastforce using diff_add_cancel diff_ge_0_iff_ge by blast subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Explicit expression for convex hull\<close> proposition convex_hull_indexed: fixes S :: "'a::real_vector set" shows "convex hull S = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> S) \<and> (sum u {1..k} = 1) \<and> (\<Sum>i = 1..k. u i *\<^sub>R x i) = y}" (is "?xyz = ?hull") proof (rule hull_unique [OF _ convexI]) show "S \<subseteq> ?hull" by (clarsimp, rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI, auto) next fix T assume "S \<subseteq> T" "convex T" then show "?hull \<subseteq> T" by (blast intro: convex_sum) next fix x y u v assume uv: "0 \<le> u" "0 \<le> v" "u + v = (1::real)" assume xy: "x \<in> ?hull" "y \<in> ?hull" from xy obtain k1 u1 x1 where x [rule_format]: "\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> S" "sum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x" by auto from xy obtain k2 u2 x2 where y [rule_format]: "\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> S" "sum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y" by auto have *: "\<And>P (x::'a) y s t i. (if P i then s else t) *\<^sub>R (if P i then x else y) = (if P i then s *\<^sub>R x else t *\<^sub>R y)" "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}" by auto have inj: "inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto let ?uu = "\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" let ?xx = "\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" proof (intro CollectI exI conjI ballI) show "0 \<le> ?uu i" "?xx i \<in> S" if "i \<in> {1..k1+k2}" for i using that by (auto simp add: le_diff_conv uv(1) x(1) uv(2) y(1)) show "(\<Sum>i = 1..k1 + k2. ?uu i) = 1" "(\<Sum>i = 1..k1 + k2. ?uu i *\<^sub>R ?xx i) = u *\<^sub>R x + v *\<^sub>R y" unfolding * sum.If_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] sum.reindex[OF inj] Collect_mem_eq o_def unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] sum_distrib_left[symmetric] by (simp_all add: sum_distrib_left[symmetric] x(2,3) y(2,3) uv(3)) qed qed lemma convex_hull_finite: fixes S :: "'a::real_vector set" assumes "finite S" shows "convex hull S = {y. \<exists>u. (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> sum (\<lambda>x. u x *\<^sub>R x) S = y}" (is "?HULL = _") proof (rule hull_unique [OF _ convexI]; clarify) fix x assume "x \<in> S" then show "\<exists>u. (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> (\<Sum>x\<in>S. u x *\<^sub>R x) = x" by (rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) (auto simp: sum.delta'[OF assms] sum_delta''[OF assms]) next fix u v :: real assume uv: "0 \<le> u" "0 \<le> v" "u + v = 1" fix ux assume ux [rule_format]: "\<forall>x\<in>S. 0 \<le> ux x" "sum ux S = (1::real)" fix uy assume uy [rule_format]: "\<forall>x\<in>S. 0 \<le> uy x" "sum uy S = (1::real)" have "0 \<le> u * ux x + v * uy x" if "x\<in>S" for x by (simp add: that uv ux(1) uy(1)) moreover have "(\<Sum>x\<in>S. u * ux x + v * uy x) = 1" unfolding sum.distrib and sum_distrib_left[symmetric] ux(2) uy(2) using uv(3) by auto moreover have "(\<Sum>x\<in>S. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>S. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>S. uy x *\<^sub>R x)" unfolding scaleR_left_distrib sum.distrib scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] by auto ultimately show "\<exists>uc. (\<forall>x\<in>S. 0 \<le> uc x) \<and> sum uc S = 1 \<and> (\<Sum>x\<in>S. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>S. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>S. uy x *\<^sub>R x)" by (rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI, auto) qed (use assms in \<open>auto simp: convex_explicit\<close>) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Another formulation\<close> text "Formalized by Lars Schewe." lemma convex_hull_explicit: fixes p :: "'a::real_vector set" shows "convex hull p = {y. \<exists>S u. finite S \<and> S \<subseteq> p \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}" (is "?lhs = ?rhs") proof - { fix x assume "x\<in>?lhs" then obtain k u y where obt: "\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "sum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x" unfolding convex_hull_indexed by auto have fin: "finite {1..k}" by auto have fin': "\<And>v. finite {i \<in> {1..k}. y i = v}" by auto { fix j assume "j\<in>{1..k}" then have "y j \<in> p \<and> 0 \<le> sum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}" using obt(1)[THEN bspec[where x=j]] and obt(2) by (metis (no_types, lifting) One_nat_def atLeastAtMost_iff mem_Collect_eq obt(1) sum_nonneg) } moreover have "(\<Sum>v\<in>y ` {1..k}. sum u {i \<in> {1..k}. y i = v}) = 1" unfolding sum.image_gen[OF fin, symmetric] using obt(2) by auto moreover have "(\<Sum>v\<in>y ` {1..k}. sum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x" using sum.image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, symmetric] unfolding scaleR_left.sum using obt(3) by auto ultimately have "\<exists>S u. finite S \<and> S \<subseteq> p \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = x" apply (rule_tac x="y ` {1..k}" in exI) apply (rule_tac x="\<lambda>v. sum u {i\<in>{1..k}. y i = v}" in exI, auto) done then have "x\<in>?rhs" by auto } moreover { fix y assume "y\<in>?rhs" then obtain S u where obt: "finite S" "S \<subseteq> p" "\<forall>x\<in>S. 0 \<le> u x" "sum u S = 1" "(\<Sum>v\<in>S. u v *\<^sub>R v) = y" by auto obtain f where f: "inj_on f {1..card S}" "f ` {1..card S} = S" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto { fix i :: nat assume "i\<in>{1..card S}" then have "f i \<in> S" using f(2) by blast then have "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto } moreover have *: "finite {1..card S}" by auto { fix y assume "y\<in>S" then obtain i where "i\<in>{1..card S}" "f i = y" using f using image_iff[of y f "{1..card S}"] by auto then have "{x. Suc 0 \<le> x \<and> x \<le> card S \<and> f x = y} = {i}" using f(1) inj_onD by fastforce then have "card {x. Suc 0 \<le> x \<and> x \<le> card S \<and> f x = y} = 1" by auto then have "(\<Sum>x\<in>{x \<in> {1..card S}. f x = y}. u (f x)) = u y" "(\<Sum>x\<in>{x \<in> {1..card S}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y" by (auto simp: sum_constant_scaleR) } then have "(\<Sum>x = 1..card S. u (f x)) = 1" "(\<Sum>i = 1..card S. u (f i) *\<^sub>R f i) = y" unfolding sum.image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f] and sum.image_gen[OF *(1), of "\<lambda>x. u (f x)" f] unfolding f using sum.cong [of S S "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card S}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"] using sum.cong [of S S "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card S}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> sum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y" apply (rule_tac x="card S" in exI) apply (rule_tac x="u \<circ> f" in exI) apply (rule_tac x=f in exI, fastforce) done then have "y \<in> ?lhs" unfolding convex_hull_indexed by auto } ultimately show ?thesis unfolding set_eq_iff by blast qed subsubsection\<^marker>\<open>tag unimportant\<close> \<open>A stepping theorem for that expansion\<close> lemma convex_hull_finite_step: fixes S :: "'a::real_vector set" assumes "finite S" shows "(\<exists>u. (\<forall>x\<in>insert a S. 0 \<le> u x) \<and> sum u (insert a S) = w \<and> sum (\<lambda>x. u x *\<^sub>R x) (insert a S) = y) \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = w - v \<and> sum (\<lambda>x. u x *\<^sub>R x) S = y - v *\<^sub>R a)" (is "?lhs = ?rhs") proof (cases "a \<in> S") case True then have *: "insert a S = S" by auto show ?thesis proof assume ?lhs then show ?rhs unfolding * by force next have fin: "finite (insert a S)" using assms by auto assume ?rhs then obtain v u where uv: "v\<ge>0" "\<forall>x\<in>S. 0 \<le> u x" "sum u S = w - v" "(\<Sum>x\<in>S. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto then show ?lhs using uv True assms apply (rule_tac x = "\<lambda>x. (if a = x then v else 0) + u x" in exI) apply (auto simp: sum_clauses scaleR_left_distrib sum.distrib sum_delta''[OF fin]) done qed next case False show ?thesis proof assume ?lhs then obtain u where u: "\<forall>x\<in>insert a S. 0 \<le> u x" "sum u (insert a S) = w" "(\<Sum>x\<in>insert a S. u x *\<^sub>R x) = y" by auto then show ?rhs using u \<open>a\<notin>S\<close> by (rule_tac x="u a" in exI) (auto simp: sum_clauses assms) next assume ?rhs then obtain v u where uv: "v\<ge>0" "\<forall>x\<in>S. 0 \<le> u x" "sum u S = w - v" "(\<Sum>x\<in>S. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto moreover have "(\<Sum>x\<in>S. if a = x then v else u x) = sum u S" "(\<Sum>x\<in>S. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>S. u x *\<^sub>R x)" using False by (auto intro!: sum.cong) ultimately show ?lhs using False by (rule_tac x="\<lambda>x. if a = x then v else u x" in exI) (auto simp: sum_clauses(2)[OF assms]) qed qed subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Hence some special cases\<close> lemma convex_hull_2: "convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}" (is "?lhs = ?rhs") proof - have **: "finite {b}" by auto have "\<And>x v u. \<lbrakk>0 \<le> v; v \<le> 1; (1 - v) *\<^sub>R b = x - v *\<^sub>R a\<rbrakk> \<Longrightarrow> \<exists>u v. x = u *\<^sub>R a + v *\<^sub>R b \<and> 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1" by (metis add.commute diff_add_cancel diff_ge_0_iff_ge) moreover have "\<And>u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> \<exists>p\<ge>0. \<exists>q. 0 \<le> q b \<and> q b = 1 - p \<and> q b *\<^sub>R b = u *\<^sub>R a + v *\<^sub>R b - p *\<^sub>R a" apply (rule_tac x=u in exI, simp) apply (rule_tac x="\<lambda>x. v" in exI, simp) done ultimately show ?thesis using convex_hull_finite_step[OF **, of a 1] by (auto simp add: convex_hull_finite) qed lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u. 0 \<le> u \<and> u \<le> 1}" unfolding convex_hull_2 proof (rule Collect_cong) have *: "\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto fix x show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) \<longleftrightarrow> (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)" apply (simp add: *) by (rule ex_cong1) (auto simp: algebra_simps) qed lemma convex_hull_3: "convex hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}" proof - have fin: "finite {a,b,c}" "finite {b,c}" "finite {c}" by auto have *: "\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp: field_simps) show ?thesis unfolding convex_hull_finite[OF fin(1)] and convex_hull_finite_step[OF fin(2)] and * unfolding convex_hull_finite_step[OF fin(3)] apply (rule Collect_cong, simp) apply auto apply (rule_tac x=va in exI) apply (rule_tac x="u c" in exI, simp) apply (rule_tac x="1 - v - w" in exI, simp) apply (rule_tac x=v in exI, simp) apply (rule_tac x="\<lambda>x. w" in exI, simp) done qed lemma convex_hull_3_alt: "convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}" proof - have *: "\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto show ?thesis unfolding convex_hull_3 apply (auto simp: *) apply (rule_tac x=v in exI) apply (rule_tac x=w in exI) apply (simp add: algebra_simps) apply (rule_tac x=u in exI) apply (rule_tac x=v in exI) apply (simp add: algebra_simps) done qed subsection\<^marker>\<open>tag unimportant\<close> \<open>Relations among closure notions and corresponding hulls\<close> lemma affine_imp_convex: "affine s \<Longrightarrow> convex s" unfolding affine_def convex_def by auto lemma convex_affine_hull [simp]: "convex (affine hull S)" by (simp add: affine_imp_convex) lemma subspace_imp_convex: "subspace s \<Longrightarrow> convex s" using subspace_imp_affine affine_imp_convex by auto lemma convex_hull_subset_span: "(convex hull s) \<subseteq> (span s)" by (metis hull_minimal span_superset subspace_imp_convex subspace_span) lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)" by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset) lemma aff_dim_convex_hull: fixes S :: "'n::euclidean_space set" shows "aff_dim (convex hull S) = aff_dim S" using aff_dim_affine_hull[of S] convex_hull_subset_affine_hull[of S] hull_subset[of S "convex"] aff_dim_subset[of S "convex hull S"] aff_dim_subset[of "convex hull S" "affine hull S"] by auto subsection \<open>Caratheodory's theorem\<close> lemma convex_hull_caratheodory_aff_dim: fixes p :: "('a::euclidean_space) set" shows "convex hull p = {y. \<exists>S u. finite S \<and> S \<subseteq> p \<and> card S \<le> aff_dim p + 1 \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}" unfolding convex_hull_explicit set_eq_iff mem_Collect_eq proof (intro allI iffI) fix y let ?P = "\<lambda>n. \<exists>S u. finite S \<and> card S = n \<and> S \<subseteq> p \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = y" assume "\<exists>S u. finite S \<and> S \<subseteq> p \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = y" then obtain N where "?P N" by auto then have "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" by (rule_tac ex_least_nat_le, auto) then obtain n where "?P n" and smallest: "\<forall>k<n. \<not> ?P k" by blast then obtain S u where obt: "finite S" "card S = n" "S\<subseteq>p" "\<forall>x\<in>S. 0 \<le> u x" "sum u S = 1" "(\<Sum>v\<in>S. u v *\<^sub>R v) = y" by auto have "card S \<le> aff_dim p + 1" proof (rule ccontr, simp only: not_le) assume "aff_dim p + 1 < card S" then have "affine_dependent S" using affine_dependent_biggerset[OF obt(1)] independent_card_le_aff_dim not_less obt(3) by blast then obtain w v where wv: "sum w S = 0" "v\<in>S" "w v \<noteq> 0" "(\<Sum>v\<in>S. w v *\<^sub>R v) = 0" using affine_dependent_explicit_finite[OF obt(1)] by auto define i where "i = (\<lambda>v. (u v) / (- w v)) ` {v\<in>S. w v < 0}" define t where "t = Min i" have "\<exists>x\<in>S. w x < 0" proof (rule ccontr, simp add: not_less) assume as:"\<forall>x\<in>S. 0 \<le> w x" then have "sum w (S - {v}) \<ge> 0" by (meson Diff_iff sum_nonneg) then have "sum w S > 0" using as obt(1) sum_nonneg_eq_0_iff wv by blast then show False using wv(1) by auto qed then have "i \<noteq> {}" unfolding i_def by auto then have "t \<ge> 0" using Min_ge_iff[of i 0] and obt(1) unfolding t_def i_def using obt(4)[unfolded le_less] by (auto simp: divide_le_0_iff) have t: "\<forall>v\<in>S. u v + t * w v \<ge> 0" proof fix v assume "v \<in> S" then have v: "0 \<le> u v" using obt(4)[THEN bspec[where x=v]] by auto show "0 \<le> u v + t * w v" proof (cases "w v < 0") case False thus ?thesis using v \<open>t\<ge>0\<close> by auto next case True then have "t \<le> u v / (- w v)" using \<open>v\<in>S\<close> obt unfolding t_def i_def by (auto intro: Min_le) then show ?thesis unfolding real_0_le_add_iff using True neg_le_minus_divide_eq by auto qed qed obtain a where "a \<in> S" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0" using Min_in[OF _ \<open>i\<noteq>{}\<close>] and obt(1) unfolding i_def t_def by auto then have a: "a \<in> S" "u a + t * w a = 0" by auto have *: "\<And>f. sum f (S - {a}) = sum f S - ((f a)::'b::ab_group_add)" unfolding sum.remove[OF obt(1) \<open>a\<in>S\<close>] by auto have "(\<Sum>v\<in>S. u v + t * w v) = 1" unfolding sum.distrib wv(1) sum_distrib_left[symmetric] obt(5) by auto moreover have "(\<Sum>v\<in>S. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y" unfolding sum.distrib obt(6) scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] wv(4) using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]] by simp ultimately have "?P (n - 1)" apply (rule_tac x="(S - {a})" in exI) apply (rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a apply (auto simp: * scaleR_left_distrib) done then show False using smallest[THEN spec[where x="n - 1"]] by auto qed then show "\<exists>S u. finite S \<and> S \<subseteq> p \<and> card S \<le> aff_dim p + 1 \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = y" using obt by auto qed auto lemma caratheodory_aff_dim: fixes p :: "('a::euclidean_space) set" shows "convex hull p = {x. \<exists>S. finite S \<and> S \<subseteq> p \<and> card S \<le> aff_dim p + 1 \<and> x \<in> convex hull S}" (is "?lhs = ?rhs") proof have "\<And>x S u. \<lbrakk>finite S; S \<subseteq> p; int (card S) \<le> aff_dim p + 1; \<forall>x\<in>S. 0 \<le> u x; sum u S = 1\<rbrakk> \<Longrightarrow> (\<Sum>v\<in>S. u v *\<^sub>R v) \<in> convex hull S" by (simp add: hull_subset convex_explicit [THEN iffD1, OF convex_convex_hull]) then show "?lhs \<subseteq> ?rhs" by (subst convex_hull_caratheodory_aff_dim, auto) qed (use hull_mono in auto) lemma convex_hull_caratheodory: fixes p :: "('a::euclidean_space) set" shows "convex hull p = {y. \<exists>S u. finite S \<and> S \<subseteq> p \<and> card S \<le> DIM('a) + 1 \<and> (\<forall>x\<in>S. 0 \<le> u x) \<and> sum u S = 1 \<and> sum (\<lambda>v. u v *\<^sub>R v) S = y}" (is "?lhs = ?rhs") proof (intro set_eqI iffI) fix x assume "x \<in> ?lhs" then show "x \<in> ?rhs" unfolding convex_hull_caratheodory_aff_dim using aff_dim_le_DIM [of p] by fastforce qed (auto simp: convex_hull_explicit) theorem caratheodory: "convex hull p = {x::'a::euclidean_space. \<exists>S. finite S \<and> S \<subseteq> p \<and> card S \<le> DIM('a) + 1 \<and> x \<in> convex hull S}" proof safe fix x assume "x \<in> convex hull p" then obtain S u where "finite S" "S \<subseteq> p" "card S \<le> DIM('a) + 1" "\<forall>x\<in>S. 0 \<le> u x" "sum u S = 1" "(\<Sum>v\<in>S. u v *\<^sub>R v) = x" unfolding convex_hull_caratheodory by auto then show "\<exists>S. finite S \<and> S \<subseteq> p \<and> card S \<le> DIM('a) + 1 \<and> x \<in> convex hull S" using convex_hull_finite by fastforce qed (use hull_mono in force) subsection\<^marker>\<open>tag unimportant\<close>\<open>Some Properties of subset of standard basis\<close> lemma affine_hull_substd_basis: assumes "d \<subseteq> Basis" shows "affine hull (insert 0 d) = {x::'a::euclidean_space. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0}" (is "affine hull (insert 0 ?A) = ?B") proof - have *: "\<And>A. (+) (0::'a) ` A = A" "\<And>A. (+) (- (0::'a)) ` A = A" by auto show ?thesis unfolding affine_hull_insert_span_gen span_substd_basis[OF assms,symmetric] * .. qed lemma affine_hull_convex_hull [simp]: "affine hull (convex hull S) = affine hull S" by (metis Int_absorb1 Int_absorb2 convex_hull_subset_affine_hull hull_hull hull_mono hull_subset) subsection\<^marker>\<open>tag unimportant\<close> \<open>Moving and scaling convex hulls\<close> lemma convex_hull_set_plus: "convex hull (S + T) = convex hull S + convex hull T" unfolding set_plus_image apply (subst convex_hull_linear_image [symmetric]) apply (simp add: linear_iff scaleR_right_distrib) apply (simp add: convex_hull_Times) done lemma translation_eq_singleton_plus: "(\<lambda>x. a + x) ` T = {a} + T" unfolding set_plus_def by auto lemma convex_hull_translation: "convex hull ((\<lambda>x. a + x) ` S) = (\<lambda>x. a + x) ` (convex hull S)" unfolding translation_eq_singleton_plus by (simp only: convex_hull_set_plus convex_hull_singleton) lemma convex_hull_scaling: "convex hull ((\<lambda>x. c *\<^sub>R x) ` S) = (\<lambda>x. c *\<^sub>R x) ` (convex hull S)" using linear_scaleR by (rule convex_hull_linear_image [symmetric]) lemma convex_hull_affinity: "convex hull ((\<lambda>x. a + c *\<^sub>R x) ` S) = (\<lambda>x. a + c *\<^sub>R x) ` (convex hull S)" by (metis convex_hull_scaling convex_hull_translation image_image) subsection\<^marker>\<open>tag unimportant\<close> \<open>Convexity of cone hulls\<close> lemma convex_cone_hull: assumes "convex S" shows "convex (cone hull S)" proof (rule convexI) fix x y assume xy: "x \<in> cone hull S" "y \<in> cone hull S" then have "S \<noteq> {}" using cone_hull_empty_iff[of S] by auto fix u v :: real assume uv: "u \<ge> 0" "v \<ge> 0" "u + v = 1" then have *: "u *\<^sub>R x \<in> cone hull S" "v *\<^sub>R y \<in> cone hull S" using cone_cone_hull[of S] xy cone_def[of "cone hull S"] by auto from * obtain cx :: real and xx where x: "u *\<^sub>R x = cx *\<^sub>R xx" "cx \<ge> 0" "xx \<in> S" using cone_hull_expl[of S] by auto from * obtain cy :: real and yy where y: "v *\<^sub>R y = cy *\<^sub>R yy" "cy \<ge> 0" "yy \<in> S" using cone_hull_expl[of S] by auto { assume "cx + cy \<le> 0" then have "u *\<^sub>R x = 0" and "v *\<^sub>R y = 0" using x y by auto then have "u *\<^sub>R x + v *\<^sub>R y = 0" by auto then have "u *\<^sub>R x + v *\<^sub>R y \<in> cone hull S" using cone_hull_contains_0[of S] \<open>S \<noteq> {}\<close> by auto } moreover { assume "cx + cy > 0" then have "(cx / (cx + cy)) *\<^sub>R xx + (cy / (cx + cy)) *\<^sub>R yy \<in> S" using assms mem_convex_alt[of S xx yy cx cy] x y by auto then have "cx *\<^sub>R xx + cy *\<^sub>R yy \<in> cone hull S" using mem_cone_hull[of "(cx/(cx+cy)) *\<^sub>R xx + (cy/(cx+cy)) *\<^sub>R yy" S "cx+cy"] \<open>cx+cy>0\<close> by (auto simp: scaleR_right_distrib) then have "u *\<^sub>R x + v *\<^sub>R y \<in> cone hull S" using x y by auto } moreover have "cx + cy \<le> 0 \<or> cx + cy > 0" by auto ultimately show "u *\<^sub>R x + v *\<^sub>R y \<in> cone hull S" by blast qed lemma cone_convex_hull: assumes "cone S" shows "cone (convex hull S)" proof (cases "S = {}") case True then show ?thesis by auto next case False then have *: "0 \<in> S \<and> (\<forall>c. c > 0 \<longrightarrow> (*\<^sub>R) c ` S = S)" using cone_iff[of S] assms by auto { fix c :: real assume "c > 0" then have "(*\<^sub>R) c ` (convex hull S) = convex hull ((*\<^sub>R) c ` S)" using convex_hull_scaling[of _ S] by auto also have "\<dots> = convex hull S" using * \<open>c > 0\<close> by auto finally have "(*\<^sub>R) c ` (convex hull S) = convex hull S" by auto } then have "0 \<in> convex hull S" "\<And>c. c > 0 \<Longrightarrow> ((*\<^sub>R) c ` (convex hull S)) = (convex hull S)" using * hull_subset[of S convex] by auto then show ?thesis using \<open>S \<noteq> {}\<close> cone_iff[of "convex hull S"] by auto qed subsection \<open>Radon's theorem\<close> text "Formalized by Lars Schewe." lemma Radon_ex_lemma: assumes "finite c" "affine_dependent c" shows "\<exists>u. sum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> sum (\<lambda>v. u v *\<^sub>R v) c = 0" proof - from assms(2)[unfolded affine_dependent_explicit] obtain S u where "finite S" "S \<subseteq> c" "sum u S = 0" "\<exists>v\<in>S. u v \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by blast then show ?thesis apply (rule_tac x="\<lambda>v. if v\<in>S then u v else 0" in exI) unfolding if_smult scaleR_zero_left by (auto simp: Int_absorb1 sum.inter_restrict[OF \<open>finite c\<close>, symmetric]) qed lemma Radon_s_lemma: assumes "finite S" and "sum f S = (0::real)" shows "sum f {x\<in>S. 0 < f x} = - sum f {x\<in>S. f x < 0}" proof - have *: "\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x" by auto show ?thesis unfolding add_eq_0_iff[symmetric] and sum.inter_filter[OF assms(1)] and sum.distrib[symmetric] and * using assms(2) by assumption qed lemma Radon_v_lemma: assumes "finite S" and "sum f S = 0" and "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::'a::euclidean_space)" shows "(sum f {x\<in>S. 0 < g x}) = - sum f {x\<in>S. g x < 0}" proof - have *: "\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x" using assms(3) by auto show ?thesis unfolding eq_neg_iff_add_eq_0 and sum.inter_filter[OF assms(1)] and sum.distrib[symmetric] and * using assms(2) apply assumption done qed lemma Radon_partition: assumes "finite C" "affine_dependent C" shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = C \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof - obtain u v where uv: "sum u C = 0" "v\<in>C" "u v \<noteq> 0" "(\<Sum>v\<in>C. u v *\<^sub>R v) = 0" using Radon_ex_lemma[OF assms] by auto have fin: "finite {x \<in> C. 0 < u x}" "finite {x \<in> C. 0 > u x}" using assms(1) by auto define z where "z = inverse (sum u {x\<in>C. u x > 0}) *\<^sub>R sum (\<lambda>x. u x *\<^sub>R x) {x\<in>C. u x > 0}" have "sum u {x \<in> C. 0 < u x} \<noteq> 0" proof (cases "u v \<ge> 0") case False then have "u v < 0" by auto then show ?thesis proof (cases "\<exists>w\<in>{x \<in> C. 0 < u x}. u w > 0") case True then show ?thesis using sum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto next case False then have "sum u C \<le> sum (\<lambda>x. if x=v then u v else 0) C" by (rule_tac sum_mono, auto) then show ?thesis unfolding sum.delta[OF assms(1)] using uv(2) and \<open>u v < 0\<close> and uv(1) by auto qed qed (insert sum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto) then have *: "sum u {x\<in>C. u x > 0} > 0" unfolding less_le by (metis (no_types, lifting) mem_Collect_eq sum_nonneg) moreover have "sum u ({x \<in> C. 0 < u x} \<union> {x \<in> C. u x < 0}) = sum u C" "(\<Sum>x\<in>{x \<in> C. 0 < u x} \<union> {x \<in> C. u x < 0}. u x *\<^sub>R x) = (\<Sum>x\<in>C. u x *\<^sub>R x)" using assms(1) by (rule_tac[!] sum.mono_neutral_left, auto) then have "sum u {x \<in> C. 0 < u x} = - sum u {x \<in> C. 0 > u x}" "(\<Sum>x\<in>{x \<in> C. 0 < u x}. u x *\<^sub>R x) = - (\<Sum>x\<in>{x \<in> C. 0 > u x}. u x *\<^sub>R x)" unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp: sum.union_inter_neutral[OF fin, symmetric]) moreover have "\<forall>x\<in>{v \<in> C. u v < 0}. 0 \<le> inverse (sum u {x \<in> C. 0 < u x}) * - u x" using * by (fastforce intro: mult_nonneg_nonneg) ultimately have "z \<in> convex hull {v \<in> C. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq apply (rule_tac x="{v \<in> C. u v < 0}" in exI) apply (rule_tac x="\<lambda>y. inverse (sum u {x\<in>C. u x > 0}) * - u y" in exI) using assms(1) unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] by (auto simp: z_def sum_negf sum_distrib_left[symmetric]) moreover have "\<forall>x\<in>{v \<in> C. 0 < u v}. 0 \<le> inverse (sum u {x \<in> C. 0 < u x}) * u x" using * by (fastforce intro: mult_nonneg_nonneg) then have "z \<in> convex hull {v \<in> C. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq apply (rule_tac x="{v \<in> C. 0 < u v}" in exI) apply (rule_tac x="\<lambda>y. inverse (sum u {x\<in>C. u x > 0}) * u y" in exI) using assms(1) unfolding scaleR_scaleR[symmetric] scaleR_right.sum [symmetric] using * by (auto simp: z_def sum_negf sum_distrib_left[symmetric]) ultimately show ?thesis apply (rule_tac x="{v\<in>C. u v \<le> 0}" in exI) apply (rule_tac x="{v\<in>C. u v > 0}" in exI, auto) done qed theorem Radon: assumes "affine_dependent c" obtains m p where "m \<subseteq> c" "p \<subseteq> c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}" proof - from assms[unfolded affine_dependent_explicit] obtain S u where "finite S" "S \<subseteq> c" "sum u S = 0" "\<exists>v\<in>S. u v \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by blast then have *: "finite S" "affine_dependent S" and S: "S \<subseteq> c" unfolding affine_dependent_explicit by auto from Radon_partition[OF *] obtain m p where "m \<inter> p = {}" "m \<union> p = S" "convex hull m \<inter> convex hull p \<noteq> {}" by blast with S show ?thesis by (force intro: that[of p m]) qed subsection \<open>Helly's theorem\<close> lemma Helly_induct: fixes f :: "'a::euclidean_space set set" assumes "card f = n" and "n \<ge> DIM('a) + 1" and "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = DIM('a) + 1 \<longrightarrow> \<Inter>t \<noteq> {}" shows "\<Inter>f \<noteq> {}" using assms proof (induction n arbitrary: f) case 0 then show ?case by auto next case (Suc n) have "finite f" using \<open>card f = Suc n\<close> by (auto intro: card_ge_0_finite) show "\<Inter>f \<noteq> {}" proof (cases "n = DIM('a)") case True then show ?thesis by (simp add: Suc.prems(1) Suc.prems(4)) next case False have "\<Inter>(f - {s}) \<noteq> {}" if "s \<in> f" for s proof (rule Suc.IH[rule_format]) show "card (f - {s}) = n" by (simp add: Suc.prems(1) \<open>finite f\<close> that) show "DIM('a) + 1 \<le> n" using False Suc.prems(2) by linarith show "\<And>t. \<lbrakk>t \<subseteq> f - {s}; card t = DIM('a) + 1\<rbrakk> \<Longrightarrow> \<Inter>t \<noteq> {}" by (simp add: Suc.prems(4) subset_Diff_insert) qed (use Suc in auto) then have "\<forall>s\<in>f. \<exists>x. x \<in> \<Inter>(f - {s})" by blast then obtain X where X: "\<And>s. s\<in>f \<Longrightarrow> X s \<in> \<Inter>(f - {s})" by metis show ?thesis proof (cases "inj_on X f") case False then obtain s t where "s\<noteq>t" and st: "s\<in>f" "t\<in>f" "X s = X t" unfolding inj_on_def by auto then have *: "\<Inter>f = \<Inter>(f - {s}) \<inter> \<Inter>(f - {t})" by auto show ?thesis by (metis "*" X disjoint_iff_not_equal st) next case True then obtain m p where mp: "m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}" using Radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"] unfolding card_image[OF True] and \<open>card f = Suc n\<close> using Suc(3) \<open>finite f\<close> and False by auto have "m \<subseteq> X ` f" "p \<subseteq> X ` f" using mp(2) by auto then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f" unfolding subset_image_iff by auto then have "f \<union> (g \<union> h) = f" by auto then have f: "f = g \<union> h" using inj_on_Un_image_eq_iff[of X f "g \<union> h"] and True unfolding mp(2)[unfolded image_Un[symmetric] gh] by auto have *: "g \<inter> h = {}" using gh(1) gh(2) local.mp(1) by blast have "convex hull (X ` h) \<subseteq> \<Inter>g" "convex hull (X ` g) \<subseteq> \<Inter>h" by (rule hull_minimal; use X * f in \<open>auto simp: Suc.prems(3) convex_Inter\<close>)+ then show ?thesis unfolding f using mp(3)[unfolded gh] by blast qed qed qed theorem Helly: fixes f :: "'a::euclidean_space set set" assumes "card f \<ge> DIM('a) + 1" "\<forall>s\<in>f. convex s" and "\<And>t. \<lbrakk>t\<subseteq>f; card t = DIM('a) + 1\<rbrakk> \<Longrightarrow> \<Inter>t \<noteq> {}" shows "\<Inter>f \<noteq> {}" using Helly_induct assms by blast subsection \<open>Epigraphs of convex functions\<close> definition\<^marker>\<open>tag important\<close> "epigraph S (f :: _ \<Rightarrow> real) = {xy. fst xy \<in> S \<and> f (fst xy) \<le> snd xy}" lemma mem_epigraph: "(x, y) \<in> epigraph S f \<longleftrightarrow> x \<in> S \<and> f x \<le> y" unfolding epigraph_def by auto lemma convex_epigraph: "convex (epigraph S f) \<longleftrightarrow> convex_on S f \<and> convex S" proof safe assume L: "convex (epigraph S f)" then show "convex_on S f" by (auto simp: convex_def convex_on_def epigraph_def) show "convex S" using L by (fastforce simp: convex_def convex_on_def epigraph_def) next assume "convex_on S f" "convex S" then show "convex (epigraph S f)" unfolding convex_def convex_on_def epigraph_def apply safe apply (rule_tac [2] y="u * f a + v * f aa" in order_trans) apply (auto intro!:mult_left_mono add_mono) done qed lemma convex_epigraphI: "convex_on S f \<Longrightarrow> convex S \<Longrightarrow> convex (epigraph S f)" unfolding convex_epigraph by auto lemma convex_epigraph_convex: "convex S \<Longrightarrow> convex_on S f \<longleftrightarrow> convex(epigraph S f)" by (simp add: convex_epigraph) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Use this to derive general bound property of convex function\<close> lemma convex_on: assumes "convex S" shows "convex_on S f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> S) \<and> sum u {1..k} = 1 \<longrightarrow> f (sum (\<lambda>i. u i *\<^sub>R x i) {1..k}) \<le> sum (\<lambda>i. u i * f(x i)) {1..k})" (is "?lhs = (\<forall>k u x. ?rhs k u x)") proof assume ?lhs then have \<section>: "convex {xy. fst xy \<in> S \<and> f (fst xy) \<le> snd xy}" by (metis assms convex_epigraph epigraph_def) show "\<forall>k u x. ?rhs k u x" proof (intro allI) fix k u x show "?rhs k u x" using \<section> unfolding convex mem_Collect_eq fst_sum snd_sum apply safe apply (drule_tac x=k in spec) apply (drule_tac x=u in spec) apply (drule_tac x="\<lambda>i. (x i, f (x i))" in spec) apply simp done qed next assume "\<forall>k u x. ?rhs k u x" then show ?lhs unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq fst_sum snd_sum using assms[unfolded convex] apply clarsimp apply (rule_tac y="\<Sum>i = 1..k. u i * f (fst (x i))" in order_trans) by (auto simp add: mult_left_mono intro: sum_mono) qed subsection\<^marker>\<open>tag unimportant\<close> \<open>A bound within a convex hull\<close> lemma convex_on_convex_hull_bound: assumes "convex_on (convex hull S) f" and "\<forall>x\<in>S. f x \<le> b" shows "\<forall>x\<in> convex hull S. f x \<le> b" proof fix x assume "x \<in> convex hull S" then obtain k u v where u: "\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> S" "sum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R v i) = x" unfolding convex_hull_indexed mem_Collect_eq by auto have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using sum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"] unfolding sum_distrib_right[symmetric] u(2) mult_1 using assms(2) mult_left_mono u(1) by blast then show "f x \<le> b" using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v] using hull_inc u by fastforce qed lemma inner_sum_Basis[simp]: "i \<in> Basis \<Longrightarrow> (\<Sum>Basis) \<bullet> i = 1" by (simp add: inner_sum_left sum.If_cases inner_Basis) lemma convex_set_plus: assumes "convex S" and "convex T" shows "convex (S + T)" proof - have "convex (\<Union>x\<in> S. \<Union>y \<in> T. {x + y})" using assms by (rule convex_sums) moreover have "(\<Union>x\<in> S. \<Union>y \<in> T. {x + y}) = S + T" unfolding set_plus_def by auto finally show "convex (S + T)" . qed lemma convex_set_sum: assumes "\<And>i. i \<in> A \<Longrightarrow> convex (B i)" shows "convex (\<Sum>i\<in>A. B i)" proof (cases "finite A") case True then show ?thesis using assms by induct (auto simp: convex_set_plus) qed auto lemma finite_set_sum: assumes "finite A" and "\<forall>i\<in>A. finite (B i)" shows "finite (\<Sum>i\<in>A. B i)" using assms by (induct set: finite, simp, simp add: finite_set_plus) lemma box_eq_set_sum_Basis: "{x. \<forall>i\<in>Basis. x\<bullet>i \<in> B i} = (\<Sum>i\<in>Basis. (\<lambda>x. x *\<^sub>R i) ` (B i))" (is "?lhs = ?rhs") proof - have "\<And>x. \<forall>i\<in>Basis. x \<bullet> i \<in> B i \<Longrightarrow> \<exists>s. x = sum s Basis \<and> (\<forall>i\<in>Basis. s i \<in> (\<lambda>x. x *\<^sub>R i) ` B i)" by (metis (mono_tags, lifting) euclidean_representation image_iff) moreover have "sum f Basis \<bullet> i \<in> B i" if "i \<in> Basis" and f: "\<forall>i\<in>Basis. f i \<in> (\<lambda>x. x *\<^sub>R i) ` B i" for i f proof - have "(\<Sum>x\<in>Basis - {i}. f x \<bullet> i) = 0" proof (rule sum.neutral, intro strip) show "f x \<bullet> i = 0" if "x \<in> Basis - {i}" for x using that f \<open>i \<in> Basis\<close> inner_Basis that by fastforce qed then have "(\<Sum>x\<in>Basis. f x \<bullet> i) = f i \<bullet> i" by (metis (no_types) \<open>i \<in> Basis\<close> add.right_neutral sum.remove [OF finite_Basis]) then have "(\<Sum>x\<in>Basis. f x \<bullet> i) \<in> B i" using f that(1) by auto then show ?thesis by (simp add: inner_sum_left) qed ultimately show ?thesis by (subst set_sum_alt [OF finite_Basis]) auto qed lemma convex_hull_set_sum: "convex hull (\<Sum>i\<in>A. B i) = (\<Sum>i\<in>A. convex hull (B i))" proof (cases "finite A") assume "finite A" then show ?thesis by (induct set: finite, simp, simp add: convex_hull_set_plus) qed simp end