| author | wenzelm |
| Fri, 05 Aug 2022 13:23:52 +0200 | |
| changeset 75760 | f8be63d2ec6f |
| parent 73932 | fd21b4a93043 |
| child 80914 | d97fdabd9e2b |
| permissions | -rw-r--r-- |
(* Title: HOL/Analysis/Cross3.thy Author: L C Paulson, University of Cambridge Ported from HOL Light *) section\<open>Vector Cross Products in 3 Dimensions\<close> theory "Cross3" imports Determinants Cartesian_Euclidean_Space begin context includes no_Set_Product_syntax begin \<comment>\<open>locally disable syntax for set product, to avoid warnings\<close> definition\<^marker>\<open>tag important\<close> cross3 :: "[real^3, real^3] \<Rightarrow> real^3" (infixr "\<times>" 80) where "a \<times> b \<equiv> vector [a$2 * b$3 - a$3 * b$2, a$3 * b$1 - a$1 * b$3, a$1 * b$2 - a$2 * b$1]" end bundle cross3_syntax begin notation cross3 (infixr "\<times>" 80) no_notation Product_Type.Times (infixr "\<times>" 80) end bundle no_cross3_syntax begin no_notation cross3 (infixr "\<times>" 80) notation Product_Type.Times (infixr "\<times>" 80) end unbundle cross3_syntax subsection\<open> Basic lemmas\<close> lemmas cross3_simps = cross3_def inner_vec_def sum_3 det_3 vec_eq_iff vector_def algebra_simps lemma dot_cross_self: "x \<bullet> (x \<times> y) = 0" "x \<bullet> (y \<times> x) = 0" "(x \<times> y) \<bullet> y = 0" "(y \<times> x) \<bullet> y = 0" by (simp_all add: orthogonal_def cross3_simps) lemma orthogonal_cross: "orthogonal (x \<times> y) x" "orthogonal (x \<times> y) y" "orthogonal y (x \<times> y)" "orthogonal (x \<times> y) x" by (simp_all add: orthogonal_def dot_cross_self) lemma cross_zero_left [simp]: "0 \<times> x = 0" and cross_zero_right [simp]: "x \<times> 0 = 0" for x::"real^3" by (simp_all add: cross3_simps) lemma cross_skew: "(x \<times> y) = -(y \<times> x)" for x::"real^3" by (simp add: cross3_simps) lemma cross_refl [simp]: "x \<times> x = 0" for x::"real^3" by (simp add: cross3_simps) lemma cross_add_left: "(x + y) \<times> z = (x \<times> z) + (y \<times> z)" for x::"real^3" by (simp add: cross3_simps) lemma cross_add_right: "x \<times> (y + z) = (x \<times> y) + (x \<times> z)" for x::"real^3" by (simp add: cross3_simps) lemma cross_mult_left: "(c *\<^sub>R x) \<times> y = c *\<^sub>R (x \<times> y)" for x::"real^3" by (simp add: cross3_simps) lemma cross_mult_right: "x \<times> (c *\<^sub>R y) = c *\<^sub>R (x \<times> y)" for x::"real^3" by (simp add: cross3_simps) lemma cross_minus_left [simp]: "(-x) \<times> y = - (x \<times> y)" for x::"real^3" by (simp add: cross3_simps) lemma cross_minus_right [simp]: "x \<times> -y = - (x \<times> y)" for x::"real^3" by (simp add: cross3_simps) lemma left_diff_distrib: "(x - y) \<times> z = x \<times> z - y \<times> z" for x::"real^3" by (simp add: cross3_simps) lemma right_diff_distrib: "x \<times> (y - z) = x \<times> y - x \<times> z" for x::"real^3" by (simp add: cross3_simps) hide_fact (open) left_diff_distrib right_diff_distrib proposition Jacobi: "x \<times> (y \<times> z) + y \<times> (z \<times> x) + z \<times> (x \<times> y) = 0" for x::"real^3" by (simp add: cross3_simps) proposition Lagrange: "x \<times> (y \<times> z) = (x \<bullet> z) *\<^sub>R y - (x \<bullet> y) *\<^sub>R z" by (simp add: cross3_simps) (metis (full_types) exhaust_3) proposition cross_triple: "(x \<times> y) \<bullet> z = (y \<times> z) \<bullet> x" by (simp add: cross3_def inner_vec_def sum_3 vec_eq_iff algebra_simps) lemma cross_components: "(x \<times> y)$1 = x$2 * y$3 - y$2 * x$3" "(x \<times> y)$2 = x$3 * y$1 - y$3 * x$1" "(x \<times> y)$3 = x$1 * y$2 - y$1 * x$2" by (simp_all add: cross3_def inner_vec_def sum_3 vec_eq_iff algebra_simps) lemma cross_basis: "(axis 1 1) \<times> (axis 2 1) = axis 3 1" "(axis 2 1) \<times> (axis 1 1) = -(axis 3 1)" "(axis 2 1) \<times> (axis 3 1) = axis 1 1" "(axis 3 1) \<times> (axis 2 1) = -(axis 1 1)" "(axis 3 1) \<times> (axis 1 1) = axis 2 1" "(axis 1 1) \<times> (axis 3 1) = -(axis 2 1)" using exhaust_3 by (force simp add: axis_def cross3_simps)+ lemma cross_basis_nonzero: "u \<noteq> 0 \<Longrightarrow> u \<times> axis 1 1 \<noteq> 0 \<or> u \<times> axis 2 1 \<noteq> 0 \<or> u \<times> axis 3 1 \<noteq> 0" by (clarsimp simp add: axis_def cross3_simps) (metis exhaust_3) lemma cross_dot_cancel: fixes x::"real^3" assumes deq: "x \<bullet> y = x \<bullet> z" and veq: "x \<times> y = x \<times> z" and x: "x \<noteq> 0" shows "y = z" proof - have "x \<bullet> x \<noteq> 0" by (simp add: x) then have "y - z = 0" using veq by (metis (no_types, lifting) Cross3.right_diff_distrib Lagrange deq eq_iff_diff_eq_0 inner_diff_right scale_eq_0_iff) then show ?thesis using eq_iff_diff_eq_0 by blast qed lemma norm_cross_dot: "(norm (x \<times> y))\<^sup>2 + (x \<bullet> y)\<^sup>2 = (norm x * norm y)\<^sup>2" unfolding power2_norm_eq_inner power_mult_distrib by (simp add: cross3_simps power2_eq_square) lemma dot_cross_det: "x \<bullet> (y \<times> z) = det(vector[x,y,z])" by (simp add: cross3_simps) lemma cross_cross_det: "(w \<times> x) \<times> (y \<times> z) = det(vector[w,x,z]) *\<^sub>R y - det(vector[w,x,y]) *\<^sub>R z" using exhaust_3 by (force simp add: cross3_simps) proposition dot_cross: "(w \<times> x) \<bullet> (y \<times> z) = (w \<bullet> y) * (x \<bullet> z) - (w \<bullet> z) * (x \<bullet> y)" by (force simp add: cross3_simps) proposition norm_cross: "(norm (x \<times> y))\<^sup>2 = (norm x)\<^sup>2 * (norm y)\<^sup>2 - (x \<bullet> y)\<^sup>2" unfolding power2_norm_eq_inner power_mult_distrib by (simp add: cross3_simps power2_eq_square) lemma cross_eq_0: "x \<times> y = 0 \<longleftrightarrow> collinear{0,x,y}" proof - have "x \<times> y = 0 \<longleftrightarrow> norm (x \<times> y) = 0" by simp also have "... \<longleftrightarrow> (norm x * norm y)\<^sup>2 = (x \<bullet> y)\<^sup>2" using norm_cross [of x y] by (auto simp: power_mult_distrib) also have "... \<longleftrightarrow> \<bar>x \<bullet> y\<bar> = norm x * norm y" using power2_eq_iff by (metis (mono_tags, opaque_lifting) abs_minus abs_norm_cancel abs_power2 norm_mult power_abs real_norm_def) also have "... \<longleftrightarrow> collinear {0, x, y}" by (rule norm_cauchy_schwarz_equal) finally show ?thesis . qed lemma cross_eq_self: "x \<times> y = x \<longleftrightarrow> x = 0" "x \<times> y = y \<longleftrightarrow> y = 0" apply (metis cross_zero_left dot_cross_self(1) inner_eq_zero_iff) by (metis cross_zero_right dot_cross_self(2) inner_eq_zero_iff) lemma norm_and_cross_eq_0: "x \<bullet> y = 0 \<and> x \<times> y = 0 \<longleftrightarrow> x = 0 \<or> y = 0" (is "?lhs = ?rhs") proof assume ?lhs then show ?rhs by (metis cross_dot_cancel cross_zero_right inner_zero_right) qed auto lemma bilinear_cross: "bilinear(\<times>)" apply (auto simp add: bilinear_def linear_def) apply unfold_locales apply (simp add: cross_add_right) apply (simp add: cross_mult_right) apply (simp add: cross_add_left) apply (simp add: cross_mult_left) done subsection \<open>Preservation by rotation, or other orthogonal transformation up to sign\<close> lemma cross_matrix_mult: "transpose A *v ((A *v x) \<times> (A *v y)) = det A *\<^sub>R (x \<times> y)" apply (simp add: vec_eq_iff ) apply (simp add: vector_matrix_mult_def matrix_vector_mult_def forall_3 cross3_simps) done lemma cross_orthogonal_matrix: assumes "orthogonal_matrix A" shows "(A *v x) \<times> (A *v y) = det A *\<^sub>R (A *v (x \<times> y))" proof - have "mat 1 = transpose (A ** transpose A)" by (metis (no_types) assms orthogonal_matrix_def transpose_mat) then show ?thesis by (metis (no_types) vector_matrix_mul_rid vector_transpose_matrix cross_matrix_mult matrix_vector_mul_assoc matrix_vector_mult_scaleR) qed lemma cross_rotation_matrix: "rotation_matrix A \<Longrightarrow> (A *v x) \<times> (A *v y) = A *v (x \<times> y)" by (simp add: rotation_matrix_def cross_orthogonal_matrix) lemma cross_rotoinversion_matrix: "rotoinversion_matrix A \<Longrightarrow> (A *v x) \<times> (A *v y) = - A *v (x \<times> y)" by (simp add: rotoinversion_matrix_def cross_orthogonal_matrix scaleR_matrix_vector_assoc) lemma cross_orthogonal_transformation: assumes "orthogonal_transformation f" shows "(f x) \<times> (f y) = det(matrix f) *\<^sub>R f(x \<times> y)" proof - have orth: "orthogonal_matrix (matrix f)" using assms orthogonal_transformation_matrix by blast have "matrix f *v z = f z" for z using assms orthogonal_transformation_matrix by force with cross_orthogonal_matrix [OF orth] show ?thesis by simp qed lemma cross_linear_image: "\<lbrakk>linear f; \<And>x. norm(f x) = norm x; det(matrix f) = 1\<rbrakk> \<Longrightarrow> (f x) \<times> (f y) = f(x \<times> y)" by (simp add: cross_orthogonal_transformation orthogonal_transformation) subsection \<open>Continuity\<close> lemma continuous_cross: "\<lbrakk>continuous F f; continuous F g\<rbrakk> \<Longrightarrow> continuous F (\<lambda>x. (f x) \<times> (g x))" apply (subst continuous_componentwise) apply (clarsimp simp add: cross3_simps) apply (intro continuous_intros; simp) done lemma continuous_on_cross: fixes f :: "'a::t2_space \<Rightarrow> real^3" shows "\<lbrakk>continuous_on S f; continuous_on S g\<rbrakk> \<Longrightarrow> continuous_on S (\<lambda>x. (f x) \<times> (g x))" by (simp add: continuous_on_eq_continuous_within continuous_cross) unbundle no_cross3_syntax end