| author | wenzelm | 
| Fri, 05 Aug 2022 13:23:52 +0200 | |
| changeset 75760 | f8be63d2ec6f | 
| parent 75462 | 7448423e5dba | 
| child 77179 | 6d2ca97a8f46 | 
| permissions | -rw-r--r-- | 
(* Author: John Harrison Author: Robert Himmelmann, TU Muenchen (Translation from HOL light) Huge cleanup by LCP *) section \<open>Henstock-Kurzweil Gauge Integration in Many Dimensions\<close> theory Henstock_Kurzweil_Integration imports Lebesgue_Measure Tagged_Division begin lemma norm_diff2: "\<lbrakk>y = y1 + y2; x = x1 + x2; e = e1 + e2; norm(y1 - x1) \<le> e1; norm(y2 - x2) \<le> e2\<rbrakk> \<Longrightarrow> norm(y-x) \<le> e" using norm_triangle_mono [of "y1 - x1" "e1" "y2 - x2" "e2"] by (simp add: add_diff_add) lemma setcomp_dot1: "{z. P (z \<bullet> (i,0))} = {(x,y). P(x \<bullet> i)}" by auto lemma setcomp_dot2: "{z. P (z \<bullet> (0,i))} = {(x,y). P(y \<bullet> i)}" by auto lemma Sigma_Int_Paircomp1: "(Sigma A B) \<inter> {(x, y). P x} = Sigma (A \<inter> {x. P x}) B" by blast lemma Sigma_Int_Paircomp2: "(Sigma A B) \<inter> {(x, y). P y} = Sigma A (\<lambda>z. B z \<inter> {y. P y})" by blast (* END MOVE *) subsection \<open>Content (length, area, volume...) of an interval\<close> abbreviation content :: "'a::euclidean_space set \<Rightarrow> real" where "content s \<equiv> measure lborel s" lemma content_cbox_cases: "content (cbox a b) = (if \<forall>i\<in>Basis. a\<bullet>i \<le> b\<bullet>i then prod (\<lambda>i. b\<bullet>i - a\<bullet>i) Basis else 0)" by (simp add: measure_lborel_cbox_eq inner_diff) lemma content_cbox: "\<forall>i\<in>Basis. a\<bullet>i \<le> b\<bullet>i \<Longrightarrow> content (cbox a b) = (\<Prod>i\<in>Basis. b\<bullet>i - a\<bullet>i)" unfolding content_cbox_cases by simp lemma content_cbox': "cbox a b \<noteq> {} \<Longrightarrow> content (cbox a b) = (\<Prod>i\<in>Basis. b\<bullet>i - a\<bullet>i)" by (simp add: box_ne_empty inner_diff) lemma content_cbox_if: "content (cbox a b) = (if cbox a b = {} then 0 else \<Prod>i\<in>Basis. b\<bullet>i - a\<bullet>i)" by (simp add: content_cbox') lemma content_cbox_cart: "cbox a b \<noteq> {} \<Longrightarrow> content(cbox a b) = prod (\<lambda>i. b$i - a$i) UNIV" by (simp add: content_cbox_if Basis_vec_def cart_eq_inner_axis axis_eq_axis prod.UNION_disjoint) lemma content_cbox_if_cart: "content(cbox a b) = (if cbox a b = {} then 0 else prod (\<lambda>i. b$i - a$i) UNIV)" by (simp add: content_cbox_cart) lemma content_division_of: assumes "K \<in> \<D>" "\<D> division_of S" shows "content K = (\<Prod>i \<in> Basis. interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)" proof - obtain a b where "K = cbox a b" using cbox_division_memE assms by metis then show ?thesis using assms by (force simp: division_of_def content_cbox') qed lemma content_real: "a \<le> b \<Longrightarrow> content {a..b} = b - a" by simp lemma abs_eq_content: "\<bar>y - x\<bar> = (if x\<le>y then content {x..y} else content {y..x})" by (auto simp: content_real) lemma content_singleton: "content {a} = 0" by simp lemma content_unit[iff]: "content (cbox 0 (One::'a::euclidean_space)) = 1" by simp lemma content_pos_le [iff]: "0 \<le> content X" by simp corollary\<^marker>\<open>tag unimportant\<close> content_nonneg [simp]: "\<not> content (cbox a b) < 0" using not_le by blast lemma content_pos_lt: "\<forall>i\<in>Basis. a\<bullet>i < b\<bullet>i \<Longrightarrow> 0 < content (cbox a b)" by (auto simp: less_imp_le inner_diff box_eq_empty intro!: prod_pos) lemma content_eq_0: "content (cbox a b) = 0 \<longleftrightarrow> (\<exists>i\<in>Basis. b\<bullet>i \<le> a\<bullet>i)" by (auto simp: content_cbox_cases not_le intro: less_imp_le antisym eq_refl) lemma content_eq_0_interior: "content (cbox a b) = 0 \<longleftrightarrow> interior(cbox a b) = {}" unfolding content_eq_0 interior_cbox box_eq_empty by auto lemma content_pos_lt_eq: "0 < content (cbox a (b::'a::euclidean_space)) \<longleftrightarrow> (\<forall>i\<in>Basis. a\<bullet>i < b\<bullet>i)" by (auto simp add: content_cbox_cases less_le prod_nonneg) lemma content_empty [simp]: "content {} = 0" by simp lemma content_real_if [simp]: "content {a..b} = (if a \<le> b then b - a else 0)" by (simp add: content_real) lemma content_subset: "cbox a b \<subseteq> cbox c d \<Longrightarrow> content (cbox a b) \<le> content (cbox c d)" unfolding measure_def by (intro enn2real_mono emeasure_mono) (auto simp: emeasure_lborel_cbox_eq) lemma content_lt_nz: "0 < content (cbox a b) \<longleftrightarrow> content (cbox a b) \<noteq> 0" unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by fastforce lemma content_Pair: "content (cbox (a,c) (b,d)) = content (cbox a b) * content (cbox c d)" unfolding measure_lborel_cbox_eq Basis_prod_def apply (subst prod.union_disjoint) apply (auto simp: bex_Un ball_Un) apply (subst (1 2) prod.reindex_nontrivial) apply auto done lemma content_cbox_pair_eq0_D: "content (cbox (a,c) (b,d)) = 0 \<Longrightarrow> content (cbox a b) = 0 \<or> content (cbox c d) = 0" by (simp add: content_Pair) lemma content_cbox_plus: fixes x :: "'a::euclidean_space" shows "content(cbox x (x + h *\<^sub>R One)) = (if h \<ge> 0 then h ^ DIM('a) else 0)" by (simp add: algebra_simps content_cbox_if box_eq_empty) lemma content_0_subset: "content(cbox a b) = 0 \<Longrightarrow> s \<subseteq> cbox a b \<Longrightarrow> content s = 0" using emeasure_mono[of s "cbox a b" lborel] by (auto simp: measure_def enn2real_eq_0_iff emeasure_lborel_cbox_eq) lemma content_ball_pos: assumes "r > 0" shows "content (ball c r) > 0" proof - from rational_boxes[OF assms, of c] obtain a b where ab: "c \<in> box a b" "box a b \<subseteq> ball c r" by auto from ab have "0 < content (box a b)" by (subst measure_lborel_box_eq) (auto intro!: prod_pos simp: algebra_simps box_def) have "emeasure lborel (box a b) \<le> emeasure lborel (ball c r)" using ab by (intro emeasure_mono) auto also have "emeasure lborel (box a b) = ennreal (content (box a b))" using emeasure_lborel_box_finite[of a b] by (intro emeasure_eq_ennreal_measure) auto also have "emeasure lborel (ball c r) = ennreal (content (ball c r))" using emeasure_lborel_ball_finite[of c r] by (intro emeasure_eq_ennreal_measure) auto finally show ?thesis using \<open>content (box a b) > 0\<close> by simp qed lemma content_cball_pos: assumes "r > 0" shows "content (cball c r) > 0" proof - from rational_boxes[OF assms, of c] obtain a b where ab: "c \<in> box a b" "box a b \<subseteq> ball c r" by auto from ab have "0 < content (box a b)" by (subst measure_lborel_box_eq) (auto intro!: prod_pos simp: algebra_simps box_def) have "emeasure lborel (box a b) \<le> emeasure lborel (ball c r)" using ab by (intro emeasure_mono) auto also have "\<dots> \<le> emeasure lborel (cball c r)" by (intro emeasure_mono) auto also have "emeasure lborel (box a b) = ennreal (content (box a b))" using emeasure_lborel_box_finite[of a b] by (intro emeasure_eq_ennreal_measure) auto also have "emeasure lborel (cball c r) = ennreal (content (cball c r))" using emeasure_lborel_cball_finite[of c r] by (intro emeasure_eq_ennreal_measure) auto finally show ?thesis using \<open>content (box a b) > 0\<close> by simp qed lemma content_split: fixes a :: "'a::euclidean_space" assumes "k \<in> Basis" shows "content (cbox a b) = content(cbox a b \<inter> {x. x\<bullet>k \<le> c}) + content(cbox a b \<inter> {x. x\<bullet>k \<ge> c})" \<comment> \<open>Prove using measure theory\<close> proof (cases "\<forall>i\<in>Basis. a \<bullet> i \<le> b \<bullet> i") case True have 1: "\<And>X Y Z. (\<Prod>i\<in>Basis. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>Basis-{k}. Z i (Y i))" by (simp add: if_distrib prod.delta_remove assms) note simps = interval_split[OF assms] content_cbox_cases have 2: "(\<Prod>i\<in>Basis. b\<bullet>i - a\<bullet>i) = (\<Prod>i\<in>Basis-{k}. b\<bullet>i - a\<bullet>i) * (b\<bullet>k - a\<bullet>k)" by (metis (no_types, lifting) assms finite_Basis mult.commute prod.remove) have "\<And>x. min (b \<bullet> k) c = max (a \<bullet> k) c \<Longrightarrow> x * (b\<bullet>k - a\<bullet>k) = x * (max (a \<bullet> k) c - a \<bullet> k) + x * (b \<bullet> k - max (a \<bullet> k) c)" by (auto simp add: field_simps) moreover have **: "(\<Prod>i\<in>Basis. ((\<Sum>i\<in>Basis. (if i = k then min (b \<bullet> k) c else b \<bullet> i) *\<^sub>R i) \<bullet> i - a \<bullet> i)) = (\<Prod>i\<in>Basis. (if i = k then min (b \<bullet> k) c else b \<bullet> i) - a \<bullet> i)" "(\<Prod>i\<in>Basis. b \<bullet> i - ((\<Sum>i\<in>Basis. (if i = k then max (a \<bullet> k) c else a \<bullet> i) *\<^sub>R i) \<bullet> i)) = (\<Prod>i\<in>Basis. b \<bullet> i - (if i = k then max (a \<bullet> k) c else a \<bullet> i))" by (auto intro!: prod.cong) have "\<not> a \<bullet> k \<le> c \<Longrightarrow> \<not> c \<le> b \<bullet> k \<Longrightarrow> False" unfolding not_le using True assms by auto ultimately show ?thesis using assms unfolding simps ** 1[of "\<lambda>i x. b\<bullet>i - x"] 1[of "\<lambda>i x. x - a\<bullet>i"] 2 by auto next case False then have "cbox a b = {}" unfolding box_eq_empty by (auto simp: not_le) then show ?thesis by (auto simp: not_le) qed lemma division_of_content_0: assumes "content (cbox a b) = 0" "d division_of (cbox a b)" "K \<in> d" shows "content K = 0" unfolding forall_in_division[OF assms(2)] by (meson assms content_0_subset division_of_def) lemma sum_content_null: assumes "content (cbox a b) = 0" and "p tagged_division_of (cbox a b)" shows "(\<Sum>(x,K)\<in>p. content K *\<^sub>R f x) = (0::'a::real_normed_vector)" proof (rule sum.neutral, rule) fix y assume y: "y \<in> p" obtain x K where xk: "y = (x, K)" using surj_pair[of y] by blast then obtain c d where k: "K = cbox c d" "K \<subseteq> cbox a b" by (metis assms(2) tagged_division_ofD(3) tagged_division_ofD(4) y) have "(\<lambda>(x',K'). content K' *\<^sub>R f x') y = content K *\<^sub>R f x" unfolding xk by auto also have "\<dots> = 0" using assms(1) content_0_subset k(2) by auto finally show "(\<lambda>(x, k). content k *\<^sub>R f x) y = 0" . qed global_interpretation sum_content: operative plus 0 content rewrites "comm_monoid_set.F plus 0 = sum" proof - interpret operative plus 0 content by standard (auto simp add: content_split [symmetric] content_eq_0_interior) show "operative plus 0 content" by standard show "comm_monoid_set.F plus 0 = sum" by (simp add: sum_def) qed lemma additive_content_division: "d division_of (cbox a b) \<Longrightarrow> sum content d = content (cbox a b)" by (fact sum_content.division) lemma additive_content_tagged_division: "d tagged_division_of (cbox a b) \<Longrightarrow> sum (\<lambda>(x,l). content l) d = content (cbox a b)" by (fact sum_content.tagged_division) lemma subadditive_content_division: assumes "\<D> division_of S" "S \<subseteq> cbox a b" shows "sum content \<D> \<le> content(cbox a b)" proof - have "\<D> division_of \<Union>\<D>" "\<Union>\<D> \<subseteq> cbox a b" using assms by auto then obtain \<D>' where "\<D> \<subseteq> \<D>'" "\<D>' division_of cbox a b" using partial_division_extend_interval by metis then have "sum content \<D> \<le> sum content \<D>'" using sum_mono2 by blast also have "... \<le> content(cbox a b)" by (simp add: \<open>\<D>' division_of cbox a b\<close> additive_content_division less_eq_real_def) finally show ?thesis . qed lemma content_real_eq_0: "content {a..b::real} = 0 \<longleftrightarrow> a \<ge> b" by (metis atLeastatMost_empty_iff2 content_empty content_real diff_self eq_iff le_cases le_iff_diff_le_0) lemma property_empty_interval: "\<forall>a b. content (cbox a b) = 0 \<longrightarrow> P (cbox a b) \<Longrightarrow> P {}" using content_empty unfolding empty_as_interval by auto lemma interval_bounds_nz_content [simp]: assumes "content (cbox a b) \<noteq> 0" shows "interval_upperbound (cbox a b) = b" and "interval_lowerbound (cbox a b) = a" by (metis assms content_empty interval_bounds')+ subsection \<open>Gauge integral\<close> text \<open>Case distinction to define it first on compact intervals first, then use a limit. This is only much later unified. In Fremlin: Measure Theory, Volume 4I this is generalized using residual sets.\<close> definition has_integral :: "('n::euclidean_space \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> 'n set \<Rightarrow> bool" (infixr "has'_integral" 46) where "(f has_integral I) s \<longleftrightarrow> (if \<exists>a b. s = cbox a b then ((\<lambda>p. \<Sum>(x,k)\<in>p. content k *\<^sub>R f x) \<longlongrightarrow> I) (division_filter s) else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> (\<exists>z. ((\<lambda>p. \<Sum>(x,k)\<in>p. content k *\<^sub>R (if x \<in> s then f x else 0)) \<longlongrightarrow> z) (division_filter (cbox a b)) \<and> norm (z - I) < e)))" lemma has_integral_cbox: "(f has_integral I) (cbox a b) \<longleftrightarrow> ((\<lambda>p. \<Sum>(x,k)\<in>p. content k *\<^sub>R f x) \<longlongrightarrow> I) (division_filter (cbox a b))" by (auto simp add: has_integral_def) lemma has_integral: "(f has_integral y) (cbox a b) \<longleftrightarrow> (\<forall>e>0. \<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of (cbox a b) \<and> \<gamma> fine \<D> \<longrightarrow> norm (sum (\<lambda>(x,k). content(k) *\<^sub>R f x) \<D> - y) < e))" by (auto simp: dist_norm eventually_division_filter has_integral_def tendsto_iff) lemma has_integral_real: "(f has_integral y) {a..b::real} \<longleftrightarrow> (\<forall>e>0. \<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of {a..b} \<and> \<gamma> fine \<D> \<longrightarrow> norm (sum (\<lambda>(x,k). content(k) *\<^sub>R f x) \<D> - y) < e))" unfolding box_real[symmetric] by (rule has_integral) lemma has_integralD[dest]: assumes "(f has_integral y) (cbox a b)" and "e > 0" obtains \<gamma> where "gauge \<gamma>" and "\<And>\<D>. \<D> tagged_division_of (cbox a b) \<Longrightarrow> \<gamma> fine \<D> \<Longrightarrow> norm ((\<Sum>(x,k)\<in>\<D>. content k *\<^sub>R f x) - y) < e" using assms unfolding has_integral by auto lemma has_integral_alt: "(f has_integral y) i \<longleftrightarrow> (if \<exists>a b. i = cbox a b then (f has_integral y) i else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f x else 0) has_integral z) (cbox a b) \<and> norm (z - y) < e)))" by (subst has_integral_def) (auto simp add: has_integral_cbox) lemma has_integral_altD: assumes "(f has_integral y) i" and "\<not> (\<exists>a b. i = cbox a b)" and "e>0" obtains B where "B > 0" and "\<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) has_integral z) (cbox a b) \<and> norm(z - y) < e)" using assms has_integral_alt[of f y i] by auto definition integrable_on (infixr "integrable'_on" 46) where "f integrable_on i \<longleftrightarrow> (\<exists>y. (f has_integral y) i)" definition "integral i f = (SOME y. (f has_integral y) i \<or> \<not> f integrable_on i \<and> y=0)" lemma integrable_integral[intro]: "f integrable_on i \<Longrightarrow> (f has_integral (integral i f)) i" unfolding integrable_on_def integral_def by (metis (mono_tags, lifting) someI_ex) lemma not_integrable_integral: "\<not> f integrable_on i \<Longrightarrow> integral i f = 0" unfolding integrable_on_def integral_def by blast lemma has_integral_integrable[dest]: "(f has_integral i) s \<Longrightarrow> f integrable_on s" unfolding integrable_on_def by auto lemma has_integral_integral: "f integrable_on s \<longleftrightarrow> (f has_integral (integral s f)) s" by auto subsection \<open>Basic theorems about integrals\<close> lemma has_integral_eq_rhs: "(f has_integral j) S \<Longrightarrow> i = j \<Longrightarrow> (f has_integral i) S" by (rule forw_subst) lemma has_integral_unique_cbox: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector" shows "(f has_integral k1) (cbox a b) \<Longrightarrow> (f has_integral k2) (cbox a b) \<Longrightarrow> k1 = k2" by (auto simp: has_integral_cbox intro: tendsto_unique[OF division_filter_not_empty]) lemma has_integral_unique: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes "(f has_integral k1) i" "(f has_integral k2) i" shows "k1 = k2" proof (rule ccontr) let ?e = "norm (k1 - k2)/2" let ?F = "(\<lambda>x. if x \<in> i then f x else 0)" assume "k1 \<noteq> k2" then have e: "?e > 0" by auto have nonbox: "\<not> (\<exists>a b. i = cbox a b)" using \<open>k1 \<noteq> k2\<close> assms has_integral_unique_cbox by blast obtain B1 where B1: "0 < B1" "\<And>a b. ball 0 B1 \<subseteq> cbox a b \<Longrightarrow> \<exists>z. (?F has_integral z) (cbox a b) \<and> norm (z - k1) < norm (k1 - k2)/2" by (rule has_integral_altD[OF assms(1) nonbox,OF e]) blast obtain B2 where B2: "0 < B2" "\<And>a b. ball 0 B2 \<subseteq> cbox a b \<Longrightarrow> \<exists>z. (?F has_integral z) (cbox a b) \<and> norm (z - k2) < norm (k1 - k2)/2" by (rule has_integral_altD[OF assms(2) nonbox,OF e]) blast obtain a b :: 'n where ab: "ball 0 B1 \<subseteq> cbox a b" "ball 0 B2 \<subseteq> cbox a b" by (metis Un_subset_iff bounded_Un bounded_ball bounded_subset_cbox_symmetric) obtain w where w: "(?F has_integral w) (cbox a b)" "norm (w - k1) < norm (k1 - k2)/2" using B1(2)[OF ab(1)] by blast obtain z where z: "(?F has_integral z) (cbox a b)" "norm (z - k2) < norm (k1 - k2)/2" using B2(2)[OF ab(2)] by blast have "z = w" using has_integral_unique_cbox[OF w(1) z(1)] by auto then have "norm (k1 - k2) \<le> norm (z - k2) + norm (w - k1)" using norm_triangle_ineq4 [of "k1 - w" "k2 - z"] by (auto simp add: norm_minus_commute) also have "\<dots> < norm (k1 - k2)/2 + norm (k1 - k2)/2" by (metis add_strict_mono z(2) w(2)) finally show False by auto qed lemma integral_unique [intro]: "(f has_integral y) k \<Longrightarrow> integral k f = y" unfolding integral_def by (rule some_equality) (auto intro: has_integral_unique) lemma has_integral_iff: "(f has_integral i) S \<longleftrightarrow> (f integrable_on S \<and> integral S f = i)" by blast lemma eq_integralD: "integral k f = y \<Longrightarrow> (f has_integral y) k \<or> \<not> f integrable_on k \<and> y=0" unfolding integral_def integrable_on_def apply (erule subst) apply (rule someI_ex) by blast lemma has_integral_const [intro]: fixes a b :: "'a::euclidean_space" shows "((\<lambda>x. c) has_integral (content (cbox a b) *\<^sub>R c)) (cbox a b)" using eventually_division_filter_tagged_division[of "cbox a b"] additive_content_tagged_division[of _ a b] by (auto simp: has_integral_cbox split_beta' scaleR_sum_left[symmetric] elim!: eventually_mono intro!: tendsto_cong[THEN iffD1, OF _ tendsto_const]) lemma has_integral_const_real [intro]: fixes a b :: real shows "((\<lambda>x. c) has_integral (content {a..b} *\<^sub>R c)) {a..b}" by (metis box_real(2) has_integral_const) lemma has_integral_integrable_integral: "(f has_integral i) s \<longleftrightarrow> f integrable_on s \<and> integral s f = i" by blast lemma integral_const [simp]: fixes a b :: "'a::euclidean_space" shows "integral (cbox a b) (\<lambda>x. c) = content (cbox a b) *\<^sub>R c" by (rule integral_unique) (rule has_integral_const) lemma integral_const_real [simp]: fixes a b :: real shows "integral {a..b} (\<lambda>x. c) = content {a..b} *\<^sub>R c" by (metis box_real(2) integral_const) lemma has_integral_is_0_cbox: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes "\<And>x. x \<in> cbox a b \<Longrightarrow> f x = 0" shows "(f has_integral 0) (cbox a b)" unfolding has_integral_cbox using eventually_division_filter_tagged_division[of "cbox a b"] assms by (subst tendsto_cong[where g="\<lambda>_. 0"]) (auto elim!: eventually_mono intro!: sum.neutral simp: tag_in_interval) lemma has_integral_is_0: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes "\<And>x. x \<in> S \<Longrightarrow> f x = 0" shows "(f has_integral 0) S" proof (cases "(\<exists>a b. S = cbox a b)") case True with assms has_integral_is_0_cbox show ?thesis by blast next case False have *: "(\<lambda>x. if x \<in> S then f x else 0) = (\<lambda>x. 0)" by (auto simp add: assms) show ?thesis using has_integral_is_0_cbox False by (subst has_integral_alt) (force simp add: *) qed lemma has_integral_0[simp]: "((\<lambda>x::'n::euclidean_space. 0) has_integral 0) S" by (rule has_integral_is_0) auto lemma has_integral_0_eq[simp]: "((\<lambda>x. 0) has_integral i) S \<longleftrightarrow> i = 0" using has_integral_unique[OF has_integral_0] by auto lemma has_integral_linear_cbox: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes f: "(f has_integral y) (cbox a b)" and h: "bounded_linear h" shows "((h \<circ> f) has_integral (h y)) (cbox a b)" proof - interpret bounded_linear h using h . show ?thesis unfolding has_integral_cbox using tendsto [OF f [unfolded has_integral_cbox]] by (simp add: sum scaleR split_beta') qed lemma has_integral_linear: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes f: "(f has_integral y) S" and h: "bounded_linear h" shows "((h \<circ> f) has_integral (h y)) S" proof (cases "(\<exists>a b. S = cbox a b)") case True with f h has_integral_linear_cbox show ?thesis by blast next case False interpret bounded_linear h using h . from pos_bounded obtain B where B: "0 < B" "\<And>x. norm (h x) \<le> norm x * B" by blast let ?S = "\<lambda>f x. if x \<in> S then f x else 0" show ?thesis proof (subst has_integral_alt, clarsimp simp: False) fix e :: real assume e: "e > 0" have *: "0 < e/B" using e B(1) by simp obtain M where M: "M > 0" "\<And>a b. ball 0 M \<subseteq> cbox a b \<Longrightarrow> \<exists>z. (?S f has_integral z) (cbox a b) \<and> norm (z - y) < e/B" using has_integral_altD[OF f False *] by blast show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> (\<exists>z. (?S(h \<circ> f) has_integral z) (cbox a b) \<and> norm (z - h y) < e)" proof (rule exI, intro allI conjI impI) show "M > 0" using M by metis next fix a b::'n assume sb: "ball 0 M \<subseteq> cbox a b" obtain z where z: "(?S f has_integral z) (cbox a b)" "norm (z - y) < e/B" using M(2)[OF sb] by blast have *: "?S(h \<circ> f) = h \<circ> ?S f" using zero by auto show "\<exists>z. (?S(h \<circ> f) has_integral z) (cbox a b) \<and> norm (z - h y) < e" proof (intro exI conjI) show "(?S(h \<circ> f) has_integral h z) (cbox a b)" by (simp add: * has_integral_linear_cbox[OF z(1) h]) show "norm (h z - h y) < e" by (metis B diff le_less_trans pos_less_divide_eq z(2)) qed qed qed qed lemma has_integral_scaleR_left: "(f has_integral y) S \<Longrightarrow> ((\<lambda>x. f x *\<^sub>R c) has_integral (y *\<^sub>R c)) S" using has_integral_linear[OF _ bounded_linear_scaleR_left] by (simp add: comp_def) lemma integrable_on_scaleR_left: assumes "f integrable_on A" shows "(\<lambda>x. f x *\<^sub>R y) integrable_on A" using assms has_integral_scaleR_left unfolding integrable_on_def by blast lemma has_integral_mult_left: fixes c :: "_ :: real_normed_algebra" shows "(f has_integral y) S \<Longrightarrow> ((\<lambda>x. f x * c) has_integral (y * c)) S" using has_integral_linear[OF _ bounded_linear_mult_left] by (simp add: comp_def) lemma has_integral_divide: fixes c :: "_ :: real_normed_div_algebra" shows "(f has_integral y) S \<Longrightarrow> ((\<lambda>x. f x / c) has_integral (y / c)) S" unfolding divide_inverse by (simp add: has_integral_mult_left) text\<open>The case analysis eliminates the condition \<^term>\<open>f integrable_on S\<close> at the cost of the type class constraint \<open>division_ring\<close>\<close> corollary integral_mult_left [simp]: fixes c:: "'a::{real_normed_algebra,division_ring}" shows "integral S (\<lambda>x. f x * c) = integral S f * c" proof (cases "f integrable_on S \<or> c = 0") case True then show ?thesis by (force intro: has_integral_mult_left) next case False then have "\<not> (\<lambda>x. f x * c) integrable_on S" using has_integral_mult_left [of "(\<lambda>x. f x * c)" _ S "inverse c"] by (auto simp add: mult.assoc) with False show ?thesis by (simp add: not_integrable_integral) qed corollary integral_mult_right [simp]: fixes c:: "'a::{real_normed_field}" shows "integral S (\<lambda>x. c * f x) = c * integral S f" by (simp add: mult.commute [of c]) corollary integral_divide [simp]: fixes z :: "'a::real_normed_field" shows "integral S (\<lambda>x. f x / z) = integral S (\<lambda>x. f x) / z" using integral_mult_left [of S f "inverse z"] by (simp add: divide_inverse_commute) lemma has_integral_mult_right: fixes c :: "'a :: real_normed_algebra" shows "(f has_integral y) i \<Longrightarrow> ((\<lambda>x. c * f x) has_integral (c * y)) i" using has_integral_linear[OF _ bounded_linear_mult_right] by (simp add: comp_def) lemma has_integral_cmul: "(f has_integral k) S \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R k)) S" unfolding o_def[symmetric] by (metis has_integral_linear bounded_linear_scaleR_right) lemma has_integral_cmult_real: fixes c :: real assumes "c \<noteq> 0 \<Longrightarrow> (f has_integral x) A" shows "((\<lambda>x. c * f x) has_integral c * x) A" proof (cases "c = 0") case True then show ?thesis by simp next case False from has_integral_cmul[OF assms[OF this], of c] show ?thesis unfolding real_scaleR_def . qed lemma has_integral_neg: "(f has_integral k) S \<Longrightarrow> ((\<lambda>x. -(f x)) has_integral -k) S" by (drule_tac c="-1" in has_integral_cmul) auto lemma has_integral_neg_iff: "((\<lambda>x. - f x) has_integral k) S \<longleftrightarrow> (f has_integral - k) S" using has_integral_neg[of f "- k"] has_integral_neg[of "\<lambda>x. - f x" k] by auto lemma has_integral_add_cbox: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes "(f has_integral k) (cbox a b)" "(g has_integral l) (cbox a b)" shows "((\<lambda>x. f x + g x) has_integral (k + l)) (cbox a b)" using assms unfolding has_integral_cbox by (simp add: split_beta' scaleR_add_right sum.distrib[abs_def] tendsto_add) lemma has_integral_add: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes f: "(f has_integral k) S" and g: "(g has_integral l) S" shows "((\<lambda>x. f x + g x) has_integral (k + l)) S" proof (cases "\<exists>a b. S = cbox a b") case True with has_integral_add_cbox assms show ?thesis by blast next let ?S = "\<lambda>f x. if x \<in> S then f x else 0" case False then show ?thesis proof (subst has_integral_alt, clarsimp, goal_cases) case (1 e) then have e2: "e/2 > 0" by auto obtain Bf where "0 < Bf" and Bf: "\<And>a b. ball 0 Bf \<subseteq> cbox a b \<Longrightarrow> \<exists>z. (?S f has_integral z) (cbox a b) \<and> norm (z - k) < e/2" using has_integral_altD[OF f False e2] by blast obtain Bg where "0 < Bg" and Bg: "\<And>a b. ball 0 Bg \<subseteq> (cbox a b) \<Longrightarrow> \<exists>z. (?S g has_integral z) (cbox a b) \<and> norm (z - l) < e/2" using has_integral_altD[OF g False e2] by blast show ?case proof (rule_tac x="max Bf Bg" in exI, clarsimp simp add: max.strict_coboundedI1 \<open>0 < Bf\<close>) fix a b assume "ball 0 (max Bf Bg) \<subseteq> cbox a (b::'n)" then have fs: "ball 0 Bf \<subseteq> cbox a (b::'n)" and gs: "ball 0 Bg \<subseteq> cbox a (b::'n)" by auto obtain w where w: "(?S f has_integral w) (cbox a b)" "norm (w - k) < e/2" using Bf[OF fs] by blast obtain z where z: "(?S g has_integral z) (cbox a b)" "norm (z - l) < e/2" using Bg[OF gs] by blast have *: "\<And>x. (if x \<in> S then f x + g x else 0) = (?S f x) + (?S g x)" by auto show "\<exists>z. (?S(\<lambda>x. f x + g x) has_integral z) (cbox a b) \<and> norm (z - (k + l)) < e" proof (intro exI conjI) show "(?S(\<lambda>x. f x + g x) has_integral (w + z)) (cbox a b)" by (simp add: has_integral_add_cbox[OF w(1) z(1), unfolded *[symmetric]]) show "norm (w + z - (k + l)) < e" by (metis dist_norm dist_triangle_add_half w(2) z(2)) qed qed qed qed lemma has_integral_diff: "(f has_integral k) S \<Longrightarrow> (g has_integral l) S \<Longrightarrow> ((\<lambda>x. f x - g x) has_integral (k - l)) S" using has_integral_add[OF _ has_integral_neg, of f k S g l] by (auto simp: algebra_simps) lemma integral_0 [simp]: "integral S (\<lambda>x::'n::euclidean_space. 0::'m::real_normed_vector) = 0" by (rule integral_unique has_integral_0)+ lemma integral_add: "f integrable_on S \<Longrightarrow> g integrable_on S \<Longrightarrow> integral S (\<lambda>x. f x + g x) = integral S f + integral S g" by (rule integral_unique) (metis integrable_integral has_integral_add) lemma integral_cmul [simp]: "integral S (\<lambda>x. c *\<^sub>R f x) = c *\<^sub>R integral S f" proof (cases "f integrable_on S \<or> c = 0") case True with has_integral_cmul integrable_integral show ?thesis by fastforce next case False then have "\<not> (\<lambda>x. c *\<^sub>R f x) integrable_on S" using has_integral_cmul [of "(\<lambda>x. c *\<^sub>R f x)" _ S "inverse c"] by auto with False show ?thesis by (simp add: not_integrable_integral) qed lemma integral_mult: fixes K::real shows "f integrable_on X \<Longrightarrow> K * integral X f = integral X (\<lambda>x. K * f x)" unfolding real_scaleR_def[symmetric] integral_cmul .. lemma integral_neg [simp]: "integral S (\<lambda>x. - f x) = - integral S f" proof (cases "f integrable_on S") case True then show ?thesis by (simp add: has_integral_neg integrable_integral integral_unique) next case False then have "\<not> (\<lambda>x. - f x) integrable_on S" using has_integral_neg [of "(\<lambda>x. - f x)" _ S ] by auto with False show ?thesis by (simp add: not_integrable_integral) qed lemma integral_diff: "f integrable_on S \<Longrightarrow> g integrable_on S \<Longrightarrow> integral S (\<lambda>x. f x - g x) = integral S f - integral S g" by (rule integral_unique) (metis integrable_integral has_integral_diff) lemma integrable_0: "(\<lambda>x. 0) integrable_on S" unfolding integrable_on_def using has_integral_0 by auto lemma integrable_add: "f integrable_on S \<Longrightarrow> g integrable_on S \<Longrightarrow> (\<lambda>x. f x + g x) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_add) lemma integrable_cmul: "f integrable_on S \<Longrightarrow> (\<lambda>x. c *\<^sub>R f(x)) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_cmul) lemma integrable_on_scaleR_iff [simp]: fixes c :: real assumes "c \<noteq> 0" shows "(\<lambda>x. c *\<^sub>R f x) integrable_on S \<longleftrightarrow> f integrable_on S" using integrable_cmul[of "\<lambda>x. c *\<^sub>R f x" S "1 / c"] integrable_cmul[of f S c] \<open>c \<noteq> 0\<close> by auto lemma integrable_on_cmult_iff [simp]: fixes c :: real assumes "c \<noteq> 0" shows "(\<lambda>x. c * f x) integrable_on S \<longleftrightarrow> f integrable_on S" using integrable_on_scaleR_iff [of c f] assms by simp lemma integrable_on_cmult_left: assumes "f integrable_on S" shows "(\<lambda>x. of_real c * f x) integrable_on S" using integrable_cmul[of f S "of_real c"] assms by (simp add: scaleR_conv_of_real) lemma integrable_neg: "f integrable_on S \<Longrightarrow> (\<lambda>x. -f(x)) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_neg) lemma integrable_neg_iff: "(\<lambda>x. -f(x)) integrable_on S \<longleftrightarrow> f integrable_on S" using integrable_neg by fastforce lemma integrable_diff: "f integrable_on S \<Longrightarrow> g integrable_on S \<Longrightarrow> (\<lambda>x. f x - g x) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_diff) lemma integrable_linear: "f integrable_on S \<Longrightarrow> bounded_linear h \<Longrightarrow> (h \<circ> f) integrable_on S" unfolding integrable_on_def by(auto intro: has_integral_linear) lemma integral_linear: "f integrable_on S \<Longrightarrow> bounded_linear h \<Longrightarrow> integral S (h \<circ> f) = h (integral S f)" by (meson has_integral_iff has_integral_linear) lemma integrable_on_cnj_iff: "(\<lambda>x. cnj (f x)) integrable_on A \<longleftrightarrow> f integrable_on A" using integrable_linear[OF _ bounded_linear_cnj, of f A] integrable_linear[OF _ bounded_linear_cnj, of "cnj \<circ> f" A] by (auto simp: o_def) lemma integral_cnj: "cnj (integral A f) = integral A (\<lambda>x. cnj (f x))" by (cases "f integrable_on A") (simp_all add: integral_linear[OF _ bounded_linear_cnj, symmetric] o_def integrable_on_cnj_iff not_integrable_integral) lemma integral_component_eq[simp]: fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" assumes "f integrable_on S" shows "integral S (\<lambda>x. f x \<bullet> k) = integral S f \<bullet> k" unfolding integral_linear[OF assms(1) bounded_linear_inner_left,unfolded o_def] .. lemma has_integral_sum: assumes "finite T" and "\<And>a. a \<in> T \<Longrightarrow> ((f a) has_integral (i a)) S" shows "((\<lambda>x. sum (\<lambda>a. f a x) T) has_integral (sum i T)) S" using assms(1) subset_refl[of T] proof (induct rule: finite_subset_induct) case empty then show ?case by auto next case (insert x F) with assms show ?case by (simp add: has_integral_add) qed lemma integral_sum: "\<lbrakk>finite I; \<And>a. a \<in> I \<Longrightarrow> f a integrable_on S\<rbrakk> \<Longrightarrow> integral S (\<lambda>x. \<Sum>a\<in>I. f a x) = (\<Sum>a\<in>I. integral S (f a))" by (simp add: has_integral_sum integrable_integral integral_unique) lemma integrable_sum: "\<lbrakk>finite I; \<And>a. a \<in> I \<Longrightarrow> f a integrable_on S\<rbrakk> \<Longrightarrow> (\<lambda>x. \<Sum>a\<in>I. f a x) integrable_on S" unfolding integrable_on_def using has_integral_sum[of I] by metis lemma has_integral_eq: assumes "\<And>x. x \<in> s \<Longrightarrow> f x = g x" and "(f has_integral k) s" shows "(g has_integral k) s" using has_integral_diff[OF assms(2), of "\<lambda>x. f x - g x" 0] using has_integral_is_0[of s "\<lambda>x. f x - g x"] using assms(1) by auto lemma integrable_eq: "\<lbrakk>f integrable_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g integrable_on s" unfolding integrable_on_def using has_integral_eq[of s f g] has_integral_eq by blast lemma has_integral_cong: assumes "\<And>x. x \<in> s \<Longrightarrow> f x = g x" shows "(f has_integral i) s = (g has_integral i) s" using has_integral_eq[of s f g] has_integral_eq[of s g f] assms by auto lemma integrable_cong: assumes "\<And>x. x \<in> A \<Longrightarrow> f x = g x" shows "f integrable_on A \<longleftrightarrow> g integrable_on A" using has_integral_cong [OF assms] by fast lemma integral_cong: assumes "\<And>x. x \<in> s \<Longrightarrow> f x = g x" shows "integral s f = integral s g" unfolding integral_def by (metis (full_types, opaque_lifting) assms has_integral_cong integrable_eq) lemma integrable_on_cmult_left_iff [simp]: assumes "c \<noteq> 0" shows "(\<lambda>x. of_real c * f x) integrable_on s \<longleftrightarrow> f integrable_on s" (is "?lhs = ?rhs") proof assume ?lhs then have "(\<lambda>x. of_real (1 / c) * (of_real c * f x)) integrable_on s" using integrable_cmul[of "\<lambda>x. of_real c * f x" s "1 / of_real c"] by (simp add: scaleR_conv_of_real) then have "(\<lambda>x. (of_real (1 / c) * of_real c * f x)) integrable_on s" by (simp add: algebra_simps) with \<open>c \<noteq> 0\<close> show ?rhs by (metis (no_types, lifting) integrable_eq mult.left_neutral nonzero_divide_eq_eq of_real_1 of_real_mult) qed (blast intro: integrable_on_cmult_left) lemma integrable_on_cmult_right: fixes f :: "_ \<Rightarrow> 'b :: {comm_ring,real_algebra_1,real_normed_vector}" assumes "f integrable_on s" shows "(\<lambda>x. f x * of_real c) integrable_on s" using integrable_on_cmult_left [OF assms] by (simp add: mult.commute) lemma integrable_on_cmult_right_iff [simp]: fixes f :: "_ \<Rightarrow> 'b :: {comm_ring,real_algebra_1,real_normed_vector}" assumes "c \<noteq> 0" shows "(\<lambda>x. f x * of_real c) integrable_on s \<longleftrightarrow> f integrable_on s" using integrable_on_cmult_left_iff [OF assms] by (simp add: mult.commute) lemma integrable_on_cdivide: fixes f :: "_ \<Rightarrow> 'b :: real_normed_field" assumes "f integrable_on s" shows "(\<lambda>x. f x / of_real c) integrable_on s" by (simp add: integrable_on_cmult_right divide_inverse assms flip: of_real_inverse) lemma integrable_on_cdivide_iff [simp]: fixes f :: "_ \<Rightarrow> 'b :: real_normed_field" assumes "c \<noteq> 0" shows "(\<lambda>x. f x / of_real c) integrable_on s \<longleftrightarrow> f integrable_on s" by (simp add: divide_inverse assms flip: of_real_inverse) lemma has_integral_null [intro]: "content(cbox a b) = 0 \<Longrightarrow> (f has_integral 0) (cbox a b)" unfolding has_integral_cbox using eventually_division_filter_tagged_division[of "cbox a b"] by (subst tendsto_cong[where g="\<lambda>_. 0"]) (auto elim: eventually_mono intro: sum_content_null) lemma has_integral_null_real [intro]: "content {a..b::real} = 0 \<Longrightarrow> (f has_integral 0) {a..b}" by (metis box_real(2) has_integral_null) lemma has_integral_null_eq[simp]: "content (cbox a b) = 0 \<Longrightarrow> (f has_integral i) (cbox a b) \<longleftrightarrow> i = 0" by (auto simp add: has_integral_null dest!: integral_unique) lemma integral_null [simp]: "content (cbox a b) = 0 \<Longrightarrow> integral (cbox a b) f = 0" by (metis has_integral_null integral_unique) lemma integrable_on_null [intro]: "content (cbox a b) = 0 \<Longrightarrow> f integrable_on (cbox a b)" by (simp add: has_integral_integrable) lemma has_integral_empty[intro]: "(f has_integral 0) {}" by (meson ex_in_conv has_integral_is_0) lemma has_integral_empty_eq[simp]: "(f has_integral i) {} \<longleftrightarrow> i = 0" by (auto simp add: has_integral_empty has_integral_unique) lemma integrable_on_empty[intro]: "f integrable_on {}" unfolding integrable_on_def by auto lemma integral_empty[simp]: "integral {} f = 0" by (rule integral_unique) (rule has_integral_empty) lemma has_integral_refl[intro]: fixes a :: "'a::euclidean_space" shows "(f has_integral 0) (cbox a a)" and "(f has_integral 0) {a}" proof - show "(f has_integral 0) (cbox a a)" by (rule has_integral_null) simp then show "(f has_integral 0) {a}" by simp qed lemma integrable_on_refl[intro]: "f integrable_on cbox a a" unfolding integrable_on_def by auto lemma integral_refl [simp]: "integral (cbox a a) f = 0" by (rule integral_unique) auto lemma integral_singleton [simp]: "integral {a} f = 0" by auto lemma integral_blinfun_apply: assumes "f integrable_on s" shows "integral s (\<lambda>x. blinfun_apply h (f x)) = blinfun_apply h (integral s f)" by (subst integral_linear[symmetric, OF assms blinfun.bounded_linear_right]) (simp add: o_def) lemma blinfun_apply_integral: assumes "f integrable_on s" shows "blinfun_apply (integral s f) x = integral s (\<lambda>y. blinfun_apply (f y) x)" by (metis (no_types, lifting) assms blinfun.prod_left.rep_eq integral_blinfun_apply integral_cong) lemma has_integral_componentwise_iff: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" shows "(f has_integral y) A \<longleftrightarrow> (\<forall>b\<in>Basis. ((\<lambda>x. f x \<bullet> b) has_integral (y \<bullet> b)) A)" proof safe fix b :: 'b assume "(f has_integral y) A" from has_integral_linear[OF this(1) bounded_linear_inner_left, of b] show "((\<lambda>x. f x \<bullet> b) has_integral (y \<bullet> b)) A" by (simp add: o_def) next assume "(\<forall>b\<in>Basis. ((\<lambda>x. f x \<bullet> b) has_integral (y \<bullet> b)) A)" hence "\<forall>b\<in>Basis. (((\<lambda>x. x *\<^sub>R b) \<circ> (\<lambda>x. f x \<bullet> b)) has_integral ((y \<bullet> b) *\<^sub>R b)) A" by (intro ballI has_integral_linear) (simp_all add: bounded_linear_scaleR_left) hence "((\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b) has_integral (\<Sum>b\<in>Basis. (y \<bullet> b) *\<^sub>R b)) A" by (intro has_integral_sum) (simp_all add: o_def) thus "(f has_integral y) A" by (simp add: euclidean_representation) qed lemma has_integral_componentwise: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" shows "(\<And>b. b \<in> Basis \<Longrightarrow> ((\<lambda>x. f x \<bullet> b) has_integral (y \<bullet> b)) A) \<Longrightarrow> (f has_integral y) A" by (subst has_integral_componentwise_iff) blast lemma integrable_componentwise_iff: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" shows "f integrable_on A \<longleftrightarrow> (\<forall>b\<in>Basis. (\<lambda>x. f x \<bullet> b) integrable_on A)" proof assume "f integrable_on A" then obtain y where "(f has_integral y) A" by (auto simp: integrable_on_def) hence "(\<forall>b\<in>Basis. ((\<lambda>x. f x \<bullet> b) has_integral (y \<bullet> b)) A)" by (subst (asm) has_integral_componentwise_iff) thus "(\<forall>b\<in>Basis. (\<lambda>x. f x \<bullet> b) integrable_on A)" by (auto simp: integrable_on_def) next assume "(\<forall>b\<in>Basis. (\<lambda>x. f x \<bullet> b) integrable_on A)" then obtain y where "\<forall>b\<in>Basis. ((\<lambda>x. f x \<bullet> b) has_integral y b) A" unfolding integrable_on_def by (subst (asm) bchoice_iff) blast hence "\<forall>b\<in>Basis. (((\<lambda>x. x *\<^sub>R b) \<circ> (\<lambda>x. f x \<bullet> b)) has_integral (y b *\<^sub>R b)) A" by (intro ballI has_integral_linear) (simp_all add: bounded_linear_scaleR_left) hence "((\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b) has_integral (\<Sum>b\<in>Basis. y b *\<^sub>R b)) A" by (intro has_integral_sum) (simp_all add: o_def) thus "f integrable_on A" by (auto simp: integrable_on_def o_def euclidean_representation) qed lemma integrable_componentwise: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" shows "(\<And>b. b \<in> Basis \<Longrightarrow> (\<lambda>x. f x \<bullet> b) integrable_on A) \<Longrightarrow> f integrable_on A" by (subst integrable_componentwise_iff) blast lemma integral_componentwise: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: euclidean_space" assumes "f integrable_on A" shows "integral A f = (\<Sum>b\<in>Basis. integral A (\<lambda>x. (f x \<bullet> b) *\<^sub>R b))" proof - from assms have integrable: "\<forall>b\<in>Basis. (\<lambda>x. x *\<^sub>R b) \<circ> (\<lambda>x. (f x \<bullet> b)) integrable_on A" by (subst (asm) integrable_componentwise_iff, intro integrable_linear ballI) (simp_all add: bounded_linear_scaleR_left) have "integral A f = integral A (\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b)" by (simp add: euclidean_representation) also from integrable have "\<dots> = (\<Sum>a\<in>Basis. integral A (\<lambda>x. (f x \<bullet> a) *\<^sub>R a))" by (subst integral_sum) (simp_all add: o_def) finally show ?thesis . qed lemma integrable_component: "f integrable_on A \<Longrightarrow> (\<lambda>x. f x \<bullet> (y :: 'b :: euclidean_space)) integrable_on A" by (drule integrable_linear[OF _ bounded_linear_inner_left[of y]]) (simp add: o_def) subsection \<open>Cauchy-type criterion for integrability\<close> proposition integrable_Cauchy: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::{real_normed_vector,complete_space}" shows "f integrable_on cbox a b \<longleftrightarrow> (\<forall>e>0. \<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>1 \<D>2. \<D>1 tagged_division_of (cbox a b) \<and> \<gamma> fine \<D>1 \<and> \<D>2 tagged_division_of (cbox a b) \<and> \<gamma> fine \<D>2 \<longrightarrow> norm ((\<Sum>(x,K)\<in>\<D>1. content K *\<^sub>R f x) - (\<Sum>(x,K)\<in>\<D>2. content K *\<^sub>R f x)) < e))" (is "?l = (\<forall>e>0. \<exists>\<gamma>. ?P e \<gamma>)") proof (intro iffI allI impI) assume ?l then obtain y where y: "\<And>e. e > 0 \<Longrightarrow> \<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - y) < e)" by (auto simp: integrable_on_def has_integral) show "\<exists>\<gamma>. ?P e \<gamma>" if "e > 0" for e proof - have "e/2 > 0" using that by auto with y obtain \<gamma> where "gauge \<gamma>" and \<gamma>: "\<And>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<Longrightarrow> norm ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f x) - y) < e/2" by meson show ?thesis apply (rule_tac x=\<gamma> in exI, clarsimp simp: \<open>gauge \<gamma>\<close>) by (blast intro!: \<gamma> dist_triangle_half_l[where y=y,unfolded dist_norm]) qed next assume "\<forall>e>0. \<exists>\<gamma>. ?P e \<gamma>" then have "\<forall>n::nat. \<exists>\<gamma>. ?P (1 / (n + 1)) \<gamma>" by auto then obtain \<gamma> :: "nat \<Rightarrow> 'n \<Rightarrow> 'n set" where \<gamma>: "\<And>m. gauge (\<gamma> m)" "\<And>m \<D>1 \<D>2. \<lbrakk>\<D>1 tagged_division_of cbox a b; \<gamma> m fine \<D>1; \<D>2 tagged_division_of cbox a b; \<gamma> m fine \<D>2\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>1. content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> \<D>2. content K *\<^sub>R f x)) < 1 / (m + 1)" by metis have "gauge (\<lambda>x. \<Inter>{\<gamma> i x |i. i \<in> {0..n}})" for n using \<gamma> by (intro gauge_Inter) auto then have "\<forall>n. \<exists>p. p tagged_division_of (cbox a b) \<and> (\<lambda>x. \<Inter>{\<gamma> i x |i. i \<in> {0..n}}) fine p" by (meson fine_division_exists) then obtain p where p: "\<And>z. p z tagged_division_of cbox a b" "\<And>z. (\<lambda>x. \<Inter>{\<gamma> i x |i. i \<in> {0..z}}) fine p z" by meson have dp: "\<And>i n. i\<le>n \<Longrightarrow> \<gamma> i fine p n" using p unfolding fine_Inter using atLeastAtMost_iff by blast have "Cauchy (\<lambda>n. sum (\<lambda>(x,K). content K *\<^sub>R (f x)) (p n))" proof (rule CauchyI) fix e::real assume "0 < e" then obtain N where "N \<noteq> 0" and N: "inverse (real N) < e" using real_arch_inverse[of e] by blast show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm ((\<Sum>(x,K) \<in> p m. content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> p n. content K *\<^sub>R f x)) < e" proof (intro exI allI impI) fix m n assume mn: "N \<le> m" "N \<le> n" have "norm ((\<Sum>(x,K) \<in> p m. content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> p n. content K *\<^sub>R f x)) < 1 / (real N + 1)" by (simp add: p(1) dp mn \<gamma>) also have "... < e" using N \<open>N \<noteq> 0\<close> \<open>0 < e\<close> by (auto simp: field_simps) finally show "norm ((\<Sum>(x,K) \<in> p m. content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> p n. content K *\<^sub>R f x)) < e" . qed qed then obtain y where y: "\<exists>no. \<forall>n\<ge>no. norm ((\<Sum>(x,K) \<in> p n. content K *\<^sub>R f x) - y) < r" if "r > 0" for r by (auto simp: convergent_eq_Cauchy[symmetric] dest: LIMSEQ_D) show ?l unfolding integrable_on_def has_integral proof (rule_tac x=y in exI, clarify) fix e :: real assume "e>0" then have e2: "e/2 > 0" by auto then obtain N1::nat where N1: "N1 \<noteq> 0" "inverse (real N1) < e/2" using real_arch_inverse by blast obtain N2::nat where N2: "\<And>n. n \<ge> N2 \<Longrightarrow> norm ((\<Sum>(x,K) \<in> p n. content K *\<^sub>R f x) - y) < e/2" using y[OF e2] by metis show "\<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of (cbox a b) \<and> \<gamma> fine \<D> \<longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - y) < e)" proof (intro exI conjI allI impI) show "gauge (\<gamma> (N1+N2))" using \<gamma> by auto show "norm ((\<Sum>(x,K) \<in> q. content K *\<^sub>R f x) - y) < e" if "q tagged_division_of cbox a b \<and> \<gamma> (N1+N2) fine q" for q proof (rule norm_triangle_half_r) have "norm ((\<Sum>(x,K) \<in> p (N1+N2). content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> q. content K *\<^sub>R f x)) < 1 / (real (N1+N2) + 1)" by (rule \<gamma>; simp add: dp p that) also have "... < e/2" using N1 \<open>0 < e\<close> by (auto simp: field_simps intro: less_le_trans) finally show "norm ((\<Sum>(x,K) \<in> p (N1+N2). content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> q. content K *\<^sub>R f x)) < e/2" . show "norm ((\<Sum>(x,K) \<in> p (N1+N2). content K *\<^sub>R f x) - y) < e/2" using N2 le_add_same_cancel2 by blast qed qed qed qed subsection \<open>Additivity of integral on abutting intervals\<close> lemma tagged_division_split_left_inj_content: assumes \<D>: "\<D> tagged_division_of S" and "(x1, K1) \<in> \<D>" "(x2, K2) \<in> \<D>" "K1 \<noteq> K2" "K1 \<inter> {x. x\<bullet>k \<le> c} = K2 \<inter> {x. x\<bullet>k \<le> c}" "k \<in> Basis" shows "content (K1 \<inter> {x. x\<bullet>k \<le> c}) = 0" proof - from tagged_division_ofD(4)[OF \<D> \<open>(x1, K1) \<in> \<D>\<close>] obtain a b where K1: "K1 = cbox a b" by auto then have "interior (K1 \<inter> {x. x \<bullet> k \<le> c}) = {}" by (metis tagged_division_split_left_inj assms) then show ?thesis unfolding K1 interval_split[OF \<open>k \<in> Basis\<close>] by (auto simp: content_eq_0_interior) qed lemma tagged_division_split_right_inj_content: assumes \<D>: "\<D> tagged_division_of S" and "(x1, K1) \<in> \<D>" "(x2, K2) \<in> \<D>" "K1 \<noteq> K2" "K1 \<inter> {x. x\<bullet>k \<ge> c} = K2 \<inter> {x. x\<bullet>k \<ge> c}" "k \<in> Basis" shows "content (K1 \<inter> {x. x\<bullet>k \<ge> c}) = 0" proof - from tagged_division_ofD(4)[OF \<D> \<open>(x1, K1) \<in> \<D>\<close>] obtain a b where K1: "K1 = cbox a b" by auto then have "interior (K1 \<inter> {x. c \<le> x \<bullet> k}) = {}" by (metis tagged_division_split_right_inj assms) then show ?thesis unfolding K1 interval_split[OF \<open>k \<in> Basis\<close>] by (auto simp: content_eq_0_interior) qed proposition has_integral_split: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" assumes fi: "(f has_integral i) (cbox a b \<inter> {x. x\<bullet>k \<le> c})" and fj: "(f has_integral j) (cbox a b \<inter> {x. x\<bullet>k \<ge> c})" and k: "k \<in> Basis" shows "(f has_integral (i + j)) (cbox a b)" unfolding has_integral proof clarify fix e::real assume "0 < e" then have e: "e/2 > 0" by auto obtain \<gamma>1 where \<gamma>1: "gauge \<gamma>1" and \<gamma>1norm: "\<And>\<D>. \<lbrakk>\<D> tagged_division_of cbox a b \<inter> {x. x \<bullet> k \<le> c}; \<gamma>1 fine \<D>\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - i) < e/2" apply (rule has_integralD[OF fi[unfolded interval_split[OF k]] e]) apply (simp add: interval_split[symmetric] k) done obtain \<gamma>2 where \<gamma>2: "gauge \<gamma>2" and \<gamma>2norm: "\<And>\<D>. \<lbrakk>\<D> tagged_division_of cbox a b \<inter> {x. c \<le> x \<bullet> k}; \<gamma>2 fine \<D>\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x, k) \<in> \<D>. content k *\<^sub>R f x) - j) < e/2" apply (rule has_integralD[OF fj[unfolded interval_split[OF k]] e]) apply (simp add: interval_split[symmetric] k) done let ?\<gamma> = "\<lambda>x. if x\<bullet>k = c then (\<gamma>1 x \<inter> \<gamma>2 x) else ball x \<bar>x\<bullet>k - c\<bar> \<inter> \<gamma>1 x \<inter> \<gamma>2 x" have "gauge ?\<gamma>" using \<gamma>1 \<gamma>2 unfolding gauge_def by auto then show "\<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<longrightarrow> norm ((\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R f x) - (i + j)) < e)" proof (rule_tac x="?\<gamma>" in exI, safe) fix p assume p: "p tagged_division_of (cbox a b)" and "?\<gamma> fine p" have ab_eqp: "cbox a b = \<Union>{K. \<exists>x. (x, K) \<in> p}" using p by blast have xk_le_c: "x\<bullet>k \<le> c" if as: "(x,K) \<in> p" and K: "K \<inter> {x. x\<bullet>k \<le> c} \<noteq> {}" for x K proof (rule ccontr) assume **: "\<not> x \<bullet> k \<le> c" then have "K \<subseteq> ball x \<bar>x \<bullet> k - c\<bar>" using \<open>?\<gamma> fine p\<close> as by (fastforce simp: not_le algebra_simps) with K obtain y where y: "y \<in> ball x \<bar>x \<bullet> k - c\<bar>" "y\<bullet>k \<le> c" by blast then have "\<bar>x \<bullet> k - y \<bullet> k\<bar> < \<bar>x \<bullet> k - c\<bar>" using Basis_le_norm[OF k, of "x - y"] by (auto simp add: dist_norm inner_diff_left intro: le_less_trans) with y show False using ** by (auto simp add: field_simps) qed have xk_ge_c: "x\<bullet>k \<ge> c" if as: "(x,K) \<in> p" and K: "K \<inter> {x. x\<bullet>k \<ge> c} \<noteq> {}" for x K proof (rule ccontr) assume **: "\<not> x \<bullet> k \<ge> c" then have "K \<subseteq> ball x \<bar>x \<bullet> k - c\<bar>" using \<open>?\<gamma> fine p\<close> as by (fastforce simp: not_le algebra_simps) with K obtain y where y: "y \<in> ball x \<bar>x \<bullet> k - c\<bar>" "y\<bullet>k \<ge> c" by blast then have "\<bar>x \<bullet> k - y \<bullet> k\<bar> < \<bar>x \<bullet> k - c\<bar>" using Basis_le_norm[OF k, of "x - y"] by (auto simp add: dist_norm inner_diff_left intro: le_less_trans) with y show False using ** by (auto simp add: field_simps) qed have fin_finite: "finite {(x,f K) | x K. (x,K) \<in> s \<and> P x K}" if "finite s" for s and f :: "'a set \<Rightarrow> 'a set" and P :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" proof - from that have "finite ((\<lambda>(x,K). (x, f K)) ` s)" by auto then show ?thesis by (rule rev_finite_subset) auto qed { fix \<G> :: "'a set \<Rightarrow> 'a set" fix i :: "'a \<times> 'a set" assume "i \<in> (\<lambda>(x, k). (x, \<G> k)) ` p - {(x, \<G> k) |x k. (x, k) \<in> p \<and> \<G> k \<noteq> {}}" then obtain x K where xk: "i = (x, \<G> K)" "(x,K) \<in> p" "(x, \<G> K) \<notin> {(x, \<G> K) |x K. (x,K) \<in> p \<and> \<G> K \<noteq> {}}" by auto have "content (\<G> K) = 0" using xk using content_empty by auto then have "(\<lambda>(x,K). content K *\<^sub>R f x) i = 0" unfolding xk split_conv by auto } note [simp] = this have "finite p" using p by blast let ?M1 = "{(x, K \<inter> {x. x\<bullet>k \<le> c}) |x K. (x,K) \<in> p \<and> K \<inter> {x. x\<bullet>k \<le> c} \<noteq> {}}" have \<gamma>1_fine: "\<gamma>1 fine ?M1" using \<open>?\<gamma> fine p\<close> by (fastforce simp: fine_def split: if_split_asm) have "norm ((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) < e/2" proof (rule \<gamma>1norm [OF tagged_division_ofI \<gamma>1_fine]) show "finite ?M1" by (rule fin_finite) (use p in blast) show "\<Union>{k. \<exists>x. (x, k) \<in> ?M1} = cbox a b \<inter> {x. x\<bullet>k \<le> c}" by (auto simp: ab_eqp) fix x L assume xL: "(x, L) \<in> ?M1" then obtain x' L' where xL': "x = x'" "L = L' \<inter> {x. x \<bullet> k \<le> c}" "(x', L') \<in> p" "L' \<inter> {x. x \<bullet> k \<le> c} \<noteq> {}" by blast then obtain a' b' where ab': "L' = cbox a' b'" using p by blast show "x \<in> L" "L \<subseteq> cbox a b \<inter> {x. x \<bullet> k \<le> c}" using p xk_le_c xL' by auto show "\<exists>a b. L = cbox a b" using p xL' ab' by (auto simp add: interval_split[OF k,where c=c]) fix y R assume yR: "(y, R) \<in> ?M1" then obtain y' R' where yR': "y = y'" "R = R' \<inter> {x. x \<bullet> k \<le> c}" "(y', R') \<in> p" "R' \<inter> {x. x \<bullet> k \<le> c} \<noteq> {}" by blast assume as: "(x, L) \<noteq> (y, R)" show "interior L \<inter> interior R = {}" proof (cases "L' = R' \<longrightarrow> x' = y'") case False have "interior R' = {}" by (metis (no_types) False Pair_inject inf.idem tagged_division_ofD(5) [OF p] xL'(3) yR'(3)) then show ?thesis using yR' by simp next case True then have "L' \<noteq> R'" using as unfolding xL' yR' by auto have "interior L' \<inter> interior R' = {}" by (metis (no_types) Pair_inject \<open>L' \<noteq> R'\<close> p tagged_division_ofD(5) xL'(3) yR'(3)) then show ?thesis using xL'(2) yR'(2) by auto qed qed moreover let ?M2 = "{(x,K \<inter> {x. x\<bullet>k \<ge> c}) |x K. (x,K) \<in> p \<and> K \<inter> {x. x\<bullet>k \<ge> c} \<noteq> {}}" have \<gamma>2_fine: "\<gamma>2 fine ?M2" using \<open>?\<gamma> fine p\<close> by (fastforce simp: fine_def split: if_split_asm) have "norm ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) < e/2" proof (rule \<gamma>2norm [OF tagged_division_ofI \<gamma>2_fine]) show "finite ?M2" by (rule fin_finite) (use p in blast) show "\<Union>{k. \<exists>x. (x, k) \<in> ?M2} = cbox a b \<inter> {x. x\<bullet>k \<ge> c}" by (auto simp: ab_eqp) fix x L assume xL: "(x, L) \<in> ?M2" then obtain x' L' where xL': "x = x'" "L = L' \<inter> {x. x \<bullet> k \<ge> c}" "(x', L') \<in> p" "L' \<inter> {x. x \<bullet> k \<ge> c} \<noteq> {}" by blast then obtain a' b' where ab': "L' = cbox a' b'" using p by blast show "x \<in> L" "L \<subseteq> cbox a b \<inter> {x. x \<bullet> k \<ge> c}" using p xk_ge_c xL' by auto show "\<exists>a b. L = cbox a b" using p xL' ab' by (auto simp add: interval_split[OF k,where c=c]) fix y R assume yR: "(y, R) \<in> ?M2" then obtain y' R' where yR': "y = y'" "R = R' \<inter> {x. x \<bullet> k \<ge> c}" "(y', R') \<in> p" "R' \<inter> {x. x \<bullet> k \<ge> c} \<noteq> {}" by blast assume as: "(x, L) \<noteq> (y, R)" show "interior L \<inter> interior R = {}" proof (cases "L' = R' \<longrightarrow> x' = y'") case False have "interior R' = {}" by (metis (no_types) False Pair_inject inf.idem tagged_division_ofD(5) [OF p] xL'(3) yR'(3)) then show ?thesis using yR' by simp next case True then have "L' \<noteq> R'" using as unfolding xL' yR' by auto have "interior L' \<inter> interior R' = {}" by (metis (no_types) Pair_inject \<open>L' \<noteq> R'\<close> p tagged_division_ofD(5) xL'(3) yR'(3)) then show ?thesis using xL'(2) yR'(2) by auto qed qed ultimately have "norm (((\<Sum>(x,K) \<in> ?M1. content K *\<^sub>R f x) - i) + ((\<Sum>(x,K) \<in> ?M2. content K *\<^sub>R f x) - j)) < e/2 + e/2" using norm_add_less by blast moreover have "((\<Sum>(x,K) \<in> ?M1. content K *\<^sub>R f x) - i) + ((\<Sum>(x,K) \<in> ?M2. content K *\<^sub>R f x) - j) = (\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f x) - (i + j)" proof - have eq0: "\<And>x y. x = (0::real) \<Longrightarrow> x *\<^sub>R (y::'b) = 0" by auto have cont_eq: "\<And>g. (\<lambda>(x,l). content l *\<^sub>R f x) \<circ> (\<lambda>(x,l). (x,g l)) = (\<lambda>(x,l). content (g l) *\<^sub>R f x)" by auto have *: "\<And>\<G> :: 'a set \<Rightarrow> 'a set. (\<Sum>(x,K)\<in>{(x, \<G> K) |x K. (x,K) \<in> p \<and> \<G> K \<noteq> {}}. content K *\<^sub>R f x) = (\<Sum>(x,K)\<in>(\<lambda>(x,K). (x, \<G> K)) ` p. content K *\<^sub>R f x)" by (rule sum.mono_neutral_left) (auto simp: \<open>finite p\<close>) have "((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) = (\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - (i + j)" by auto moreover have "\<dots> = (\<Sum>(x,K) \<in> p. content (K \<inter> {x. x \<bullet> k \<le> c}) *\<^sub>R f x) + (\<Sum>(x,K) \<in> p. content (K \<inter> {x. c \<le> x \<bullet> k}) *\<^sub>R f x) - (i + j)" unfolding * apply (subst (1 2) sum.reindex_nontrivial) apply (auto intro!: k p eq0 tagged_division_split_left_inj_content tagged_division_split_right_inj_content simp: cont_eq \<open>finite p\<close>) done moreover have "\<And>x. x \<in> p \<Longrightarrow> (\<lambda>(a,B). content (B \<inter> {a. a \<bullet> k \<le> c}) *\<^sub>R f a) x + (\<lambda>(a,B). content (B \<inter> {a. c \<le> a \<bullet> k}) *\<^sub>R f a) x = (\<lambda>(a,B). content B *\<^sub>R f a) x" proof clarify fix a B assume "(a, B) \<in> p" with p obtain u v where uv: "B = cbox u v" by blast then show "content (B \<inter> {x. x \<bullet> k \<le> c}) *\<^sub>R f a + content (B \<inter> {x. c \<le> x \<bullet> k}) *\<^sub>R f a = content B *\<^sub>R f a" by (auto simp: scaleR_left_distrib uv content_split[OF k,of u v c]) qed ultimately show ?thesis by (auto simp: sum.distrib[symmetric]) qed ultimately show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (i + j)) < e" by auto qed qed subsection \<open>A sort of converse, integrability on subintervals\<close> lemma has_integral_separate_sides: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" assumes f: "(f has_integral i) (cbox a b)" and "e > 0" and k: "k \<in> Basis" obtains d where "gauge d" "\<forall>p1 p2. p1 tagged_division_of (cbox a b \<inter> {x. x\<bullet>k \<le> c}) \<and> d fine p1 \<and> p2 tagged_division_of (cbox a b \<inter> {x. x\<bullet>k \<ge> c}) \<and> d fine p2 \<longrightarrow> norm ((sum (\<lambda>(x,k). content k *\<^sub>R f x) p1 + sum (\<lambda>(x,k). content k *\<^sub>R f x) p2) - i) < e" proof - obtain \<gamma> where d: "gauge \<gamma>" "\<And>p. \<lbrakk>p tagged_division_of cbox a b; \<gamma> fine p\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i) < e" using has_integralD[OF f \<open>e > 0\<close>] by metis { fix p1 p2 assume tdiv1: "p1 tagged_division_of (cbox a b) \<inter> {x. x \<bullet> k \<le> c}" and "\<gamma> fine p1" note p1=tagged_division_ofD[OF this(1)] assume tdiv2: "p2 tagged_division_of (cbox a b) \<inter> {x. c \<le> x \<bullet> k}" and "\<gamma> fine p2" note p2=tagged_division_ofD[OF this(1)] note tagged_division_Un_interval[OF tdiv1 tdiv2] note p12 = tagged_division_ofD[OF this] this { fix a b assume ab: "(a, b) \<in> p1 \<inter> p2" have "(a, b) \<in> p1" using ab by auto obtain u v where uv: "b = cbox u v" using \<open>(a, b) \<in> p1\<close> p1(4) by moura have "b \<subseteq> {x. x\<bullet>k = c}" using ab p1(3)[of a b] p2(3)[of a b] by fastforce moreover have "interior {x::'a. x \<bullet> k = c} = {}" proof (rule ccontr) assume "\<not> ?thesis" then obtain x where x: "x \<in> interior {x::'a. x\<bullet>k = c}" by auto then obtain \<epsilon> where "0 < \<epsilon>" and \<epsilon>: "ball x \<epsilon> \<subseteq> {x. x \<bullet> k = c}" using mem_interior by metis have x: "x\<bullet>k = c" using x interior_subset by fastforce have *: "\<And>i. i \<in> Basis \<Longrightarrow> \<bar>(x - (x + (\<epsilon>/2) *\<^sub>R k)) \<bullet> i\<bar> = (if i = k then \<epsilon>/2 else 0)" using \<open>0 < \<epsilon>\<close> k by (auto simp: inner_simps inner_not_same_Basis) have "(\<Sum>i\<in>Basis. \<bar>(x - (x + (\<epsilon>/2 ) *\<^sub>R k)) \<bullet> i\<bar>) = (\<Sum>i\<in>Basis. (if i = k then \<epsilon>/2 else 0))" using "*" by (blast intro: sum.cong) also have "\<dots> < \<epsilon>" by (subst sum.delta) (use \<open>0 < \<epsilon>\<close> in auto) finally have "x + (\<epsilon>/2) *\<^sub>R k \<in> ball x \<epsilon>" unfolding mem_ball dist_norm by(rule le_less_trans[OF norm_le_l1]) then have "x + (\<epsilon>/2) *\<^sub>R k \<in> {x. x\<bullet>k = c}" using \<epsilon> by auto then show False using \<open>0 < \<epsilon>\<close> x k by (auto simp: inner_simps) qed ultimately have "content b = 0" unfolding uv content_eq_0_interior using interior_mono by blast then have "content b *\<^sub>R f a = 0" by auto } then have "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) = norm ((\<Sum>(x, k)\<in>p1 \<union> p2. content k *\<^sub>R f x) - i)" by (subst sum.union_inter_neutral) (auto simp: p1 p2) also have "\<dots> < e" using d(2) p12 by (simp add: fine_Un k \<open>\<gamma> fine p1\<close> \<open>\<gamma> fine p2\<close>) finally have "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) < e" . } then show ?thesis using d(1) that by auto qed lemma integrable_split [intro]: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{real_normed_vector,complete_space}" assumes f: "f integrable_on cbox a b" and k: "k \<in> Basis" shows "f integrable_on (cbox a b \<inter> {x. x\<bullet>k \<le> c})" (is ?thesis1) and "f integrable_on (cbox a b \<inter> {x. x\<bullet>k \<ge> c})" (is ?thesis2) proof - obtain y where y: "(f has_integral y) (cbox a b)" using f by blast define a' where "a' = (\<Sum>i\<in>Basis. (if i = k then max (a\<bullet>k) c else a\<bullet>i)*\<^sub>R i)" define b' where "b' = (\<Sum>i\<in>Basis. (if i = k then min (b\<bullet>k) c else b\<bullet>i)*\<^sub>R i)" have "\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of cbox a b \<inter> {x. x \<bullet> k \<le> c} \<and> d fine p1 \<and> p2 tagged_division_of cbox a b \<inter> {x. x \<bullet> k \<le> c} \<and> d fine p2 \<longrightarrow> norm ((\<Sum>(x,K) \<in> p1. content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> p2. content K *\<^sub>R f x)) < e)" if "e > 0" for e proof - have "e/2 > 0" using that by auto with has_integral_separate_sides[OF y this k, of c] obtain d where "gauge d" and d: "\<And>p1 p2. \<lbrakk>p1 tagged_division_of cbox a b \<inter> {x. x \<bullet> k \<le> c}; d fine p1; p2 tagged_division_of cbox a b \<inter> {x. c \<le> x \<bullet> k}; d fine p2\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x,K)\<in>p1. content K *\<^sub>R f x) + (\<Sum>(x,K)\<in>p2. content K *\<^sub>R f x) - y) < e/2" by metis show ?thesis proof (rule_tac x=d in exI, clarsimp simp add: \<open>gauge d\<close>) fix p1 p2 assume as: "p1 tagged_division_of (cbox a b) \<inter> {x. x \<bullet> k \<le> c}" "d fine p1" "p2 tagged_division_of (cbox a b) \<inter> {x. x \<bullet> k \<le> c}" "d fine p2" show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e" proof (rule fine_division_exists[OF \<open>gauge d\<close>, of a' b]) fix p assume "p tagged_division_of cbox a' b" "d fine p" then show ?thesis using as norm_triangle_half_l[OF d[of p1 p] d[of p2 p]] unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric] by (auto simp add: algebra_simps) qed qed qed with f show ?thesis1 by (simp add: interval_split[OF k] integrable_Cauchy) have "\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of cbox a b \<inter> {x. x \<bullet> k \<ge> c} \<and> d fine p1 \<and> p2 tagged_division_of cbox a b \<inter> {x. x \<bullet> k \<ge> c} \<and> d fine p2 \<longrightarrow> norm ((\<Sum>(x,K) \<in> p1. content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> p2. content K *\<^sub>R f x)) < e)" if "e > 0" for e proof - have "e/2 > 0" using that by auto with has_integral_separate_sides[OF y this k, of c] obtain d where "gauge d" and d: "\<And>p1 p2. \<lbrakk>p1 tagged_division_of cbox a b \<inter> {x. x \<bullet> k \<le> c}; d fine p1; p2 tagged_division_of cbox a b \<inter> {x. c \<le> x \<bullet> k}; d fine p2\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x,K)\<in>p1. content K *\<^sub>R f x) + (\<Sum>(x,K)\<in>p2. content K *\<^sub>R f x) - y) < e/2" by metis show ?thesis proof (rule_tac x=d in exI, clarsimp simp add: \<open>gauge d\<close>) fix p1 p2 assume as: "p1 tagged_division_of (cbox a b) \<inter> {x. x \<bullet> k \<ge> c}" "d fine p1" "p2 tagged_division_of (cbox a b) \<inter> {x. x \<bullet> k \<ge> c}" "d fine p2" show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e" proof (rule fine_division_exists[OF \<open>gauge d\<close>, of a b']) fix p assume "p tagged_division_of cbox a b'" "d fine p" then show ?thesis using as norm_triangle_half_l[OF d[of p p1] d[of p p2]] unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric] by (auto simp add: algebra_simps) qed qed qed with f show ?thesis2 by (simp add: interval_split[OF k] integrable_Cauchy) qed lemma operative_integralI: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" shows "operative (lift_option (+)) (Some 0) (\<lambda>i. if f integrable_on i then Some (integral i f) else None)" proof - interpret comm_monoid "lift_option plus" "Some (0::'b)" by (rule comm_monoid_lift_option) (rule add.comm_monoid_axioms) show ?thesis proof fix a b c fix k :: 'a assume k: "k \<in> Basis" show "(if f integrable_on cbox a b then Some (integral (cbox a b) f) else None) = lift_option (+) (if f integrable_on cbox a b \<inter> {x. x \<bullet> k \<le> c} then Some (integral (cbox a b \<inter> {x. x \<bullet> k \<le> c}) f) else None) (if f integrable_on cbox a b \<inter> {x. c \<le> x \<bullet> k} then Some (integral (cbox a b \<inter> {x. c \<le> x \<bullet> k}) f) else None)" proof (cases "f integrable_on cbox a b") case True with k show ?thesis by (auto simp: integrable_split intro: integral_unique [OF has_integral_split[OF _ _ k]]) next case False have "\<not> (f integrable_on cbox a b \<inter> {x. x \<bullet> k \<le> c}) \<or> \<not> ( f integrable_on cbox a b \<inter> {x. c \<le> x \<bullet> k})" proof (rule ccontr) assume "\<not> ?thesis" then have "f integrable_on cbox a b" unfolding integrable_on_def apply (rule_tac x="integral (cbox a b \<inter> {x. x \<bullet> k \<le> c}) f + integral (cbox a b \<inter> {x. x \<bullet> k \<ge> c}) f" in exI) apply (auto intro: has_integral_split[OF _ _ k]) done then show False using False by auto qed then show ?thesis using False by auto qed next fix a b :: 'a assume "box a b = {}" then show "(if f integrable_on cbox a b then Some (integral (cbox a b) f) else None) = Some 0" using has_integral_null_eq by (auto simp: integrable_on_null content_eq_0_interior) qed qed subsection \<open>Bounds on the norm of Riemann sums and the integral itself\<close> lemma dsum_bound: assumes p: "p division_of (cbox a b)" and "norm c \<le> e" shows "norm (sum (\<lambda>l. content l *\<^sub>R c) p) \<le> e * content(cbox a b)" proof - have sumeq: "(\<Sum>i\<in>p. \<bar>content i\<bar>) = sum content p" by simp have e: "0 \<le> e" using assms(2) norm_ge_zero order_trans by blast have "norm (sum (\<lambda>l. content l *\<^sub>R c) p) \<le> (\<Sum>i\<in>p. norm (content i *\<^sub>R c))" using norm_sum by blast also have "... \<le> e * (\<Sum>i\<in>p. \<bar>content i\<bar>)" by (simp add: sum_distrib_left[symmetric] mult.commute assms(2) mult_right_mono sum_nonneg) also have "... \<le> e * content (cbox a b)" by (metis additive_content_division p eq_iff sumeq) finally show ?thesis . qed lemma rsum_bound: assumes p: "p tagged_division_of (cbox a b)" and "\<forall>x\<in>cbox a b. norm (f x) \<le> e" shows "norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) p) \<le> e * content (cbox a b)" proof (cases "cbox a b = {}") case True show ?thesis using p unfolding True tagged_division_of_trivial by auto next case False then have e: "e \<ge> 0" by (meson ex_in_conv assms(2) norm_ge_zero order_trans) have sum_le: "sum (content \<circ> snd) p \<le> content (cbox a b)" unfolding additive_content_tagged_division[OF p, symmetric] split_def by (auto intro: eq_refl) have con: "\<And>xk. xk \<in> p \<Longrightarrow> 0 \<le> content (snd xk)" using tagged_division_ofD(4) [OF p] content_pos_le by force have "norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) p) \<le> (\<Sum>i\<in>p. norm (case i of (x, k) \<Rightarrow> content k *\<^sub>R f x))" by (rule norm_sum) also have "... \<le> e * content (cbox a b)" proof - have "\<And>xk. xk \<in> p \<Longrightarrow> norm (f (fst xk)) \<le> e" using assms(2) p tag_in_interval by force moreover have "(\<Sum>i\<in>p. \<bar>content (snd i)\<bar> * e) \<le> e * content (cbox a b)" unfolding sum_distrib_right[symmetric] using con sum_le by (auto simp: mult.commute intro: mult_left_mono [OF _ e]) ultimately show ?thesis unfolding split_def norm_scaleR by (metis (no_types, lifting) mult_left_mono[OF _ abs_ge_zero] order_trans[OF sum_mono]) qed finally show ?thesis . qed lemma rsum_diff_bound: assumes "p tagged_division_of (cbox a b)" and "\<forall>x\<in>cbox a b. norm (f x - g x) \<le> e" shows "norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) p - sum (\<lambda>(x,k). content k *\<^sub>R g x) p) \<le> e * content (cbox a b)" using order_trans[OF _ rsum_bound[OF assms]] by (simp add: split_def scaleR_diff_right sum_subtractf eq_refl) lemma has_integral_bound: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" assumes "0 \<le> B" and f: "(f has_integral i) (cbox a b)" and "\<And>x. x\<in>cbox a b \<Longrightarrow> norm (f x) \<le> B" shows "norm i \<le> B * content (cbox a b)" proof (rule ccontr) assume "\<not> ?thesis" then have "norm i - B * content (cbox a b) > 0" by auto with f[unfolded has_integral] obtain \<gamma> where "gauge \<gamma>" and \<gamma>: "\<And>p. \<lbrakk>p tagged_division_of cbox a b; \<gamma> fine p\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x, K)\<in>p. content K *\<^sub>R f x) - i) < norm i - B * content (cbox a b)" by metis then obtain p where p: "p tagged_division_of cbox a b" and "\<gamma> fine p" using fine_division_exists by blast have "\<And>s B. norm s \<le> B \<Longrightarrow> \<not> norm (s - i) < norm i - B" unfolding not_less by (metis diff_left_mono dist_commute dist_norm norm_triangle_ineq2 order_trans) then show False using \<gamma> [OF p \<open>\<gamma> fine p\<close>] rsum_bound[OF p] assms by metis qed corollary integrable_bound: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" assumes "0 \<le> B" and "f integrable_on (cbox a b)" and "\<And>x. x\<in>cbox a b \<Longrightarrow> norm (f x) \<le> B" shows "norm (integral (cbox a b) f) \<le> B * content (cbox a b)" by (metis integrable_integral has_integral_bound assms) subsection \<open>Similar theorems about relationship among components\<close> lemma rsum_component_le: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes p: "p tagged_division_of (cbox a b)" and "\<And>x. x \<in> cbox a b \<Longrightarrow> (f x)\<bullet>i \<le> (g x)\<bullet>i" shows "(\<Sum>(x, K)\<in>p. content K *\<^sub>R f x) \<bullet> i \<le> (\<Sum>(x, K)\<in>p. content K *\<^sub>R g x) \<bullet> i" unfolding inner_sum_left proof (rule sum_mono, clarify) fix x K assume ab: "(x, K) \<in> p" with p obtain u v where K: "K = cbox u v" by blast then show "(content K *\<^sub>R f x) \<bullet> i \<le> (content K *\<^sub>R g x) \<bullet> i" by (metis ab assms inner_scaleR_left measure_nonneg mult_left_mono tag_in_interval) qed lemma has_integral_component_le: fixes f g :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes k: "k \<in> Basis" assumes "(f has_integral i) S" "(g has_integral j) S" and f_le_g: "\<And>x. x \<in> S \<Longrightarrow> (f x)\<bullet>k \<le> (g x)\<bullet>k" shows "i\<bullet>k \<le> j\<bullet>k" proof - have ik_le_jk: "i\<bullet>k \<le> j\<bullet>k" if f_i: "(f has_integral i) (cbox a b)" and g_j: "(g has_integral j) (cbox a b)" and le: "\<forall>x\<in>cbox a b. (f x)\<bullet>k \<le> (g x)\<bullet>k" for a b i and j :: 'b and f g :: "'a \<Rightarrow> 'b" proof (rule ccontr) assume "\<not> ?thesis" then have *: "0 < (i\<bullet>k - j\<bullet>k) / 3" by auto obtain \<gamma>1 where "gauge \<gamma>1" and \<gamma>1: "\<And>p. \<lbrakk>p tagged_division_of cbox a b; \<gamma>1 fine p\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i) < (i \<bullet> k - j \<bullet> k) / 3" using f_i[unfolded has_integral,rule_format,OF *] by fastforce obtain \<gamma>2 where "gauge \<gamma>2" and \<gamma>2: "\<And>p. \<lbrakk>p tagged_division_of cbox a b; \<gamma>2 fine p\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - j) < (i \<bullet> k - j \<bullet> k) / 3" using g_j[unfolded has_integral,rule_format,OF *] by fastforce obtain p where p: "p tagged_division_of cbox a b" and "\<gamma>1 fine p" "\<gamma>2 fine p" using fine_division_exists[OF gauge_Int[OF \<open>gauge \<gamma>1\<close> \<open>gauge \<gamma>2\<close>], of a b] unfolding fine_Int by metis then have "\<bar>((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i) \<bullet> k\<bar> < (i \<bullet> k - j \<bullet> k) / 3" "\<bar>((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - j) \<bullet> k\<bar> < (i \<bullet> k - j \<bullet> k) / 3" using le_less_trans[OF Basis_le_norm[OF k]] k \<gamma>1 \<gamma>2 by metis+ then show False unfolding inner_simps using rsum_component_le[OF p] le by (fastforce simp add: abs_real_def split: if_split_asm) qed show ?thesis proof (cases "\<exists>a b. S = cbox a b") case True with ik_le_jk assms show ?thesis by auto next case False show ?thesis proof (rule ccontr) assume "\<not> i\<bullet>k \<le> j\<bullet>k" then have ij: "(i\<bullet>k - j\<bullet>k) / 3 > 0" by auto obtain B1 where "0 < B1" and B1: "\<And>a b. ball 0 B1 \<subseteq> cbox a b \<Longrightarrow> \<exists>z. ((\<lambda>x. if x \<in> S then f x else 0) has_integral z) (cbox a b) \<and> norm (z - i) < (i \<bullet> k - j \<bullet> k) / 3" using has_integral_altD[OF _ False ij] assms by blast obtain B2 where "0 < B2" and B2: "\<And>a b. ball 0 B2 \<subseteq> cbox a b \<Longrightarrow> \<exists>z. ((\<lambda>x. if x \<in> S then g x else 0) has_integral z) (cbox a b) \<and> norm (z - j) < (i \<bullet> k - j \<bullet> k) / 3" using has_integral_altD[OF _ False ij] assms by blast have "bounded (ball 0 B1 \<union> ball (0::'a) B2)" unfolding bounded_Un by(rule conjI bounded_ball)+ from bounded_subset_cbox_symmetric[OF this] obtain a b::'a where ab: "ball 0 B1 \<subseteq> cbox a b" "ball 0 B2 \<subseteq> cbox a b" by (meson Un_subset_iff) then obtain w1 w2 where int_w1: "((\<lambda>x. if x \<in> S then f x else 0) has_integral w1) (cbox a b)" and norm_w1: "norm (w1 - i) < (i \<bullet> k - j \<bullet> k) / 3" and int_w2: "((\<lambda>x. if x \<in> S then g x else 0) has_integral w2) (cbox a b)" and norm_w2: "norm (w2 - j) < (i \<bullet> k - j \<bullet> k) / 3" using B1 B2 by blast have *: "\<And>w1 w2 j i::real .\<bar>w1 - i\<bar> < (i - j) / 3 \<Longrightarrow> \<bar>w2 - j\<bar> < (i - j) / 3 \<Longrightarrow> w1 \<le> w2 \<Longrightarrow> False" by (simp add: abs_real_def split: if_split_asm) have "\<bar>(w1 - i) \<bullet> k\<bar> < (i \<bullet> k - j \<bullet> k) / 3" "\<bar>(w2 - j) \<bullet> k\<bar> < (i \<bullet> k - j \<bullet> k) / 3" using Basis_le_norm k le_less_trans norm_w1 norm_w2 by blast+ moreover have "w1\<bullet>k \<le> w2\<bullet>k" using ik_le_jk int_w1 int_w2 f_le_g by auto ultimately show False unfolding inner_simps by(rule *) qed qed qed lemma integral_component_le: fixes g f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "k \<in> Basis" and "f integrable_on S" "g integrable_on S" and "\<And>x. x \<in> S \<Longrightarrow> (f x)\<bullet>k \<le> (g x)\<bullet>k" shows "(integral S f)\<bullet>k \<le> (integral S g)\<bullet>k" using has_integral_component_le assms by blast lemma has_integral_component_nonneg: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "k \<in> Basis" and "(f has_integral i) S" and "\<And>x. x \<in> S \<Longrightarrow> 0 \<le> (f x)\<bullet>k" shows "0 \<le> i\<bullet>k" using has_integral_component_le[OF assms(1) has_integral_0 assms(2)] using assms(3-) by auto lemma integral_component_nonneg: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "k \<in> Basis" and "\<And>x. x \<in> S \<Longrightarrow> 0 \<le> (f x)\<bullet>k" shows "0 \<le> (integral S f)\<bullet>k" proof (cases "f integrable_on S") case True show ?thesis using True assms has_integral_component_nonneg by blast next case False then show ?thesis by (simp add: not_integrable_integral) qed lemma has_integral_component_neg: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "k \<in> Basis" and "(f has_integral i) S" and "\<And>x. x \<in> S \<Longrightarrow> (f x)\<bullet>k \<le> 0" shows "i\<bullet>k \<le> 0" using has_integral_component_le[OF assms(1,2) has_integral_0] assms(2-) by auto lemma has_integral_component_lbound: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "(f has_integral i) (cbox a b)" and "\<forall>x\<in>cbox a b. B \<le> f(x)\<bullet>k" and "k \<in> Basis" shows "B * content (cbox a b) \<le> i\<bullet>k" using has_integral_component_le[OF assms(3) has_integral_const assms(1),of "(\<Sum>i\<in>Basis. B *\<^sub>R i)::'b"] assms(2-) by (auto simp add: field_simps) lemma has_integral_component_ubound: fixes f::"'a::euclidean_space => 'b::euclidean_space" assumes "(f has_integral i) (cbox a b)" and "\<forall>x\<in>cbox a b. f x\<bullet>k \<le> B" and "k \<in> Basis" shows "i\<bullet>k \<le> B * content (cbox a b)" using has_integral_component_le[OF assms(3,1) has_integral_const, of "\<Sum>i\<in>Basis. B *\<^sub>R i"] assms(2-) by (auto simp add: field_simps) lemma integral_component_lbound: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "f integrable_on cbox a b" and "\<forall>x\<in>cbox a b. B \<le> f(x)\<bullet>k" and "k \<in> Basis" shows "B * content (cbox a b) \<le> (integral(cbox a b) f)\<bullet>k" using assms has_integral_component_lbound by blast lemma integral_component_lbound_real: assumes "f integrable_on {a ::real..b}" and "\<forall>x\<in>{a..b}. B \<le> f(x)\<bullet>k" and "k \<in> Basis" shows "B * content {a..b} \<le> (integral {a..b} f)\<bullet>k" using assms by (metis box_real(2) integral_component_lbound) lemma integral_component_ubound: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" assumes "f integrable_on cbox a b" and "\<forall>x\<in>cbox a b. f x\<bullet>k \<le> B" and "k \<in> Basis" shows "(integral (cbox a b) f)\<bullet>k \<le> B * content (cbox a b)" using assms has_integral_component_ubound by blast lemma integral_component_ubound_real: fixes f :: "real \<Rightarrow> 'a::euclidean_space" assumes "f integrable_on {a..b}" and "\<forall>x\<in>{a..b}. f x\<bullet>k \<le> B" and "k \<in> Basis" shows "(integral {a..b} f)\<bullet>k \<le> B * content {a..b}" using assms by (metis box_real(2) integral_component_ubound) subsection \<open>Uniform limit of integrable functions is integrable\<close> lemma real_arch_invD: "0 < (e::real) \<Longrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)" by (subst(asm) real_arch_inverse) lemma integrable_uniform_limit: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>g. (\<forall>x\<in>cbox a b. norm (f x - g x) \<le> e) \<and> g integrable_on cbox a b" shows "f integrable_on cbox a b" proof (cases "content (cbox a b) > 0") case False then show ?thesis using has_integral_null by (simp add: content_lt_nz integrable_on_def) next case True have "1 / (real n + 1) > 0" for n by auto then have "\<exists>g. (\<forall>x\<in>cbox a b. norm (f x - g x) \<le> 1 / (real n + 1)) \<and> g integrable_on cbox a b" for n using assms by blast then obtain g where g_near_f: "\<And>n x. x \<in> cbox a b \<Longrightarrow> norm (f x - g n x) \<le> 1 / (real n + 1)" and int_g: "\<And>n. g n integrable_on cbox a b" by metis then obtain h where h: "\<And>n. (g n has_integral h n) (cbox a b)" unfolding integrable_on_def by metis have "Cauchy h" unfolding Cauchy_def proof clarify fix e :: real assume "e>0" then have "e/4 / content (cbox a b) > 0" using True by (auto simp: field_simps) then obtain M where "M \<noteq> 0" and M: "1 / (real M) < e/4 / content (cbox a b)" by (metis inverse_eq_divide real_arch_inverse) show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (h m) (h n) < e" proof (rule exI [where x=M], clarify) fix m n assume m: "M \<le> m" and n: "M \<le> n" have "e/4>0" using \<open>e>0\<close> by auto then obtain gm gn where "gauge gm" "gauge gn" and gm: "\<And>\<D>. \<D> tagged_division_of cbox a b \<and> gm fine \<D> \<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g m x) - h m) < e/4" and gn: "\<And>\<D>. \<D> tagged_division_of cbox a b \<and> gn fine \<D> \<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g n x) - h n) < e/4" using h[unfolded has_integral] by meson then obtain \<D> where \<D>: "\<D> tagged_division_of cbox a b" "(\<lambda>x. gm x \<inter> gn x) fine \<D>" by (metis (full_types) fine_division_exists gauge_Int) have triangle3: "norm (i1 - i2) < e" if no: "norm(s2 - s1) \<le> e/2" "norm (s1 - i1) < e/4" "norm (s2 - i2) < e/4" for s1 s2 i1 and i2::'b proof - have "norm (i1 - i2) \<le> norm (i1 - s1) + norm (s1 - s2) + norm (s2 - i2)" using norm_triangle_ineq[of "i1 - s1" "s1 - i2"] using norm_triangle_ineq[of "s1 - s2" "s2 - i2"] by (auto simp: algebra_simps) also have "\<dots> < e" using no by (auto simp: algebra_simps norm_minus_commute) finally show ?thesis . qed have finep: "gm fine \<D>" "gn fine \<D>" using fine_Int \<D> by auto have norm_le: "norm (g n x - g m x) \<le> 2 / real M" if x: "x \<in> cbox a b" for x proof - have "norm (f x - g n x) + norm (f x - g m x) \<le> 1 / (real n + 1) + 1 / (real m + 1)" using g_near_f[OF x, of n] g_near_f[OF x, of m] by simp also have "\<dots> \<le> 1 / (real M) + 1 / (real M)" using \<open>M \<noteq> 0\<close> m n by (intro add_mono; force simp: field_split_simps) also have "\<dots> = 2 / real M" by auto finally show "norm (g n x - g m x) \<le> 2 / real M" using norm_triangle_le[of "g n x - f x" "f x - g m x" "2 / real M"] by (auto simp: algebra_simps simp add: norm_minus_commute) qed have "norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g n x) - (\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g m x)) \<le> 2 / real M * content (cbox a b)" by (blast intro: norm_le rsum_diff_bound[OF \<D>(1), where e="2 / real M"]) also have "... \<le> e/2" using M True by (auto simp: field_simps) finally have le_e2: "norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g n x) - (\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g m x)) \<le> e/2" . then show "dist (h m) (h n) < e" unfolding dist_norm using gm gn \<D> finep by (auto intro!: triangle3) qed qed then obtain s where s: "h \<longlonglongrightarrow> s" using convergent_eq_Cauchy[symmetric] by blast show ?thesis unfolding integrable_on_def has_integral proof (rule_tac x=s in exI, clarify) fix e::real assume e: "0 < e" then have "e/3 > 0" by auto then obtain N1 where N1: "\<forall>n\<ge>N1. norm (h n - s) < e/3" using LIMSEQ_D [OF s] by metis from e True have "e/3 / content (cbox a b) > 0" by (auto simp: field_simps) then obtain N2 :: nat where "N2 \<noteq> 0" and N2: "1 / (real N2) < e/3 / content (cbox a b)" by (metis inverse_eq_divide real_arch_inverse) obtain g' where "gauge g'" and g': "\<And>\<D>. \<D> tagged_division_of cbox a b \<and> g' fine \<D> \<Longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g (N1 + N2) x) - h (N1 + N2)) < e/3" by (metis h has_integral \<open>e/3 > 0\<close>) have *: "norm (sf - s) < e" if no: "norm (sf - sg) \<le> e/3" "norm(h - s) < e/3" "norm (sg - h) < e/3" for sf sg h proof - have "norm (sf - s) \<le> norm (sf - sg) + norm (sg - h) + norm (h - s)" using norm_triangle_ineq[of "sf - sg" "sg - s"] using norm_triangle_ineq[of "sg - h" " h - s"] by (auto simp: algebra_simps) also have "\<dots> < e" using no by (auto simp: algebra_simps norm_minus_commute) finally show ?thesis . qed { fix \<D> assume ptag: "\<D> tagged_division_of (cbox a b)" and "g' fine \<D>" then have norm_less: "norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g (N1 + N2) x) - h (N1 + N2)) < e/3" using g' by blast have "content (cbox a b) < e/3 * (of_nat N2)" using \<open>N2 \<noteq> 0\<close> N2 using True by (auto simp: field_split_simps) moreover have "e/3 * of_nat N2 \<le> e/3 * (of_nat (N1 + N2) + 1)" using \<open>e>0\<close> by auto ultimately have "content (cbox a b) < e/3 * (of_nat (N1 + N2) + 1)" by linarith then have le_e3: "1 / (real (N1 + N2) + 1) * content (cbox a b) \<le> e/3" unfolding inverse_eq_divide by (auto simp: field_simps) have ne3: "norm (h (N1 + N2) - s) < e/3" using N1 by auto have "norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R g (N1 + N2) x)) \<le> 1 / (real (N1 + N2) + 1) * content (cbox a b)" by (blast intro: g_near_f rsum_diff_bound[OF ptag]) then have "norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - s) < e" by (rule *[OF order_trans [OF _ le_e3] ne3 norm_less]) } then show "\<exists>d. gauge d \<and> (\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> d fine \<D> \<longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - s) < e)" by (blast intro: g' \<open>gauge g'\<close>) qed qed lemmas integrable_uniform_limit_real = integrable_uniform_limit [where 'a=real, simplified] subsection \<open>Negligible sets\<close> definition "negligible (s:: 'a::euclidean_space set) \<longleftrightarrow> (\<forall>a b. ((indicator s :: 'a\<Rightarrow>real) has_integral 0) (cbox a b))" subsubsection \<open>Negligibility of hyperplane\<close> lemma content_doublesplit: fixes a :: "'a::euclidean_space" assumes "0 < e" and k: "k \<in> Basis" obtains d where "0 < d" and "content (cbox a b \<inter> {x. \<bar>x\<bullet>k - c\<bar> \<le> d}) < e" proof cases assume *: "a \<bullet> k \<le> c \<and> c \<le> b \<bullet> k \<and> (\<forall>j\<in>Basis. a \<bullet> j \<le> b \<bullet> j)" define a' where "a' d = (\<Sum>j\<in>Basis. (if j = k then max (a\<bullet>j) (c - d) else a\<bullet>j) *\<^sub>R j)" for d define b' where "b' d = (\<Sum>j\<in>Basis. (if j = k then min (b\<bullet>j) (c + d) else b\<bullet>j) *\<^sub>R j)" for d have "((\<lambda>d. \<Prod>j\<in>Basis. (b' d - a' d) \<bullet> j) \<longlongrightarrow> (\<Prod>j\<in>Basis. (b' 0 - a' 0) \<bullet> j)) (at_right 0)" by (auto simp: b'_def a'_def intro!: tendsto_min tendsto_max tendsto_eq_intros) also have "(\<Prod>j\<in>Basis. (b' 0 - a' 0) \<bullet> j) = 0" using k * by (intro prod_zero bexI[OF _ k]) (auto simp: b'_def a'_def inner_diff inner_sum_left inner_not_same_Basis intro!: sum.cong) also have "((\<lambda>d. \<Prod>j\<in>Basis. (b' d - a' d) \<bullet> j) \<longlongrightarrow> 0) (at_right 0) = ((\<lambda>d. content (cbox a b \<inter> {x. \<bar>x\<bullet>k - c\<bar> \<le> d})) \<longlongrightarrow> 0) (at_right 0)" proof (intro tendsto_cong eventually_at_rightI) fix d :: real assume d: "d \<in> {0<..<1}" have "cbox a b \<inter> {x. \<bar>x\<bullet>k - c\<bar> \<le> d} = cbox (a' d) (b' d)" for d using * d k by (auto simp add: cbox_def set_eq_iff Int_def ball_conj_distrib abs_diff_le_iff a'_def b'_def) moreover have "j \<in> Basis \<Longrightarrow> a' d \<bullet> j \<le> b' d \<bullet> j" for j using * d k by (auto simp: a'_def b'_def) ultimately show "(\<Prod>j\<in>Basis. (b' d - a' d) \<bullet> j) = content (cbox a b \<inter> {x. \<bar>x\<bullet>k - c\<bar> \<le> d})" by simp qed simp finally have "((\<lambda>d. content (cbox a b \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})) \<longlongrightarrow> 0) (at_right 0)" . from order_tendstoD(2)[OF this \<open>0<e\<close>] obtain d' where "0 < d'" and d': "\<And>y. y > 0 \<Longrightarrow> y < d' \<Longrightarrow> content (cbox a b \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> y}) < e" by (subst (asm) eventually_at_right[of _ 1]) auto show ?thesis by (rule that[of "d'/2"], insert \<open>0<d'\<close> d'[of "d'/2"], auto) next assume *: "\<not> (a \<bullet> k \<le> c \<and> c \<le> b \<bullet> k \<and> (\<forall>j\<in>Basis. a \<bullet> j \<le> b \<bullet> j))" then have "(\<exists>j\<in>Basis. b \<bullet> j < a \<bullet> j) \<or> (c < a \<bullet> k \<or> b \<bullet> k < c)" by (auto simp: not_le) show thesis proof cases assume "\<exists>j\<in>Basis. b \<bullet> j < a \<bullet> j" then have [simp]: "cbox a b = {}" using box_ne_empty(1)[of a b] by auto show ?thesis by (rule that[of 1]) (simp_all add: \<open>0<e\<close>) next assume "\<not> (\<exists>j\<in>Basis. b \<bullet> j < a \<bullet> j)" with * have "c < a \<bullet> k \<or> b \<bullet> k < c" by auto then show thesis proof assume c: "c < a \<bullet> k" moreover have "x \<in> cbox a b \<Longrightarrow> c \<le> x \<bullet> k" for x using k c by (auto simp: cbox_def) ultimately have "cbox a b \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> (a \<bullet> k - c)/2} = {}" using k by (auto simp: cbox_def) with \<open>0<e\<close> c that[of "(a \<bullet> k - c)/2"] show ?thesis by auto next assume c: "b \<bullet> k < c" moreover have "x \<in> cbox a b \<Longrightarrow> x \<bullet> k \<le> c" for x using k c by (auto simp: cbox_def) ultimately have "cbox a b \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> (c - b \<bullet> k)/2} = {}" using k by (auto simp: cbox_def) with \<open>0<e\<close> c that[of "(c - b \<bullet> k)/2"] show ?thesis by auto qed qed qed proposition negligible_standard_hyperplane[intro]: fixes k :: "'a::euclidean_space" assumes k: "k \<in> Basis" shows "negligible {x. x\<bullet>k = c}" unfolding negligible_def has_integral proof clarsimp fix a b and e::real assume "e > 0" with k obtain d where "0 < d" and d: "content (cbox a b \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) < e" by (metis content_doublesplit) let ?i = "indicator {x::'a. x\<bullet>k = c} :: 'a\<Rightarrow>real" show "\<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<longrightarrow> \<bar>\<Sum>(x,K) \<in> \<D>. content K * ?i x\<bar> < e)" proof (intro exI, safe) show "gauge (\<lambda>x. ball x d)" using \<open>0 < d\<close> by blast next fix \<D> assume p: "\<D> tagged_division_of (cbox a b)" "(\<lambda>x. ball x d) fine \<D>" have "content L = content (L \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})" if "(x, L) \<in> \<D>" "?i x \<noteq> 0" for x L proof - have xk: "x\<bullet>k = c" using that by (simp add: indicator_def split: if_split_asm) have "L \<subseteq> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}" proof fix y assume y: "y \<in> L" have "L \<subseteq> ball x d" using p(2) that(1) by auto then have "norm (x - y) < d" by (simp add: dist_norm subset_iff y) then have "\<bar>(x - y) \<bullet> k\<bar> < d" using k norm_bound_Basis_lt by blast then show "y \<in> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}" unfolding inner_simps xk by auto qed then show "content L = content (L \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})" by (metis inf.orderE) qed then have *: "(\<Sum>(x,K)\<in>\<D>. content K * ?i x) = (\<Sum>(x,K)\<in>\<D>. content (K \<inter> {x. \<bar>x\<bullet>k - c\<bar> \<le> d}) *\<^sub>R ?i x)" by (force simp add: split_paired_all intro!: sum.cong [OF refl]) note p'= tagged_division_ofD[OF p(1)] and p''=division_of_tagged_division[OF p(1)] have "(\<Sum>(x,K)\<in>\<D>. content (K \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) * indicator {x. x \<bullet> k = c} x) < e" proof - have "(\<Sum>(x,K)\<in>\<D>. content (K \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) * ?i x) \<le> (\<Sum>(x,K)\<in>\<D>. content (K \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}))" by (force simp add: indicator_def intro!: sum_mono) also have "\<dots> < e" proof (subst sum.over_tagged_division_lemma[OF p(1)]) fix u v::'a assume "box u v = {}" then have *: "content (cbox u v) = 0" unfolding content_eq_0_interior by simp have "cbox u v \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d} \<subseteq> cbox u v" by auto then have "content (cbox u v \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) \<le> content (cbox u v)" unfolding interval_doublesplit[OF k] by (rule content_subset) then show "content (cbox u v \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) = 0" unfolding * interval_doublesplit[OF k] by (blast intro: antisym) next have "(\<Sum>l\<in>snd ` \<D>. content (l \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})) = sum content ((\<lambda>l. l \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})`{l\<in>snd ` \<D>. l \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d} \<noteq> {}})" proof (subst (2) sum.reindex_nontrivial) fix x y assume "x \<in> {l \<in> snd ` \<D>. l \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d} \<noteq> {}}" "y \<in> {l \<in> snd ` \<D>. l \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d} \<noteq> {}}" "x \<noteq> y" and eq: "x \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d} = y \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}" then obtain x' y' where "(x', x) \<in> \<D>" "x \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d} \<noteq> {}" "(y', y) \<in> \<D>" "y \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d} \<noteq> {}" by (auto) from p'(5)[OF \<open>(x', x) \<in> \<D>\<close> \<open>(y', y) \<in> \<D>\<close>] \<open>x \<noteq> y\<close> have "interior (x \<inter> y) = {}" by auto moreover have "interior ((x \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) \<inter> (y \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})) \<subseteq> interior (x \<inter> y)" by (auto intro: interior_mono) ultimately have "interior (x \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) = {}" by (auto simp: eq) then show "content (x \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) = 0" using p'(4)[OF \<open>(x', x) \<in> \<D>\<close>] by (auto simp: interval_doublesplit[OF k] content_eq_0_interior simp del: interior_Int) qed (insert p'(1), auto intro!: sum.mono_neutral_right) also have "\<dots> \<le> norm (\<Sum>l\<in>(\<lambda>l. l \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})`{l\<in>snd ` \<D>. l \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d} \<noteq> {}}. content l *\<^sub>R 1::real)" by simp also have "\<dots> \<le> 1 * content (cbox a b \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})" using division_doublesplit[OF p'' k, unfolded interval_doublesplit[OF k]] unfolding interval_doublesplit[OF k] by (intro dsum_bound) auto also have "\<dots> < e" using d by simp finally show "(\<Sum>K\<in>snd ` \<D>. content (K \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d})) < e" . qed finally show "(\<Sum>(x, K)\<in>\<D>. content (K \<inter> {x. \<bar>x \<bullet> k - c\<bar> \<le> d}) * ?i x) < e" . qed then show "\<bar>\<Sum>(x, K)\<in>\<D>. content K * ?i x\<bar> < e" unfolding * by (simp add: sum_nonneg split: prod.split) qed qed corollary negligible_standard_hyperplane_cart: fixes k :: "'a::finite" shows "negligible {x. x$k = (0::real)}" by (simp add: cart_eq_inner_axis negligible_standard_hyperplane) subsubsection \<open>Hence the main theorem about negligible sets\<close> lemma has_integral_negligible_cbox: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes negs: "negligible S" and 0: "\<And>x. x \<notin> S \<Longrightarrow> f x = 0" shows "(f has_integral 0) (cbox a b)" unfolding has_integral proof clarify fix e::real assume "e > 0" then have nn_gt0: "e/2 / ((real n+1) * (2 ^ n)) > 0" for n by simp then have "\<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<longrightarrow> \<bar>\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R indicator S x\<bar> < e/2 / ((real n + 1) * 2 ^ n))" for n using negs [unfolded negligible_def has_integral] by auto then obtain \<gamma> where gd: "\<And>n. gauge (\<gamma> n)" and \<gamma>: "\<And>n \<D>. \<lbrakk>\<D> tagged_division_of cbox a b; \<gamma> n fine \<D>\<rbrakk> \<Longrightarrow> \<bar>\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R indicator S x\<bar> < e/2 / ((real n + 1) * 2 ^ n)" by metis show "\<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<longrightarrow> norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - 0) < e)" proof (intro exI, safe) show "gauge (\<lambda>x. \<gamma> (nat \<lfloor>norm (f x)\<rfloor>) x)" using gd by (auto simp: gauge_def) show "norm ((\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) - 0) < e" if "\<D> tagged_division_of (cbox a b)" "(\<lambda>x. \<gamma> (nat \<lfloor>norm (f x)\<rfloor>) x) fine \<D>" for \<D> proof (cases "\<D> = {}") case True with \<open>0 < e\<close> show ?thesis by simp next case False obtain N where "Max ((\<lambda>(x, K). norm (f x)) ` \<D>) \<le> real N" using real_arch_simple by blast then have N: "\<And>x. x \<in> (\<lambda>(x, K). norm (f x)) ` \<D> \<Longrightarrow> x \<le> real N" by (meson Max_ge that(1) dual_order.trans finite_imageI tagged_division_of_finite) have "\<forall>i. \<exists>q. q tagged_division_of (cbox a b) \<and> (\<gamma> i) fine q \<and> (\<forall>(x,K) \<in> \<D>. K \<subseteq> (\<gamma> i) x \<longrightarrow> (x, K) \<in> q)" by (auto intro: tagged_division_finer[OF that(1) gd]) from choice[OF this] obtain q where q: "\<And>n. q n tagged_division_of cbox a b" "\<And>n. \<gamma> n fine q n" "\<And>n x K. \<lbrakk>(x, K) \<in> \<D>; K \<subseteq> \<gamma> n x\<rbrakk> \<Longrightarrow> (x, K) \<in> q n" by fastforce have "finite \<D>" using that(1) by blast then have sum_le_inc: "\<lbrakk>finite T; \<And>x y. (x,y) \<in> T \<Longrightarrow> (0::real) \<le> g(x,y); \<And>y. y\<in>\<D> \<Longrightarrow> \<exists>x. (x,y) \<in> T \<and> f(y) \<le> g(x,y)\<rbrakk> \<Longrightarrow> sum f \<D> \<le> sum g T" for f g T by (rule sum_le_included[of \<D> T g snd f]; force) have "norm (\<Sum>(x,K) \<in> \<D>. content K *\<^sub>R f x) \<le> (\<Sum>(x,K) \<in> \<D>. norm (content K *\<^sub>R f x))" unfolding split_def by (rule norm_sum) also have "... \<le> (\<Sum>(i, j) \<in> Sigma {..N + 1} q. (real i + 1) * (case j of (x, K) \<Rightarrow> content K *\<^sub>R indicator S x))" proof (rule sum_le_inc, safe) show "finite (Sigma {..N+1} q)" by (meson finite_SigmaI finite_atMost tagged_division_of_finite q(1)) next fix x K assume xk: "(x, K) \<in> \<D>" define n where "n = nat \<lfloor>norm (f x)\<rfloor>" have *: "norm (f x) \<in> (\<lambda>(x, K). norm (f x)) ` \<D>" using xk by auto have nfx: "real n \<le> norm (f x)" "norm (f x) \<le> real n + 1" unfolding n_def by auto then have "n \<in> {0..N + 1}" using N[OF *] by auto moreover have "K \<subseteq> \<gamma> (nat \<lfloor>norm (f x)\<rfloor>) x" using that(2) xk by auto moreover then have "(x, K) \<in> q (nat \<lfloor>norm (f x)\<rfloor>)" by (simp add: q(3) xk) moreover then have "(x, K) \<in> q n" using n_def by blast moreover have "norm (content K *\<^sub>R f x) \<le> (real n + 1) * (content K * indicator S x)" proof (cases "x \<in> S") case False then show ?thesis by (simp add: 0) next case True have *: "content K \<ge> 0" using tagged_division_ofD(4)[OF that(1) xk] by auto moreover have "content K * norm (f x) \<le> content K * (real n + 1)" by (simp add: mult_left_mono nfx(2)) ultimately show ?thesis using nfx True by (auto simp: field_simps) qed ultimately show "\<exists>y. (y, x, K) \<in> (Sigma {..N + 1} q) \<and> norm (content K *\<^sub>R f x) \<le> (real y + 1) * (content K *\<^sub>R indicator S x)" by force qed auto also have "... = (\<Sum>i\<le>N + 1. \<Sum>j\<in>q i. (real i + 1) * (case j of (x, K) \<Rightarrow> content K *\<^sub>R indicator S x))" using q(1) by (intro sum_Sigma_product [symmetric]) auto also have "... \<le> (\<Sum>i\<le>N + 1. (real i + 1) * \<bar>\<Sum>(x,K) \<in> q i. content K *\<^sub>R indicator S x\<bar>)" by (rule sum_mono) (simp add: sum_distrib_left [symmetric]) also have "... \<le> (\<Sum>i\<le>N + 1. e/2/2 ^ i)" proof (rule sum_mono) show "(real i + 1) * \<bar>\<Sum>(x,K) \<in> q i. content K *\<^sub>R indicator S x\<bar> \<le> e/2/2 ^ i" if "i \<in> {..N + 1}" for i using \<gamma>[of "q i" i] q by (simp add: divide_simps mult.left_commute) qed also have "... = e/2 * (\<Sum>i\<le>N + 1. (1/2) ^ i)" unfolding sum_distrib_left by (metis divide_inverse inverse_eq_divide power_one_over) also have "\<dots> < e/2 * 2" proof (rule mult_strict_left_mono) have "sum (power (1/2)) {..N + 1} = sum (power (1/2::real)) {..<N + 2}" using lessThan_Suc_atMost by auto also have "... < 2" by (auto simp: geometric_sum) finally show "sum (power (1/2::real)) {..N + 1} < 2" . qed (use \<open>0 < e\<close> in auto) finally show ?thesis by auto qed qed qed proposition has_integral_negligible: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes negs: "negligible S" and "\<And>x. x \<in> (T - S) \<Longrightarrow> f x = 0" shows "(f has_integral 0) T" proof (cases "\<exists>a b. T = cbox a b") case True then have "((\<lambda>x. if x \<in> T then f x else 0) has_integral 0) T" using assms by (auto intro!: has_integral_negligible_cbox) then show ?thesis by (rule has_integral_eq [rotated]) auto next case False let ?f = "(\<lambda>x. if x \<in> T then f x else 0)" have "((\<lambda>x. if x \<in> T then f x else 0) has_integral 0) T" apply (auto simp: False has_integral_alt [of ?f]) apply (rule_tac x=1 in exI, auto) apply (rule_tac x=0 in exI, simp add: has_integral_negligible_cbox [OF negs] assms) done then show ?thesis by (rule_tac f="?f" in has_integral_eq) auto qed lemma assumes "negligible S" shows integrable_negligible: "f integrable_on S" and integral_negligible: "integral S f = 0" using has_integral_negligible [OF assms] by (auto simp: has_integral_iff) lemma has_integral_spike: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::real_normed_vector" assumes "negligible S" and gf: "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x" and fint: "(f has_integral y) T" shows "(g has_integral y) T" proof - have *: "(g has_integral y) (cbox a b)" if "(f has_integral y) (cbox a b)" "\<forall>x \<in> cbox a b - S. g x = f x" for a b f and g:: "'b \<Rightarrow> 'a" and y proof - have "((\<lambda>x. f x + (g x - f x)) has_integral (y + 0)) (cbox a b)" using that by (intro has_integral_add has_integral_negligible) (auto intro!: \<open>negligible S\<close>) then show ?thesis by auto qed have \<section>: "\<And>a b z. \<lbrakk>\<And>x. x \<in> T \<and> x \<notin> S \<Longrightarrow> g x = f x; ((\<lambda>x. if x \<in> T then f x else 0) has_integral z) (cbox a b)\<rbrakk> \<Longrightarrow> ((\<lambda>x. if x \<in> T then g x else 0) has_integral z) (cbox a b)" by (auto dest!: *[where f="\<lambda>x. if x\<in>T then f x else 0" and g="\<lambda>x. if x \<in> T then g x else 0"]) show ?thesis using fint gf apply (subst has_integral_alt) apply (subst (asm) has_integral_alt) apply (auto split: if_split_asm) apply (blast dest: *) using \<section> by meson qed lemma has_integral_spike_eq: assumes "negligible S" and gf: "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x" shows "(f has_integral y) T \<longleftrightarrow> (g has_integral y) T" using has_integral_spike [OF \<open>negligible S\<close>] gf by metis lemma integrable_spike: assumes "f integrable_on T" "negligible S" "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x" shows "g integrable_on T" using assms unfolding integrable_on_def by (blast intro: has_integral_spike) lemma integral_spike: assumes "negligible S" and "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x" shows "integral T f = integral T g" using has_integral_spike_eq[OF assms] by (auto simp: integral_def integrable_on_def) subsection \<open>Some other trivialities about negligible sets\<close> lemma negligible_subset: assumes "negligible s" "t \<subseteq> s" shows "negligible t" unfolding negligible_def by (metis (no_types) Diff_iff assms contra_subsetD has_integral_negligible indicator_simps(2)) lemma negligible_diff[intro?]: assumes "negligible s" shows "negligible (s - t)" using assms by (meson Diff_subset negligible_subset) lemma negligible_Int: assumes "negligible s \<or> negligible t" shows "negligible (s \<inter> t)" using assms negligible_subset by force lemma negligible_Un: assumes "negligible S" and T: "negligible T" shows "negligible (S \<union> T)" proof - have "(indicat_real (S \<union> T) has_integral 0) (cbox a b)" if S0: "(indicat_real S has_integral 0) (cbox a b)" and "(indicat_real T has_integral 0) (cbox a b)" for a b proof (subst has_integral_spike_eq[OF T]) show "indicat_real S x = indicat_real (S \<union> T) x" if "x \<in> cbox a b - T" for x using that by (simp add: indicator_def) show "(indicat_real S has_integral 0) (cbox a b)" by (simp add: S0) qed with assms show ?thesis unfolding negligible_def by blast qed lemma negligible_Un_eq[simp]: "negligible (s \<union> t) \<longleftrightarrow> negligible s \<and> negligible t" using negligible_Un negligible_subset by blast lemma negligible_sing[intro]: "negligible {a::'a::euclidean_space}" using negligible_standard_hyperplane[OF SOME_Basis, of "a \<bullet> (SOME i. i \<in> Basis)"] negligible_subset by blast lemma negligible_insert[simp]: "negligible (insert a s) \<longleftrightarrow> negligible s" by (metis insert_is_Un negligible_Un_eq negligible_sing) lemma negligible_empty[iff]: "negligible {}" using negligible_insert by blast text\<open>Useful in this form for backchaining\<close> lemma empty_imp_negligible: "S = {} \<Longrightarrow> negligible S" by simp lemma negligible_finite[intro]: assumes "finite s" shows "negligible s" using assms by (induct s) auto lemma negligible_Union[intro]: assumes "finite \<T>" and "\<And>t. t \<in> \<T> \<Longrightarrow> negligible t" shows "negligible(\<Union>\<T>)" using assms by induct auto lemma negligible: "negligible S \<longleftrightarrow> (\<forall>T. (indicat_real S has_integral 0) T)" proof (intro iffI allI) fix T assume "negligible S" then show "(indicator S has_integral 0) T" by (meson Diff_iff has_integral_negligible indicator_simps(2)) qed (simp add: negligible_def) subsection \<open>Finite case of the spike theorem is quite commonly needed\<close> lemma has_integral_spike_finite: assumes "finite S" and "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x" and "(f has_integral y) T" shows "(g has_integral y) T" using assms has_integral_spike negligible_finite by blast lemma has_integral_spike_finite_eq: assumes "finite S" and "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x" shows "((f has_integral y) T \<longleftrightarrow> (g has_integral y) T)" by (metis assms has_integral_spike_finite) lemma integrable_spike_finite: assumes "finite S" and "\<And>x. x \<in> T - S \<Longrightarrow> g x = f x" and "f integrable_on T" shows "g integrable_on T" using assms has_integral_spike_finite by blast lemma has_integral_bound_spike_finite: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" assumes "0 \<le> B" "finite S" and f: "(f has_integral i) (cbox a b)" and leB: "\<And>x. x \<in> cbox a b - S \<Longrightarrow> norm (f x) \<le> B" shows "norm i \<le> B * content (cbox a b)" proof - define g where "g \<equiv> (\<lambda>x. if x \<in> S then 0 else f x)" then have "\<And>x. x \<in> cbox a b - S \<Longrightarrow> norm (g x) \<le> B" using leB by simp moreover have "(g has_integral i) (cbox a b)" using has_integral_spike_finite [OF \<open>finite S\<close> _ f] by (simp add: g_def) ultimately show ?thesis by (simp add: \<open>0 \<le> B\<close> g_def has_integral_bound) qed corollary has_integral_bound_real: fixes f :: "real \<Rightarrow> 'b::real_normed_vector" assumes "0 \<le> B" "finite S" and "(f has_integral i) {a..b}" and "\<And>x. x \<in> {a..b} - S \<Longrightarrow> norm (f x) \<le> B" shows "norm i \<le> B * content {a..b}" by (metis assms box_real(2) has_integral_bound_spike_finite) subsection \<open>In particular, the boundary of an interval is negligible\<close> lemma negligible_frontier_interval: "negligible(cbox (a::'a::euclidean_space) b - box a b)" proof - let ?A = "\<Union>((\<lambda>k. {x. x\<bullet>k = a\<bullet>k} \<union> {x::'a. x\<bullet>k = b\<bullet>k}) ` Basis)" have "negligible ?A" by (force simp add: negligible_Union[OF finite_imageI]) moreover have "cbox a b - box a b \<subseteq> ?A" by (force simp add: mem_box) ultimately show ?thesis by (rule negligible_subset) qed lemma has_integral_spike_interior: assumes f: "(f has_integral y) (cbox a b)" and gf: "\<And>x. x \<in> box a b \<Longrightarrow> g x = f x" shows "(g has_integral y) (cbox a b)" by (meson Diff_iff gf has_integral_spike[OF negligible_frontier_interval _ f]) lemma has_integral_spike_interior_eq: assumes "\<And>x. x \<in> box a b \<Longrightarrow> g x = f x" shows "(f has_integral y) (cbox a b) \<longleftrightarrow> (g has_integral y) (cbox a b)" by (metis assms has_integral_spike_interior) lemma integrable_spike_interior: assumes "\<And>x. x \<in> box a b \<Longrightarrow> g x = f x" and "f integrable_on cbox a b" shows "g integrable_on cbox a b" using assms has_integral_spike_interior_eq by blast subsection \<open>Integrability of continuous functions\<close> lemma operative_approximableI: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::banach" assumes "0 \<le> e" shows "operative conj True (\<lambda>i. \<exists>g. (\<forall>x\<in>i. norm (f x - g (x::'b)) \<le> e) \<and> g integrable_on i)" proof - interpret comm_monoid conj True by standard auto show ?thesis proof (standard, safe) fix a b :: 'b show "\<exists>g. (\<forall>x\<in>cbox a b. norm (f x - g x) \<le> e) \<and> g integrable_on cbox a b" if "box a b = {}" for a b using assms that by (metis content_eq_0_interior integrable_on_null interior_cbox norm_zero right_minus_eq) { fix c g and k :: 'b assume fg: "\<forall>x\<in>cbox a b. norm (f x - g x) \<le> e" and g: "g integrable_on cbox a b" assume k: "k \<in> Basis" show "\<exists>g. (\<forall>x\<in>cbox a b \<inter> {x. x \<bullet> k \<le> c}. norm (f x - g x) \<le> e) \<and> g integrable_on cbox a b \<inter> {x. x \<bullet> k \<le> c}" "\<exists>g. (\<forall>x\<in>cbox a b \<inter> {x. c \<le> x \<bullet> k}. norm (f x - g x) \<le> e) \<and> g integrable_on cbox a b \<inter> {x. c \<le> x \<bullet> k}" using fg g k by auto } show "\<exists>g. (\<forall>x\<in>cbox a b. norm (f x - g x) \<le> e) \<and> g integrable_on cbox a b" if fg1: "\<forall>x\<in>cbox a b \<inter> {x. x \<bullet> k \<le> c}. norm (f x - g1 x) \<le> e" and g1: "g1 integrable_on cbox a b \<inter> {x. x \<bullet> k \<le> c}" and fg2: "\<forall>x\<in>cbox a b \<inter> {x. c \<le> x \<bullet> k}. norm (f x - g2 x) \<le> e" and g2: "g2 integrable_on cbox a b \<inter> {x. c \<le> x \<bullet> k}" and k: "k \<in> Basis" for c k g1 g2 proof - let ?g = "\<lambda>x. if x\<bullet>k = c then f x else if x\<bullet>k \<le> c then g1 x else g2 x" show "\<exists>g. (\<forall>x\<in>cbox a b. norm (f x - g x) \<le> e) \<and> g integrable_on cbox a b" proof (intro exI conjI ballI) show "norm (f x - ?g x) \<le> e" if "x \<in> cbox a b" for x by (auto simp: that assms fg1 fg2) show "?g integrable_on cbox a b" proof - have "?g integrable_on cbox a b \<inter> {x. x \<bullet> k \<le> c}" "?g integrable_on cbox a b \<inter> {x. x \<bullet> k \<ge> c}" by(rule integrable_spike[OF _ negligible_standard_hyperplane[of k c]], use k g1 g2 in auto)+ with has_integral_split[OF _ _ k] show ?thesis unfolding integrable_on_def by blast qed qed qed qed qed lemma comm_monoid_set_F_and: "comm_monoid_set.F (\<and>) True f s \<longleftrightarrow> (finite s \<longrightarrow> (\<forall>x\<in>s. f x))" proof - interpret bool: comm_monoid_set \<open>(\<and>)\<close> True .. show ?thesis by (induction s rule: infinite_finite_induct) auto qed lemma approximable_on_division: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::banach" assumes "0 \<le> e" and d: "d division_of (cbox a b)" and f: "\<forall>i\<in>d. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i" obtains g where "\<forall>x\<in>cbox a b. norm (f x - g x) \<le> e" "g integrable_on cbox a b" proof - interpret operative conj True "\<lambda>i. \<exists>g. (\<forall>x\<in>i. norm (f x - g (x::'b)) \<le> e) \<and> g integrable_on i" using \<open>0 \<le> e\<close> by (rule operative_approximableI) from f local.division [OF d] that show thesis by auto qed lemma integrable_continuous: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::banach" assumes "continuous_on (cbox a b) f" shows "f integrable_on cbox a b" proof (rule integrable_uniform_limit) fix e :: real assume e: "e > 0" then obtain d where "0 < d" and d: "\<And>x x'. \<lbrakk>x \<in> cbox a b; x' \<in> cbox a b; dist x' x < d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e" using compact_uniformly_continuous[OF assms compact_cbox] unfolding uniformly_continuous_on_def by metis obtain p where ptag: "p tagged_division_of cbox a b" and finep: "(\<lambda>x. ball x d) fine p" using fine_division_exists[OF gauge_ball[OF \<open>0 < d\<close>], of a b] . have *: "\<forall>i\<in>snd ` p. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i" proof (safe, unfold snd_conv) fix x l assume as: "(x, l) \<in> p" obtain a b where l: "l = cbox a b" using as ptag by blast then have x: "x \<in> cbox a b" using as ptag by auto show "\<exists>g. (\<forall>x\<in>l. norm (f x - g x) \<le> e) \<and> g integrable_on l" proof (intro exI conjI strip) show "(\<lambda>y. f x) integrable_on l" unfolding integrable_on_def l by blast next fix y assume y: "y \<in> l" then have "y \<in> ball x d" using as finep by fastforce then show "norm (f y - f x) \<le> e" using d x y as l by (metis dist_commute dist_norm less_imp_le mem_ball ptag subsetCE tagged_division_ofD(3)) qed qed from e have "e \<ge> 0" by auto from approximable_on_division[OF this division_of_tagged_division[OF ptag] *] show "\<exists>g. (\<forall>x\<in>cbox a b. norm (f x - g x) \<le> e) \<and> g integrable_on cbox a b" by metis qed lemma integrable_continuous_interval: fixes f :: "'b::ordered_euclidean_space \<Rightarrow> 'a::banach" assumes "continuous_on {a..b} f" shows "f integrable_on {a..b}" by (metis assms integrable_continuous interval_cbox) lemmas integrable_continuous_real = integrable_continuous_interval[where 'b=real] lemma integrable_continuous_closed_segment: fixes f :: "real \<Rightarrow> 'a::banach" assumes "continuous_on (closed_segment a b) f" shows "f integrable_on (closed_segment a b)" using assms by (auto intro!: integrable_continuous_interval simp: closed_segment_eq_real_ivl) subsection \<open>Specialization of additivity to one dimension\<close> subsection \<open>A useful lemma allowing us to factor out the content size\<close> lemma has_integral_factor_content: "(f has_integral i) (cbox a b) \<longleftrightarrow> (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of (cbox a b) \<and> d fine p \<longrightarrow> norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) p - i) \<le> e * content (cbox a b)))" proof (cases "content (cbox a b) = 0") case True have "\<And>e p. p tagged_division_of cbox a b \<Longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)) \<le> e * content (cbox a b)" unfolding sum_content_null[OF True] True by force moreover have "i = 0" if "\<And>e. e > 0 \<Longrightarrow> \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of cbox a b \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i) \<le> e * content (cbox a b))" using that [of 1] by (force simp add: True sum_content_null[OF True] intro: fine_division_exists[of _ a b]) ultimately show ?thesis unfolding has_integral_null_eq[OF True] by (force simp add: ) next case False then have F: "0 < content (cbox a b)" using zero_less_measure_iff by blast let ?P = "\<lambda>e opp. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of (cbox a b) \<and> d fine p \<longrightarrow> opp (norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i)) e)" show ?thesis proof (subst has_integral, safe) fix e :: real assume e: "e > 0" show "?P (e * content (cbox a b)) (\<le>)" if \<section>[rule_format]: "\<forall>\<epsilon>>0. ?P \<epsilon> (<)" using \<section> [of "e * content (cbox a b)"] by (meson F e less_imp_le mult_pos_pos) show "?P e (<)" if \<section>[rule_format]: "\<forall>\<epsilon>>0. ?P (\<epsilon> * content (cbox a b)) (\<le>)" using \<section> [of "e/2 / content (cbox a b)"] using F e by (force simp add: algebra_simps) qed qed lemma has_integral_factor_content_real: "(f has_integral i) {a..b::real} \<longleftrightarrow> (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) p - i) \<le> e * content {a..b} ))" unfolding box_real[symmetric] by (rule has_integral_factor_content) subsection \<open>Fundamental theorem of calculus\<close> lemma interval_bounds_real: fixes q b :: real assumes "a \<le> b" shows "Sup {a..b} = b" and "Inf {a..b} = a" using assms by auto theorem fundamental_theorem_of_calculus: fixes f :: "real \<Rightarrow> 'a::banach" assumes "a \<le> b" and vecd: "\<And>x. x \<in> {a..b} \<Longrightarrow> (f has_vector_derivative f' x) (at x within {a..b})" shows "(f' has_integral (f b - f a)) {a..b}" unfolding has_integral_factor_content box_real[symmetric] proof safe fix e :: real assume "e > 0" then have "\<forall>x. \<exists>d>0. x \<in> {a..b} \<longrightarrow> (\<forall>y\<in>{a..b}. norm (y-x) < d \<longrightarrow> norm (f y - f x - (y-x) *\<^sub>R f' x) \<le> e * norm (y-x))" using vecd[unfolded has_vector_derivative_def has_derivative_within_alt] by blast then obtain d where d: "\<And>x. 0 < d x" "\<And>x y. \<lbrakk>x \<in> {a..b}; y \<in> {a..b}; norm (y-x) < d x\<rbrakk> \<Longrightarrow> norm (f y - f x - (y-x) *\<^sub>R f' x) \<le> e * norm (y-x)" by metis show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of (cbox a b) \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content (cbox a b))" proof (rule exI, safe) show "gauge (\<lambda>x. ball x (d x))" using d(1) gauge_ball_dependent by blast next fix p assume ptag: "p tagged_division_of cbox a b" and finep: "(\<lambda>x. ball x (d x)) fine p" have ba: "b - a = (\<Sum>(x,K)\<in>p. Sup K - Inf K)" "f b - f a = (\<Sum>(x,K)\<in>p. f(Sup K) - f(Inf K))" using additive_tagged_division_1[where f= "\<lambda>x. x"] additive_tagged_division_1[where f= f] \<open>a \<le> b\<close> ptag by auto have "norm (\<Sum>(x, K) \<in> p. (content K *\<^sub>R f' x) - (f (Sup K) - f (Inf K))) \<le> (\<Sum>n\<in>p. e * (case n of (x, k) \<Rightarrow> Sup k - Inf k))" proof (rule sum_norm_le,safe) fix x K assume "(x, K) \<in> p" then have "x \<in> K" and kab: "K \<subseteq> cbox a b" using ptag by blast+ then obtain u v where k: "K = cbox u v" and "x \<in> K" and kab: "K \<subseteq> cbox a b" using ptag \<open>(x, K) \<in> p\<close> by auto have "u \<le> v" using \<open>x \<in> K\<close> unfolding k by auto have ball: "\<forall>y\<in>K. y \<in> ball x (d x)" using finep \<open>(x, K) \<in> p\<close> by blast have "u \<in> K" "v \<in> K" by (simp_all add: \<open>u \<le> v\<close> k) have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) = norm (f u - f x - (u - x) *\<^sub>R f' x - (f v - f x - (v - x) *\<^sub>R f' x))" by (auto simp add: algebra_simps) also have "... \<le> norm (f u - f x - (u - x) *\<^sub>R f' x) + norm (f v - f x - (v - x) *\<^sub>R f' x)" by (rule norm_triangle_ineq4) finally have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) \<le> norm (f u - f x - (u - x) *\<^sub>R f' x) + norm (f v - f x - (v - x) *\<^sub>R f' x)" . also have "\<dots> \<le> e * norm (u - x) + e * norm (v - x)" proof (rule add_mono) show "norm (f u - f x - (u - x) *\<^sub>R f' x) \<le> e * norm (u - x)" proof (rule d) show "norm (u - x) < d x" using \<open>u \<in> K\<close> ball by (auto simp add: dist_real_def) qed (use \<open>x \<in> K\<close> \<open>u \<in> K\<close> kab in auto) show "norm (f v - f x - (v - x) *\<^sub>R f' x) \<le> e * norm (v - x)" proof (rule d) show "norm (v - x) < d x" using \<open>v \<in> K\<close> ball by (auto simp add: dist_real_def) qed (use \<open>x \<in> K\<close> \<open>v \<in> K\<close> kab in auto) qed also have "\<dots> \<le> e * (Sup K - Inf K)" using \<open>x \<in> K\<close> by (auto simp: k interval_bounds_real[OF \<open>u \<le> v\<close>] field_simps) finally show "norm (content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \<le> e * (Sup K - Inf K)" using \<open>u \<le> v\<close> by (simp add: k) qed with \<open>a \<le> b\<close> show "norm ((\<Sum>(x, K)\<in>p. content K *\<^sub>R f' x) - (f b - f a)) \<le> e * content (cbox a b)" by (auto simp: ba split_def sum_subtractf [symmetric] sum_distrib_left) qed qed lemma has_complex_derivative_imp_has_vector_derivative: fixes f :: "complex \<Rightarrow> complex" assumes "(f has_field_derivative f') (at (of_real a) within (cbox (of_real x) (of_real y)))" shows "((f o of_real) has_vector_derivative f') (at a within {x..y})" using has_derivative_in_compose[of of_real of_real a "{x..y}" f "(*) f'"] assms by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def o_def cbox_complex_of_real) lemma ident_has_integral: fixes a::real assumes "a \<le> b" shows "((\<lambda>x. x) has_integral (b\<^sup>2 - a\<^sup>2)/2) {a..b}" proof - have "((\<lambda>x. x) has_integral inverse 2 * b\<^sup>2 - inverse 2 * a\<^sup>2) {a..b}" unfolding power2_eq_square by (rule fundamental_theorem_of_calculus [OF assms] derivative_eq_intros | simp)+ then show ?thesis by (simp add: field_simps) qed lemma integral_ident [simp]: fixes a::real assumes "a \<le> b" shows "integral {a..b} (\<lambda>x. x) = (if a \<le> b then (b\<^sup>2 - a\<^sup>2)/2 else 0)" by (metis assms ident_has_integral integral_unique) lemma ident_integrable_on: fixes a::real shows "(\<lambda>x. x) integrable_on {a..b}" by (metis atLeastatMost_empty_iff integrable_on_def has_integral_empty ident_has_integral) lemma integral_sin [simp]: fixes a::real assumes "a \<le> b" shows "integral {a..b} sin = cos a - cos b" proof - have "(sin has_integral (- cos b - - cos a)) {a..b}" proof (rule fundamental_theorem_of_calculus) show "((\<lambda>a. - cos a) has_vector_derivative sin x) (at x within {a..b})" for x unfolding has_real_derivative_iff_has_vector_derivative [symmetric] by (rule derivative_eq_intros | force)+ qed (use assms in auto) then show ?thesis by (simp add: integral_unique) qed lemma integral_cos [simp]: fixes a::real assumes "a \<le> b" shows "integral {a..b} cos = sin b - sin a" proof - have "(cos has_integral (sin b - sin a)) {a..b}" proof (rule fundamental_theorem_of_calculus) show "(sin has_vector_derivative cos x) (at x within {a..b})" for x unfolding has_real_derivative_iff_has_vector_derivative [symmetric] by (rule derivative_eq_intros | force)+ qed (use assms in auto) then show ?thesis by (simp add: integral_unique) qed lemma integral_exp [simp]: fixes a::real assumes "a \<le> b" shows "integral {a..b} exp = exp b - exp a" by (meson DERIV_exp assms fundamental_theorem_of_calculus has_real_derivative_iff_has_vector_derivative has_vector_derivative_at_within integral_unique) lemma has_integral_sin_nx: "((\<lambda>x. sin(real_of_int n * x)) has_integral 0) {-pi..pi}" proof (cases "n = 0") case False have "((\<lambda>x. sin (n * x)) has_integral (- cos (n * pi)/n - - cos (n * - pi)/n)) {-pi..pi}" proof (rule fundamental_theorem_of_calculus) show "((\<lambda>x. - cos (n * x) / n) has_vector_derivative sin (n * a)) (at a within {-pi..pi})" if "a \<in> {-pi..pi}" for a :: real using that False unfolding has_vector_derivative_def by (intro derivative_eq_intros | force)+ qed auto then show ?thesis by simp qed auto lemma integral_sin_nx: "integral {-pi..pi} (\<lambda>x. sin(x * real_of_int n)) = 0" using has_integral_sin_nx [of n] by (force simp: mult.commute) lemma has_integral_cos_nx: "((\<lambda>x. cos(real_of_int n * x)) has_integral (if n = 0 then 2 * pi else 0)) {-pi..pi}" proof (cases "n = 0") case True then show ?thesis using has_integral_const_real [of "1::real" "-pi" pi] by auto next case False have "((\<lambda>x. cos (n * x)) has_integral (sin (n * pi)/n - sin (n * - pi)/n)) {-pi..pi}" proof (rule fundamental_theorem_of_calculus) show "((\<lambda>x. sin (n * x) / n) has_vector_derivative cos (n * x)) (at x within {-pi..pi})" if "x \<in> {-pi..pi}" for x :: real using that False unfolding has_vector_derivative_def by (intro derivative_eq_intros | force)+ qed auto with False show ?thesis by (simp add: mult.commute) qed lemma integral_cos_nx: "integral {-pi..pi} (\<lambda>x. cos(x * real_of_int n)) = (if n = 0 then 2 * pi else 0)" using has_integral_cos_nx [of n] by (force simp: mult.commute) subsection \<open>Taylor series expansion\<close> lemma mvt_integral: fixes f::"'a::real_normed_vector\<Rightarrow>'b::banach" assumes f'[derivative_intros]: "\<And>x. x \<in> S \<Longrightarrow> (f has_derivative f' x) (at x within S)" assumes line_in: "\<And>t. t \<in> {0..1} \<Longrightarrow> x + t *\<^sub>R y \<in> S" shows "f (x + y) - f x = integral {0..1} (\<lambda>t. f' (x + t *\<^sub>R y) y)" (is ?th1) proof - from assms have subset: "(\<lambda>xa. x + xa *\<^sub>R y) ` {0..1} \<subseteq> S" by auto note [derivative_intros] = has_derivative_subset[OF _ subset] has_derivative_in_compose[where f="(\<lambda>xa. x + xa *\<^sub>R y)" and g = f] note [continuous_intros] = continuous_on_compose2[where f="(\<lambda>xa. x + xa *\<^sub>R y)"] continuous_on_subset[OF _ subset] have "\<And>t. t \<in> {0..1} \<Longrightarrow> ((\<lambda>t. f (x + t *\<^sub>R y)) has_vector_derivative f' (x + t *\<^sub>R y) y) (at t within {0..1})" using assms by (auto simp: has_vector_derivative_def linear_cmul[OF has_derivative_linear[OF f'], symmetric] intro!: derivative_eq_intros) from fundamental_theorem_of_calculus[rule_format, OF _ this] show ?th1 by (auto intro!: integral_unique[symmetric]) qed lemma (in bounded_bilinear) sum_prod_derivatives_has_vector_derivative: assumes "p>0" and f0: "Df 0 = f" and Df: "\<And>m t. m < p \<Longrightarrow> a \<le> t \<Longrightarrow> t \<le> b \<Longrightarrow> (Df m has_vector_derivative Df (Suc m) t) (at t within {a..b})" and g0: "Dg 0 = g" and Dg: "\<And>m t. m < p \<Longrightarrow> a \<le> t \<Longrightarrow> t \<le> b \<Longrightarrow> (Dg m has_vector_derivative Dg (Suc m) t) (at t within {a..b})" and ivl: "a \<le> t" "t \<le> b" shows "((\<lambda>t. \<Sum>i<p. (-1)^i *\<^sub>R prod (Df i t) (Dg (p - Suc i) t)) has_vector_derivative prod (f t) (Dg p t) - (-1)^p *\<^sub>R prod (Df p t) (g t)) (at t within {a..b})" using assms proof cases assume p: "p \<noteq> 1" define p' where "p' = p - 2" from assms p have p': "{..<p} = {..Suc p'}" "p = Suc (Suc p')" by (auto simp: p'_def) have *: "\<And>i. i \<le> p' \<Longrightarrow> Suc (Suc p' - i) = (Suc (Suc p') - i)" by auto let ?f = "\<lambda>i. (-1) ^ i *\<^sub>R (prod (Df i t) (Dg ((p - i)) t))" have "(\<Sum>i<p. (-1) ^ i *\<^sub>R (prod (Df i t) (Dg (Suc (p - Suc i)) t) + prod (Df (Suc i) t) (Dg (p - Suc i) t))) = (\<Sum>i\<le>(Suc p'). ?f i - ?f (Suc i))" by (auto simp: algebra_simps p'(2) numeral_2_eq_2 * lessThan_Suc_atMost) also note sum_telescope finally have "(\<Sum>i<p. (-1) ^ i *\<^sub>R (prod (Df i t) (Dg (Suc (p - Suc i)) t) + prod (Df (Suc i) t) (Dg (p - Suc i) t))) = prod (f t) (Dg p t) - (- 1) ^ p *\<^sub>R prod (Df p t) (g t)" unfolding p'[symmetric] by (simp add: assms) thus ?thesis using assms by (auto intro!: derivative_eq_intros has_vector_derivative) qed (auto intro!: derivative_eq_intros has_vector_derivative) lemma fixes f::"real\<Rightarrow>'a::banach" assumes "p>0" and f0: "Df 0 = f" and Df: "\<And>m t. m < p \<Longrightarrow> a \<le> t \<Longrightarrow> t \<le> b \<Longrightarrow> (Df m has_vector_derivative Df (Suc m) t) (at t within {a..b})" and ivl: "a \<le> b" defines "i \<equiv> \<lambda>x. ((b - x) ^ (p - 1) / fact (p - 1)) *\<^sub>R Df p x" shows Taylor_has_integral: "(i has_integral f b - (\<Sum>i<p. ((b-a) ^ i / fact i) *\<^sub>R Df i a)) {a..b}" and Taylor_integral: "f b = (\<Sum>i<p. ((b-a) ^ i / fact i) *\<^sub>R Df i a) + integral {a..b} i" and Taylor_integrable: "i integrable_on {a..b}" proof goal_cases case 1 interpret bounded_bilinear "scaleR::real\<Rightarrow>'a\<Rightarrow>'a" by (rule bounded_bilinear_scaleR) define g where "g s = (b - s)^(p - 1)/fact (p - 1)" for s define Dg where [abs_def]: "Dg n s = (if n < p then (-1)^n * (b - s)^(p - 1 - n) / fact (p - 1 - n) else 0)" for n s have g0: "Dg 0 = g" using \<open>p > 0\<close> by (auto simp add: Dg_def field_split_simps g_def split: if_split_asm) { fix m assume "p > Suc m" hence "p - Suc m = Suc (p - Suc (Suc m))" by auto hence "real (p - Suc m) * fact (p - Suc (Suc m)) = fact (p - Suc m)" by auto } note fact_eq = this have Dg: "\<And>m t. m < p \<Longrightarrow> a \<le> t \<Longrightarrow> t \<le> b \<Longrightarrow> (Dg m has_vector_derivative Dg (Suc m) t) (at t within {a..b})" unfolding Dg_def by (auto intro!: derivative_eq_intros simp: has_vector_derivative_def fact_eq field_split_simps) let ?sum = "\<lambda>t. \<Sum>i<p. (- 1) ^ i *\<^sub>R Dg i t *\<^sub>R Df (p - Suc i) t" from sum_prod_derivatives_has_vector_derivative[of _ Dg _ _ _ Df, OF \<open>p > 0\<close> g0 Dg f0 Df] have deriv: "\<And>t. a \<le> t \<Longrightarrow> t \<le> b \<Longrightarrow> (?sum has_vector_derivative g t *\<^sub>R Df p t - (- 1) ^ p *\<^sub>R Dg p t *\<^sub>R f t) (at t within {a..b})" by auto from fundamental_theorem_of_calculus[rule_format, OF \<open>a \<le> b\<close> deriv] have "(i has_integral ?sum b - ?sum a) {a..b}" using atLeastatMost_empty'[simp del] by (simp add: i_def g_def Dg_def) also have one: "(- 1) ^ p' * (- 1) ^ p' = (1::real)" and "{..<p} \<inter> {i. p = Suc i} = {p - 1}" for p' using \<open>p > 0\<close> by (auto simp: power_mult_distrib[symmetric]) then have "?sum b = f b" using Suc_pred'[OF \<open>p > 0\<close>] by (simp add: diff_eq_eq Dg_def power_0_left le_Suc_eq if_distrib if_distribR sum.If_cases f0) also have "{..<p} = (\<lambda>x. p - x - 1) ` {..<p}" proof safe fix x assume "x < p" thus "x \<in> (\<lambda>x. p - x - 1) ` {..<p}" by (auto intro!: image_eqI[where x = "p - x - 1"]) qed simp from _ this have "?sum a = (\<Sum>i<p. ((b-a) ^ i / fact i) *\<^sub>R Df i a)" by (rule sum.reindex_cong) (auto simp add: inj_on_def Dg_def one) finally show c: ?case . case 2 show ?case using c integral_unique by (metis (lifting) add.commute diff_eq_eq integral_unique) case 3 show ?case using c by force qed subsection \<open>Only need trivial subintervals if the interval itself is trivial\<close> proposition division_of_nontrivial: fixes \<D> :: "'a::euclidean_space set set" assumes sdiv: "\<D> division_of (cbox a b)" and cont0: "content (cbox a b) \<noteq> 0" shows "{k. k \<in> \<D> \<and> content k \<noteq> 0} division_of (cbox a b)" using sdiv proof (induction "card \<D>" arbitrary: \<D> rule: less_induct) case less note \<D> = division_ofD[OF less.prems] { presume *: "{k \<in> \<D>. content k \<noteq> 0} \<noteq> \<D> \<Longrightarrow> ?case" then show ?case using less.prems by fastforce } assume noteq: "{k \<in> \<D>. content k \<noteq> 0} \<noteq> \<D>" then obtain K c d where "K \<in> \<D>" and contk: "content K = 0" and keq: "K = cbox c d" using \<D>(4) by blast then have "card \<D> > 0" unfolding card_gt_0_iff using less by auto then have card: "card (\<D> - {K}) < card \<D>" using less \<open>K \<in> \<D>\<close> by (simp add: \<D>(1)) have closed: "closed (\<Union>(\<D> - {K}))" using less.prems by auto have "x islimpt \<Union>(\<D> - {K})" if "x \<in> K" for x unfolding islimpt_approachable proof (intro allI impI) fix e::real assume "e > 0" obtain i where i: "c\<bullet>i = d\<bullet>i" "i\<in>Basis" using contk \<D>(3) [OF \<open>K \<in> \<D>\<close>] unfolding box_ne_empty keq by (meson content_eq_0 dual_order.antisym) then have xi: "x\<bullet>i = d\<bullet>i" using \<open>x \<in> K\<close> unfolding keq mem_box by (metis antisym) define y where "y = (\<Sum>j\<in>Basis. (if j = i then if c\<bullet>i \<le> (a\<bullet>i + b\<bullet>i)/2 then c\<bullet>i + min e (b\<bullet>i - c\<bullet>i)/2 else c\<bullet>i - min e (c\<bullet>i - a\<bullet>i)/2 else x\<bullet>j) *\<^sub>R j)" show "\<exists>x'\<in>\<Union>(\<D> - {K}). x' \<noteq> x \<and> dist x' x < e" proof (intro bexI conjI) have "d \<in> cbox c d" using \<D>(3)[OF \<open>K \<in> \<D>\<close>] by (simp add: box_ne_empty(1) keq mem_box(2)) then have "d \<in> cbox a b" using \<D>(2)[OF \<open>K \<in> \<D>\<close>] by (auto simp: keq) then have di: "a \<bullet> i \<le> d \<bullet> i \<and> d \<bullet> i \<le> b \<bullet> i" using \<open>i \<in> Basis\<close> mem_box(2) by blast then have xyi: "y\<bullet>i \<noteq> x\<bullet>i" unfolding y_def i xi using \<open>e > 0\<close> cont0 \<open>i \<in> Basis\<close> by (auto simp: content_eq_0 elim!: ballE[of _ _ i]) then show "y \<noteq> x" unfolding euclidean_eq_iff[where 'a='a] using i by auto have "norm (y-x) \<le> (\<Sum>b\<in>Basis. \<bar>(y - x) \<bullet> b\<bar>)" by (rule norm_le_l1) also have "... = \<bar>(y - x) \<bullet> i\<bar> + (\<Sum>b \<in> Basis - {i}. \<bar>(y - x) \<bullet> b\<bar>)" by (meson finite_Basis i(2) sum.remove) also have "... < e + sum (\<lambda>i. 0) Basis" proof (rule add_less_le_mono) show "\<bar>(y-x) \<bullet> i\<bar> < e" using di \<open>e > 0\<close> y_def i xi by (auto simp: inner_simps) show "(\<Sum>i\<in>Basis - {i}. \<bar>(y-x) \<bullet> i\<bar>) \<le> (\<Sum>i\<in>Basis. 0)" unfolding y_def by (auto simp: inner_simps) qed finally have "norm (y-x) < e + sum (\<lambda>i. 0) Basis" . then show "dist y x < e" unfolding dist_norm by auto have "y \<notin> K" unfolding keq mem_box using i(1) i(2) xi xyi by fastforce moreover have "y \<in> \<Union>\<D>" using subsetD[OF \<D>(2)[OF \<open>K \<in> \<D>\<close>] \<open>x \<in> K\<close>] \<open>e > 0\<close> di i by (auto simp: \<D> mem_box y_def field_simps elim!: ballE[of _ _ i]) ultimately show "y \<in> \<Union>(\<D> - {K})" by auto qed qed then have "K \<subseteq> \<Union>(\<D> - {K})" using closed closed_limpt by blast then have "\<Union>(\<D> - {K}) = cbox a b" unfolding \<D>(6)[symmetric] by auto then have "\<D> - {K} division_of cbox a b" by (metis Diff_subset less.prems division_of_subset \<D>(6)) then have "{ka \<in> \<D> - {K}. content ka \<noteq> 0} division_of (cbox a b)" using card less.hyps by blast moreover have "{ka \<in> \<D> - {K}. content ka \<noteq> 0} = {K \<in> \<D>. content K \<noteq> 0}" using contk by auto ultimately show ?case by auto qed subsection \<open>Integrability on subintervals\<close> lemma operative_integrableI: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::banach" assumes "0 \<le> e" shows "operative conj True (\<lambda>i. f integrable_on i)" proof - interpret comm_monoid conj True proof qed show ?thesis proof show "\<And>a b. box a b = {} \<Longrightarrow> (f integrable_on cbox a b) = True" by (simp add: content_eq_0_interior integrable_on_null) show "\<And>a b c k. k \<in> Basis \<Longrightarrow> (f integrable_on cbox a b) \<longleftrightarrow> (f integrable_on cbox a b \<inter> {x. x \<bullet> k \<le> c} \<and> f integrable_on cbox a b \<inter> {x. c \<le> x \<bullet> k})" unfolding integrable_on_def by (auto intro!: has_integral_split) qed qed lemma integrable_subinterval: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::banach" assumes f: "f integrable_on cbox a b" and cd: "cbox c d \<subseteq> cbox a b" shows "f integrable_on cbox c d" proof - interpret operative conj True "\<lambda>i. f integrable_on i" using order_refl by (rule operative_integrableI) show ?thesis proof (cases "cbox c d = {}") case True then show ?thesis using division [symmetric] f by (auto simp: comm_monoid_set_F_and) next case False then show ?thesis by (metis cd comm_monoid_set_F_and division division_of_finite f partial_division_extend_1) qed qed lemma integrable_subinterval_real: fixes f :: "real \<Rightarrow> 'a::banach" assumes "f integrable_on {a..b}" and "{c..d} \<subseteq> {a..b}" shows "f integrable_on {c..d}" by (metis assms box_real(2) integrable_subinterval) subsection \<open>Combining adjacent intervals in 1 dimension\<close> lemma has_integral_combine: fixes a b c :: real and j :: "'a::banach" assumes "a \<le> c" and "c \<le> b" and ac: "(f has_integral i) {a..c}" and cb: "(f has_integral j) {c..b}" shows "(f has_integral (i + j)) {a..b}" proof - interpret operative_real "lift_option plus" "Some 0" "\<lambda>i. if f integrable_on i then Some (integral i f) else None" using operative_integralI by (rule operative_realI) from \<open>a \<le> c\<close> \<open>c \<le> b\<close> ac cb coalesce_less_eq have *: "lift_option (+) (if f integrable_on {a..c} then Some (integral {a..c} f) else None) (if f integrable_on {c..b} then Some (integral {c..b} f) else None) = (if f integrable_on {a..b} then Some (integral {a..b} f) else None)" by (auto simp: split: if_split_asm) then have "f integrable_on cbox a b" using ac cb by (auto split: if_split_asm) with * show ?thesis using ac cb by (auto simp add: integrable_on_def integral_unique split: if_split_asm) qed lemma integral_combine: fixes f :: "real \<Rightarrow> 'a::banach" assumes "a \<le> c" and "c \<le> b" and ab: "f integrable_on {a..b}" shows "integral {a..c} f + integral {c..b} f = integral {a..b} f" proof - have "(f has_integral integral {a..c} f) {a..c}" using ab \<open>c \<le> b\<close> integrable_subinterval_real by fastforce moreover have "(f has_integral integral {c..b} f) {c..b}" using ab \<open>a \<le> c\<close> integrable_subinterval_real by fastforce ultimately have "(f has_integral integral {a..c} f + integral {c..b} f) {a..b}" using \<open>a \<le> c\<close> \<open>c \<le> b\<close> has_integral_combine by blast then show ?thesis by (simp add: has_integral_integrable_integral) qed lemma integrable_combine: fixes f :: "real \<Rightarrow> 'a::banach" assumes "a \<le> c" and "c \<le> b" and "f integrable_on {a..c}" and "f integrable_on {c..b}" shows "f integrable_on {a..b}" using assms unfolding integrable_on_def by (auto intro!: has_integral_combine) lemma integral_minus_sets: fixes f::"real \<Rightarrow> 'a::banach" shows "c \<le> a \<Longrightarrow> c \<le> b \<Longrightarrow> f integrable_on {c .. max a b} \<Longrightarrow> integral {c .. a} f - integral {c .. b} f = (if a \<le> b then - integral {a .. b} f else integral {b .. a} f)" using integral_combine[of c a b f] integral_combine[of c b a f] by (auto simp: algebra_simps max_def) lemma integral_minus_sets': fixes f::"real \<Rightarrow> 'a::banach" shows "c \<ge> a \<Longrightarrow> c \<ge> b \<Longrightarrow> f integrable_on {min a b .. c} \<Longrightarrow> integral {a .. c} f - integral {b .. c} f = (if a \<le> b then integral {a .. b} f else - integral {b .. a} f)" using integral_combine[of b a c f] integral_combine[of a b c f] by (auto simp: algebra_simps min_def) subsection \<open>Reduce integrability to "local" integrability\<close> lemma integrable_on_little_subintervals: fixes f :: "'b::euclidean_space \<Rightarrow> 'a::banach" assumes "\<forall>x\<in>cbox a b. \<exists>d>0. \<forall>u v. x \<in> cbox u v \<and> cbox u v \<subseteq> ball x d \<and> cbox u v \<subseteq> cbox a b \<longrightarrow> f integrable_on cbox u v" shows "f integrable_on cbox a b" proof - interpret operative conj True "\<lambda>i. f integrable_on i" using order_refl by (rule operative_integrableI) have "\<forall>x. \<exists>d>0. x\<in>cbox a b \<longrightarrow> (\<forall>u v. x \<in> cbox u v \<and> cbox u v \<subseteq> ball x d \<and> cbox u v \<subseteq> cbox a b \<longrightarrow> f integrable_on cbox u v)" using assms by (metis zero_less_one) then obtain d where d: "\<And>x. 0 < d x" "\<And>x u v. \<lbrakk>x \<in> cbox a b; x \<in> cbox u v; cbox u v \<subseteq> ball x (d x); cbox u v \<subseteq> cbox a b\<rbrakk> \<Longrightarrow> f integrable_on cbox u v" by metis obtain p where p: "p tagged_division_of cbox a b" "(\<lambda>x. ball x (d x)) fine p" using fine_division_exists[OF gauge_ball_dependent,of d a b] d(1) by blast then have sndp: "snd ` p division_of cbox a b" by (metis division_of_tagged_division) have "f integrable_on k" if "(x, k) \<in> p" for x k using tagged_division_ofD(2-4)[OF p(1) that] fineD[OF p(2) that] d[of x] by auto then show ?thesis unfolding division [symmetric, OF sndp] comm_monoid_set_F_and by auto qed subsection \<open>Second FTC or existence of antiderivative\<close> lemma integrable_const[intro]: "(\<lambda>x. c) integrable_on cbox a b" unfolding integrable_on_def by blast lemma integral_has_vector_derivative_continuous_at: fixes f :: "real \<Rightarrow> 'a::banach" assumes f: "f integrable_on {a..b}" and x: "x \<in> {a..b} - S" and "finite S" and fx: "continuous (at x within ({a..b} - S)) f" shows "((\<lambda>u. integral {a..u} f) has_vector_derivative f x) (at x within ({a..b} - S))" proof - let ?I = "\<lambda>a b. integral {a..b} f" { fix e::real assume "e > 0" obtain d where "d>0" and d: "\<And>x'. \<lbrakk>x' \<in> {a..b} - S; \<bar>x' - x\<bar> < d\<rbrakk> \<Longrightarrow> norm(f x' - f x) \<le> e" using \<open>e>0\<close> fx by (auto simp: continuous_within_eps_delta dist_norm less_imp_le) have "norm (integral {a..y} f - integral {a..x} f - (y-x) *\<^sub>R f x) \<le> e * \<bar>y - x\<bar>" (is "?lhs \<le> ?rhs") if y: "y \<in> {a..b} - S" and yx: "\<bar>y - x\<bar> < d" for y proof (cases "y < x") case False have "f integrable_on {a..y}" using f y by (simp add: integrable_subinterval_real) then have Idiff: "?I a y - ?I a x = ?I x y" using False x by (simp add: algebra_simps integral_combine) have fux_int: "((\<lambda>u. f u - f x) has_integral integral {x..y} f - (y-x) *\<^sub>R f x) {x..y}" proof (rule has_integral_diff) show "(f has_integral integral {x..y} f) {x..y}" using x y by (auto intro: integrable_integral [OF integrable_subinterval_real [OF f]]) show "((\<lambda>u. f x) has_integral (y - x) *\<^sub>R f x) {x..y}" using has_integral_const_real [of "f x" x y] False by simp qed have "?lhs \<le> e * content {x..y}" using yx False d x y \<open>e>0\<close> assms by (intro has_integral_bound_real[where f="(\<lambda>u. f u - f x)"]) (auto simp: Idiff fux_int) also have "... \<le> ?rhs" using False by auto finally show ?thesis . next case True have "f integrable_on {a..x}" using f x by (simp add: integrable_subinterval_real) then have Idiff: "?I a x - ?I a y = ?I y x" using True x y by (simp add: algebra_simps integral_combine) have fux_int: "((\<lambda>u. f u - f x) has_integral integral {y..x} f - (x - y) *\<^sub>R f x) {y..x}" proof (rule has_integral_diff) show "(f has_integral integral {y..x} f) {y..x}" using x y by (auto intro: integrable_integral [OF integrable_subinterval_real [OF f]]) show "((\<lambda>u. f x) has_integral (x - y) *\<^sub>R f x) {y..x}" using has_integral_const_real [of "f x" y x] True by simp qed have "norm (integral {a..x} f - integral {a..y} f - (x - y) *\<^sub>R f x) \<le> e * content {y..x}" using yx True d x y \<open>e>0\<close> assms by (intro has_integral_bound_real[where f="(\<lambda>u. f u - f x)"]) (auto simp: Idiff fux_int) also have "... \<le> e * \<bar>y - x\<bar>" using True by auto finally have "norm (integral {a..x} f - integral {a..y} f - (x - y) *\<^sub>R f x) \<le> e * \<bar>y - x\<bar>" . then show ?thesis by (simp add: algebra_simps norm_minus_commute) qed then have "\<exists>d>0. \<forall>y\<in>{a..b} - S. \<bar>y - x\<bar> < d \<longrightarrow> norm (integral {a..y} f - integral {a..x} f - (y-x) *\<^sub>R f x) \<le> e * \<bar>y - x\<bar>" using \<open>d>0\<close> by blast } then show ?thesis by (simp add: has_vector_derivative_def has_derivative_within_alt bounded_linear_scaleR_left) qed lemma integral_has_vector_derivative: fixes f :: "real \<Rightarrow> 'a::banach" assumes "continuous_on {a..b} f" and "x \<in> {a..b}" shows "((\<lambda>u. integral {a..u} f) has_vector_derivative f(x)) (at x within {a..b})" using assms integral_has_vector_derivative_continuous_at [OF integrable_continuous_real] by (fastforce simp: continuous_on_eq_continuous_within) lemma integral_has_real_derivative: assumes "continuous_on {a..b} g" assumes "t \<in> {a..b}" shows "((\<lambda>x. integral {a..x} g) has_real_derivative g t) (at t within {a..b})" using integral_has_vector_derivative[of a b g t] assms by (auto simp: has_real_derivative_iff_has_vector_derivative) lemma antiderivative_continuous: fixes q b :: real assumes "continuous_on {a..b} f" obtains g where "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_vector_derivative (f x::_::banach)) (at x within {a..b})" using integral_has_vector_derivative[OF assms] by auto subsection \<open>Combined fundamental theorem of calculus\<close> lemma antiderivative_integral_continuous: fixes f :: "real \<Rightarrow> 'a::banach" assumes "continuous_on {a..b} f" obtains g where "\<forall>u\<in>{a..b}. \<forall>v \<in> {a..b}. u \<le> v \<longrightarrow> (f has_integral (g v - g u)) {u..v}" proof - obtain g where g: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_vector_derivative f x) (at x within {a..b})" using antiderivative_continuous[OF assms] by metis have "(f has_integral g v - g u) {u..v}" if "u \<in> {a..b}" "v \<in> {a..b}" "u \<le> v" for u v proof - have "\<And>x. x \<in> cbox u v \<Longrightarrow> (g has_vector_derivative f x) (at x within cbox u v)" by (metis atLeastAtMost_iff atLeastatMost_subset_iff box_real(2) g has_vector_derivative_within_subset subsetCE that(1,2)) then show ?thesis by (metis box_real(2) that(3) fundamental_theorem_of_calculus) qed then show ?thesis using that by blast qed subsection \<open>General "twiddling" for interval-to-interval function image\<close> lemma has_integral_twiddle: assumes "0 < r" and hg: "\<And>x. h(g x) = x" and gh: "\<And>x. g(h x) = x" and contg: "\<And>x. continuous (at x) g" and g: "\<And>u v. \<exists>w z. g ` cbox u v = cbox w z" and h: "\<And>u v. \<exists>w z. h ` cbox u v = cbox w z" and r: "\<And>u v. content(g ` cbox u v) = r * content (cbox u v)" and intfi: "(f has_integral i) (cbox a b)" shows "((\<lambda>x. f(g x)) has_integral (1 / r) *\<^sub>R i) (h ` cbox a b)" proof (cases "cbox a b = {}") case True then show ?thesis using intfi by auto next case False obtain w z where wz: "h ` cbox a b = cbox w z" using h by blast have inj: "inj g" "inj h" using hg gh injI by metis+ from h obtain ha hb where h_eq: "h ` cbox a b = cbox ha hb" by blast have "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of h ` cbox a b \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e)" if "e > 0" for e proof - have "e * r > 0" using that \<open>0 < r\<close> by simp with intfi[unfolded has_integral] obtain d where "gauge d" and d: "\<And>p. p tagged_division_of cbox a b \<and> d fine p \<Longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i) < e * r" by metis define d' where "d' x = g -` d (g x)" for x show ?thesis proof (rule_tac x=d' in exI, safe) show "gauge d'" using \<open>gauge d\<close> continuous_open_vimage[OF _ contg] by (auto simp: gauge_def d'_def) next fix p assume ptag: "p tagged_division_of h ` cbox a b" and finep: "d' fine p" note p = tagged_division_ofD[OF ptag] have gab: "g y \<in> cbox a b" if "y \<in> K" "(x, K) \<in> p" for x y K by (metis hg inj(2) inj_image_mem_iff p(3) subsetCE that that) have gimp: "(\<lambda>(x,K). (g x, g ` K)) ` p tagged_division_of (cbox a b) \<and> d fine (\<lambda>(x, k). (g x, g ` k)) ` p" unfolding tagged_division_of proof safe show "finite ((\<lambda>(x, k). (g x, g ` k)) ` p)" using ptag by auto show "d fine (\<lambda>(x, k). (g x, g ` k)) ` p" using finep unfolding fine_def d'_def by auto next fix x k assume xk: "(x, k) \<in> p" show "g x \<in> g ` k" using p(2)[OF xk] by auto show "\<exists>u v. g ` k = cbox u v" using p(4)[OF xk] using assms(5-6) by auto fix x' K' u assume xk': "(x', K') \<in> p" and u: "u \<in> interior (g ` k)" "u \<in> interior (g ` K')" have "interior k \<inter> interior K' \<noteq> {}" proof assume "interior k \<inter> interior K' = {}" moreover have "u \<in> g ` (interior k \<inter> interior K')" using interior_image_subset[OF \<open>inj g\<close> contg] u unfolding image_Int[OF inj(1)] by blast ultimately show False by blast qed then have same: "(x, k) = (x', K')" using ptag xk' xk by blast then show "g x = g x'" by auto show "g u \<in> g ` K'"if "u \<in> k" for u using that same by auto show "g u \<in> g ` k"if "u \<in> K'" for u using that same by auto next fix x assume "x \<in> cbox a b" then have "h x \<in> \<Union>{k. \<exists>x. (x, k) \<in> p}" using p(6) by auto then obtain X y where "h x \<in> X" "(y, X) \<in> p" by blast then show "x \<in> \<Union>{k. \<exists>x. (x, k) \<in> (\<lambda>(x, k). (g x, g ` k)) ` p}" by clarsimp (metis (no_types, lifting) gh image_eqI pair_imageI) qed (use gab in auto) have *: "inj_on (\<lambda>(x, k). (g x, g ` k)) p" using inj(1) unfolding inj_on_def by fastforce have "(\<Sum>(x,K)\<in>(\<lambda>(y,L). (g y, g ` L)) ` p. content K *\<^sub>R f x) = (\<Sum>u\<in>p. case case u of (x,K) \<Rightarrow> (g x, g ` K) of (y,L) \<Rightarrow> content L *\<^sub>R f y)" by (metis (mono_tags, lifting) "*" sum.reindex_cong) also have "... = (\<Sum>(x,K)\<in>p. r *\<^sub>R content K *\<^sub>R f (g x))" using r by (auto intro!: * sum.cong simp: bij_betw_def dest!: p(4)) finally have "(\<Sum>(x, K)\<in>(\<lambda>(x,K). (g x, g ` K)) ` p. content K *\<^sub>R f x) - i = r *\<^sub>R (\<Sum>(x,K)\<in>p. content K *\<^sub>R f (g x)) - i" by (simp add: scaleR_right.sum split_def) also have "\<dots> = r *\<^sub>R ((\<Sum>(x,K)\<in>p. content K *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" using \<open>0 < r\<close> by (auto simp: scaleR_diff_right) finally show "norm ((\<Sum>(x,K)\<in>p. content K *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e" using d[OF gimp] \<open>0 < r\<close> by auto qed qed then show ?thesis by (auto simp: h_eq has_integral) qed subsection \<open>Special case of a basic affine transformation\<close> lemma AE_lborel_inner_neq: assumes k: "k \<in> Basis" shows "AE x in lborel. x \<bullet> k \<noteq> c" proof - interpret finite_product_sigma_finite "\<lambda>_. lborel" Basis proof qed simp have "emeasure lborel {x\<in>space lborel. x \<bullet> k = c} = emeasure (\<Pi>\<^sub>M j::'a\<in>Basis. lborel) (\<Pi>\<^sub>E j\<in>Basis. if j = k then {c} else UNIV)" using k by (auto simp add: lborel_eq[where 'a='a] emeasure_distr intro!: arg_cong2[where f=emeasure]) (auto simp: space_PiM PiE_iff extensional_def split: if_split_asm) also have "\<dots> = (\<Prod>j\<in>Basis. emeasure lborel (if j = k then {c} else UNIV))" by (intro measure_times) auto also have "\<dots> = 0" by (intro prod_zero bexI[OF _ k]) auto finally show ?thesis by (subst AE_iff_measurable[OF _ refl]) auto qed lemma content_image_stretch_interval: fixes m :: "'a::euclidean_space \<Rightarrow> real" defines "s f x \<equiv> (\<Sum>k::'a\<in>Basis. (f k * (x\<bullet>k)) *\<^sub>R k)" shows "content (s m ` cbox a b) = \<bar>\<Prod>k\<in>Basis. m k\<bar> * content (cbox a b)" proof cases have s[measurable]: "s f \<in> borel \<rightarrow>\<^sub>M borel" for f by (auto simp: s_def[abs_def]) assume m: "\<forall>k\<in>Basis. m k \<noteq> 0" then have s_comp_s: "s (\<lambda>k. 1 / m k) \<circ> s m = id" "s m \<circ> s (\<lambda>k. 1 / m k) = id" by (auto simp: s_def[abs_def] fun_eq_iff euclidean_representation) then have "inv (s (\<lambda>k. 1 / m k)) = s m" "bij (s (\<lambda>k. 1 / m k))" by (auto intro: inv_unique_comp o_bij) then have eq: "s m ` cbox a b = s (\<lambda>k. 1 / m k) -` cbox a b" using bij_vimage_eq_inv_image[OF \<open>bij (s (\<lambda>k. 1 / m k))\<close>, of "cbox a b"] by auto show ?thesis using m unfolding eq measure_def by (subst lborel_affine_euclidean[where c=m and t=0]) (simp_all add: emeasure_density measurable_sets_borel[OF s] abs_prod nn_integral_cmult s_def[symmetric] emeasure_distr vimage_comp s_comp_s enn2real_mult prod_nonneg) next assume "\<not> (\<forall>k\<in>Basis. m k \<noteq> 0)" then obtain k where k: "k \<in> Basis" "m k = 0" by auto then have [simp]: "(\<Prod>k\<in>Basis. m k) = 0" by (intro prod_zero) auto have "emeasure lborel {x\<in>space lborel. x \<in> s m ` cbox a b} = 0" proof (rule emeasure_eq_0_AE) show "AE x in lborel. x \<notin> s m ` cbox a b" using AE_lborel_inner_neq[OF \<open>k\<in>Basis\<close>] proof eventually_elim show "x \<bullet> k \<noteq> 0 \<Longrightarrow> x \<notin> s m ` cbox a b " for x using k by (auto simp: s_def[abs_def] cbox_def) qed qed then show ?thesis by (simp add: measure_def) qed lemma interval_image_affinity_interval: "\<exists>u v. (\<lambda>x. m *\<^sub>R (x::'a::euclidean_space) + c) ` cbox a b = cbox u v" unfolding image_affinity_cbox by auto lemma content_image_affinity_cbox: "content((\<lambda>x::'a::euclidean_space. m *\<^sub>R x + c) ` cbox a b) = \<bar>m\<bar> ^ DIM('a) * content (cbox a b)" (is "?l = ?r") proof (cases "cbox a b = {}") case True then show ?thesis by simp next case False show ?thesis proof (cases "m \<ge> 0") case True with \<open>cbox a b \<noteq> {}\<close> have "cbox (m *\<^sub>R a + c) (m *\<^sub>R b + c) \<noteq> {}" by (simp add: box_ne_empty inner_left_distrib mult_left_mono) moreover from True have *: "\<And>i. (m *\<^sub>R b + c) \<bullet> i - (m *\<^sub>R a + c) \<bullet> i = m *\<^sub>R (b-a) \<bullet> i" by (simp add: inner_simps field_simps) ultimately show ?thesis by (simp add: image_affinity_cbox True content_cbox' prod.distrib inner_diff_left) next case False with \<open>cbox a b \<noteq> {}\<close> have "cbox (m *\<^sub>R b + c) (m *\<^sub>R a + c) \<noteq> {}" by (simp add: box_ne_empty inner_left_distrib mult_left_mono) moreover from False have *: "\<And>i. (m *\<^sub>R a + c) \<bullet> i - (m *\<^sub>R b + c) \<bullet> i = (-m) *\<^sub>R (b-a) \<bullet> i" by (simp add: inner_simps field_simps) ultimately show ?thesis using False by (simp add: image_affinity_cbox content_cbox' prod.distrib[symmetric] inner_diff_left flip: prod_constant) qed qed lemma has_integral_affinity: fixes a :: "'a::euclidean_space" assumes "(f has_integral i) (cbox a b)" and "m \<noteq> 0" shows "((\<lambda>x. f(m *\<^sub>R x + c)) has_integral (1 / (\<bar>m\<bar> ^ DIM('a))) *\<^sub>R i) ((\<lambda>x. (1 / m) *\<^sub>R x + -((1 / m) *\<^sub>R c)) ` cbox a b)" proof (rule has_integral_twiddle) show "\<exists>w z. (\<lambda>x. (1 / m) *\<^sub>R x + - ((1 / m) *\<^sub>R c)) ` cbox u v = cbox w z" "\<exists>w z. (\<lambda>x. m *\<^sub>R x + c) ` cbox u v = cbox w z" for u v using interval_image_affinity_interval by blast+ show "content ((\<lambda>x. m *\<^sub>R x + c) ` cbox u v) = \<bar>m\<bar> ^ DIM('a) * content (cbox u v)" for u v using content_image_affinity_cbox by blast qed (use assms zero_less_power in \<open>auto simp: field_simps\<close>) lemma integrable_affinity: assumes "f integrable_on cbox a b" and "m \<noteq> 0" shows "(\<lambda>x. f(m *\<^sub>R x + c)) integrable_on ((\<lambda>x. (1 / m) *\<^sub>R x + -((1/m) *\<^sub>R c)) ` cbox a b)" using has_integral_affinity assms unfolding integrable_on_def by blast lemmas has_integral_affinity01 = has_integral_affinity [of _ _ 0 "1::real", simplified] lemma integrable_on_affinity: assumes "m \<noteq> 0" "f integrable_on (cbox a b)" shows "(\<lambda>x. f (m *\<^sub>R x + c)) integrable_on ((\<lambda>x. (1 / m) *\<^sub>R x - ((1 / m) *\<^sub>R c)) ` cbox a b)" proof - from assms obtain I where "(f has_integral I) (cbox a b)" by (auto simp: integrable_on_def) from has_integral_affinity[OF this assms(1), of c] show ?thesis by (auto simp: integrable_on_def) qed lemma has_integral_cmul_iff: assumes "c \<noteq> 0" shows "((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R I)) A \<longleftrightarrow> (f has_integral I) A" using assms has_integral_cmul[of f I A c] has_integral_cmul[of "\<lambda>x. c *\<^sub>R f x" "c *\<^sub>R I" A "inverse c"] by (auto simp: field_simps) lemma has_integral_cmul_iff': assumes "c \<noteq> 0" shows "((\<lambda>x. c *\<^sub>R f x) has_integral I) A \<longleftrightarrow> (f has_integral I /\<^sub>R c) A" using assms by (metis divideR_right has_integral_cmul_iff) lemma has_integral_affinity': fixes a :: "'a::euclidean_space" assumes "(f has_integral i) (cbox a b)" and "m > 0" shows "((\<lambda>x. f(m *\<^sub>R x + c)) has_integral (i /\<^sub>R m ^ DIM('a))) (cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m))" proof (cases "cbox a b = {}") case True hence "(cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)) = {}" using \<open>m > 0\<close> unfolding box_eq_empty by (auto simp: algebra_simps) with True and assms show ?thesis by simp next case False have "((\<lambda>x. f (m *\<^sub>R x + c)) has_integral (1 / \<bar>m\<bar> ^ DIM('a)) *\<^sub>R i) ((\<lambda>x. (1 / m) *\<^sub>R x + - ((1 / m) *\<^sub>R c)) ` cbox a b)" using assms by (intro has_integral_affinity) auto also have "((\<lambda>x. (1 / m) *\<^sub>R x + - ((1 / m) *\<^sub>R c)) ` cbox a b) = ((\<lambda>x. - ((1 / m) *\<^sub>R c) + x) ` (\<lambda>x. (1 / m) *\<^sub>R x) ` cbox a b)" by (simp add: image_image algebra_simps) also have "(\<lambda>x. (1 / m) *\<^sub>R x) ` cbox a b = cbox ((1 / m) *\<^sub>R a) ((1 / m) *\<^sub>R b)" using \<open>m > 0\<close> False by (subst image_smult_cbox) simp_all also have "(\<lambda>x. - ((1 / m) *\<^sub>R c) + x) ` \<dots> = cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)" by (subst cbox_translation [symmetric]) (simp add: field_simps vector_add_divide_simps) finally show ?thesis using \<open>m > 0\<close> by (simp add: field_simps) qed lemma has_integral_affinity_iff: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: real_normed_vector" assumes "m > 0" shows "((\<lambda>x. f (m *\<^sub>R x + c)) has_integral (I /\<^sub>R m ^ DIM('a))) (cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)) \<longleftrightarrow> (f has_integral I) (cbox a b)" (is "?lhs = ?rhs") proof assume ?lhs from has_integral_affinity'[OF this, of "1 / m" "-c /\<^sub>R m"] and \<open>m > 0\<close> show ?rhs by (simp add: vector_add_divide_simps) (simp add: field_simps) next assume ?rhs from has_integral_affinity'[OF this, of m c] and \<open>m > 0\<close> show ?lhs by simp qed subsection \<open>Special case of stretching coordinate axes separately\<close> lemma has_integral_stretch: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" assumes "(f has_integral i) (cbox a b)" and "\<forall>k\<in>Basis. m k \<noteq> 0" shows "((\<lambda>x. f (\<Sum>k\<in>Basis. (m k * (x\<bullet>k))*\<^sub>R k)) has_integral ((1/ \<bar>prod m Basis\<bar>) *\<^sub>R i)) ((\<lambda>x. (\<Sum>k\<in>Basis. (1 / m k * (x\<bullet>k))*\<^sub>R k)) ` cbox a b)" apply (rule has_integral_twiddle[where f=f]) unfolding zero_less_abs_iff content_image_stretch_interval unfolding image_stretch_interval empty_as_interval euclidean_eq_iff[where 'a='a] using assms by auto lemma has_integral_stretch_real: fixes f :: "real \<Rightarrow> 'b::real_normed_vector" assumes "(f has_integral i) {a..b}" and "m \<noteq> 0" shows "((\<lambda>x. f (m * x)) has_integral (1 / \<bar>m\<bar>) *\<^sub>R i) ((\<lambda>x. x / m) ` {a..b})" using has_integral_stretch [of f i a b "\<lambda>b. m"] assms by simp lemma integrable_stretch: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" assumes "f integrable_on cbox a b" and "\<forall>k\<in>Basis. m k \<noteq> 0" shows "(\<lambda>x::'a. f (\<Sum>k\<in>Basis. (m k * (x\<bullet>k))*\<^sub>R k)) integrable_on ((\<lambda>x. \<Sum>k\<in>Basis. (1 / m k * (x\<bullet>k))*\<^sub>R k) ` cbox a b)" using assms unfolding integrable_on_def by (force dest: has_integral_stretch) lemma vec_lambda_eq_sum: "(\<chi> k. f k (x $ k)) = (\<Sum>k\<in>Basis. (f (axis_index k) (x \<bullet> k)) *\<^sub>R k)" (is "?lhs = ?rhs") proof - have "?lhs = (\<chi> k. f k (x \<bullet> axis k 1))" by (simp add: cart_eq_inner_axis) also have "... = (\<Sum>u\<in>UNIV. f u (x \<bullet> axis u 1) *\<^sub>R axis u 1)" by (simp add: vec_eq_iff axis_def if_distrib cong: if_cong) also have "... = ?rhs" by (simp add: Basis_vec_def UNION_singleton_eq_range sum.reindex axis_eq_axis inj_on_def) finally show ?thesis . qed lemma has_integral_stretch_cart: fixes m :: "'n::finite \<Rightarrow> real" assumes f: "(f has_integral i) (cbox a b)" and m: "\<And>k. m k \<noteq> 0" shows "((\<lambda>x. f(\<chi> k. m k * x$k)) has_integral i /\<^sub>R \<bar>prod m UNIV\<bar>) ((\<lambda>x. \<chi> k. x$k / m k) ` (cbox a b))" proof - have *: "\<forall>k:: real^'n \<in> Basis. m (axis_index k) \<noteq> 0" using axis_index by (simp add: m) have eqp: "(\<Prod>k:: real^'n \<in> Basis. m (axis_index k)) = prod m UNIV" by (simp add: Basis_vec_def UNION_singleton_eq_range prod.reindex axis_eq_axis inj_on_def) show ?thesis using has_integral_stretch [OF f *] vec_lambda_eq_sum [where f="\<lambda>i x. m i * x"] vec_lambda_eq_sum [where f="\<lambda>i x. x / m i"] by (simp add: field_simps eqp) qed lemma image_stretch_interval_cart: fixes m :: "'n::finite \<Rightarrow> real" shows "(\<lambda>x. \<chi> k. m k * x$k) ` cbox a b = (if cbox a b = {} then {} else cbox (\<chi> k. min (m k * a$k) (m k * b$k)) (\<chi> k. max (m k * a$k) (m k * b$k)))" proof - have *: "(\<Sum>k\<in>Basis. min (m (axis_index k) * (a \<bullet> k)) (m (axis_index k) * (b \<bullet> k)) *\<^sub>R k) = (\<chi> k. min (m k * a $ k) (m k * b $ k))" "(\<Sum>k\<in>Basis. max (m (axis_index k) * (a \<bullet> k)) (m (axis_index k) * (b \<bullet> k)) *\<^sub>R k) = (\<chi> k. max (m k * a $ k) (m k * b $ k))" apply (simp_all add: Basis_vec_def cart_eq_inner_axis UNION_singleton_eq_range sum.reindex axis_eq_axis inj_on_def) apply (simp_all add: vec_eq_iff axis_def if_distrib cong: if_cong) done show ?thesis by (simp add: vec_lambda_eq_sum [where f="\<lambda>i x. m i * x"] image_stretch_interval eq_cbox *) qed subsection \<open>even more special cases\<close> lemma uminus_interval_vector[simp]: fixes a b :: "'a::euclidean_space" shows "uminus ` cbox a b = cbox (-b) (-a)" proof - have "x \<in> uminus ` cbox a b" if "x \<in> cbox (- b) (- a)" for x proof - have "-x \<in> cbox a b" using that by (auto simp: mem_box) then show ?thesis by force qed then show ?thesis by (auto simp: mem_box) qed lemma has_integral_reflect_lemma[intro]: assumes "(f has_integral i) (cbox a b)" shows "((\<lambda>x. f(-x)) has_integral i) (cbox (-b) (-a))" using has_integral_affinity[OF assms, of "-1" 0] by auto lemma has_integral_reflect_lemma_real[intro]: assumes "(f has_integral i) {a..b::real}" shows "((\<lambda>x. f(-x)) has_integral i) {-b .. -a}" using assms unfolding box_real[symmetric] by (rule has_integral_reflect_lemma) lemma has_integral_reflect[simp]: "((\<lambda>x. f (-x)) has_integral i) (cbox (-b) (-a)) \<longleftrightarrow> (f has_integral i) (cbox a b)" by (auto dest: has_integral_reflect_lemma) lemma has_integral_reflect_real[simp]: fixes a b::real shows "((\<lambda>x. f (-x)) has_integral i) {-b..-a} \<longleftrightarrow> (f has_integral i) {a..b}" by (metis has_integral_reflect interval_cbox) lemma integrable_reflect[simp]: "(\<lambda>x. f(-x)) integrable_on cbox (-b) (-a) \<longleftrightarrow> f integrable_on cbox a b" unfolding integrable_on_def by auto lemma integrable_reflect_real[simp]: "(\<lambda>x. f(-x)) integrable_on {-b .. -a} \<longleftrightarrow> f integrable_on {a..b::real}" unfolding box_real[symmetric] by (rule integrable_reflect) lemma integral_reflect[simp]: "integral (cbox (-b) (-a)) (\<lambda>x. f (-x)) = integral (cbox a b) f" unfolding integral_def by auto lemma integral_reflect_real[simp]: "integral {-b .. -a} (\<lambda>x. f (-x)) = integral {a..b::real} f" unfolding box_real[symmetric] by (rule integral_reflect) subsection \<open>Stronger form of FCT; quite a tedious proof\<close> lemma split_minus[simp]: "(\<lambda>(x, k). f x k) x - (\<lambda>(x, k). g x k) x = (\<lambda>(x, k). f x k - g x k) x" by (simp add: split_def) theorem fundamental_theorem_of_calculus_interior: fixes f :: "real \<Rightarrow> 'a::real_normed_vector" assumes "a \<le> b" and contf: "continuous_on {a..b} f" and derf: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> (f has_vector_derivative f' x) (at x)" shows "(f' has_integral (f b - f a)) {a..b}" proof (cases "a = b") case True then have *: "cbox a b = {b}" "f b - f a = 0" by (auto simp add: order_antisym) with True show ?thesis by auto next case False with \<open>a \<le> b\<close> have ab: "a < b" by arith show ?thesis unfolding has_integral_factor_content_real proof (intro allI impI) fix e :: real assume e: "e > 0" then have eba8: "(e * (b-a)) / 8 > 0" using ab by (auto simp add: field_simps) note derf_exp = derf[unfolded has_vector_derivative_def has_derivative_at_alt, THEN conjunct2, rule_format] have bounded: "\<And>x. x \<in> {a<..<b} \<Longrightarrow> bounded_linear (\<lambda>u. u *\<^sub>R f' x)" by (simp add: bounded_linear_scaleR_left) have "\<forall>x \<in> box a b. \<exists>d>0. \<forall>y. norm (y-x) < d \<longrightarrow> norm (f y - f x - (y-x) *\<^sub>R f' x) \<le> e/2 * norm (y-x)" (is "\<forall>x \<in> box a b. ?Q x") \<comment>\<open>The explicit quantifier is required by the following step\<close> proof fix x assume "x \<in> box a b" with e show "?Q x" using derf_exp [of x "e/2"] by auto qed then obtain d where d: "\<And>x. 0 < d x" "\<And>x y. \<lbrakk>x \<in> box a b; norm (y-x) < d x\<rbrakk> \<Longrightarrow> norm (f y - f x - (y-x) *\<^sub>R f' x) \<le> e/2 * norm (y-x)" unfolding bgauge_existence_lemma by metis have "bounded (f ` cbox a b)" using compact_cbox assms by (auto simp: compact_imp_bounded compact_continuous_image) then obtain B where "0 < B" and B: "\<And>x. x \<in> f ` cbox a b \<Longrightarrow> norm x \<le> B" unfolding bounded_pos by metis obtain da where "0 < da" and da: "\<And>c. \<lbrakk>a \<le> c; {a..c} \<subseteq> {a..b}; {a..c} \<subseteq> ball a da\<rbrakk> \<Longrightarrow> norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> (e * (b-a)) / 4" proof - have "continuous (at a within {a..b}) f" using contf continuous_on_eq_continuous_within by force with eba8 obtain k where "0 < k" and k: "\<And>x. \<lbrakk>x \<in> {a..b}; 0 < norm (x-a); norm (x-a) < k\<rbrakk> \<Longrightarrow> norm (f x - f a) < e * (b-a) / 8" unfolding continuous_within Lim_within dist_norm by metis obtain l where l: "0 < l" "norm (l *\<^sub>R f' a) \<le> e * (b-a) / 8" proof (cases "f' a = 0") case True with ab e that show ?thesis by auto next case False show ?thesis proof show "norm ((e * (b - a) / 8 / norm (f' a)) *\<^sub>R f' a) \<le> e * (b - a) / 8" "0 < e * (b - a) / 8 / norm (f' a)" using False ab e by (auto simp add: field_simps) qed qed have "norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> e * (b-a) / 4" if "a \<le> c" "{a..c} \<subseteq> {a..b}" and bmin: "{a..c} \<subseteq> ball a (min k l)" for c proof - have minkl: "\<bar>a - x\<bar> < min k l" if "x \<in> {a..c}" for x using bmin dist_real_def that by auto then have lel: "\<bar>c - a\<bar> \<le> \<bar>l\<bar>" using that by force have "norm ((c - a) *\<^sub>R f' a - (f c - f a)) \<le> norm ((c - a) *\<^sub>R f' a) + norm (f c - f a)" by (rule norm_triangle_ineq4) also have "\<dots> \<le> e * (b-a) / 8 + e * (b-a) / 8" proof (rule add_mono) have "norm ((c - a) *\<^sub>R f' a) \<le> norm (l *\<^sub>R f' a)" by (auto intro: mult_right_mono [OF lel]) also have "... \<le> e * (b-a) / 8" by (rule l) finally show "norm ((c - a) *\<^sub>R f' a) \<le> e * (b-a) / 8" . next have "norm (f c - f a) < e * (b-a) / 8" proof (cases "a = c") case True then show ?thesis using eba8 by auto next case False show ?thesis by (rule k) (use minkl \<open>a \<le> c\<close> that False in auto) qed then show "norm (f c - f a) \<le> e * (b-a) / 8" by simp qed finally show "norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> e * (b-a) / 4" unfolding content_real[OF \<open>a \<le> c\<close>] by auto qed then show ?thesis by (rule_tac da="min k l" in that) (auto simp: l \<open>0 < k\<close>) qed obtain db where "0 < db" and db: "\<And>c. \<lbrakk>c \<le> b; {c..b} \<subseteq> {a..b}; {c..b} \<subseteq> ball b db\<rbrakk> \<Longrightarrow> norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> (e * (b-a)) / 4" proof - have "continuous (at b within {a..b}) f" using contf continuous_on_eq_continuous_within by force with eba8 obtain k where "0 < k" and k: "\<And>x. \<lbrakk>x \<in> {a..b}; 0 < norm(x-b); norm(x-b) < k\<rbrakk> \<Longrightarrow> norm (f b - f x) < e * (b-a) / 8" unfolding continuous_within Lim_within dist_norm norm_minus_commute by metis obtain l where l: "0 < l" "norm (l *\<^sub>R f' b) \<le> (e * (b-a)) / 8" proof (cases "f' b = 0") case True thus ?thesis using ab e that by auto next case False show ?thesis proof show "norm ((e * (b - a) / 8 / norm (f' b)) *\<^sub>R f' b) \<le> e * (b - a) / 8" "0 < e * (b - a) / 8 / norm (f' b)" using False ab e by (auto simp add: field_simps) qed qed have "norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> e * (b-a) / 4" if "c \<le> b" "{c..b} \<subseteq> {a..b}" and bmin: "{c..b} \<subseteq> ball b (min k l)" for c proof - have minkl: "\<bar>b - x\<bar> < min k l" if "x \<in> {c..b}" for x using bmin dist_real_def that by auto then have lel: "\<bar>b - c\<bar> \<le> \<bar>l\<bar>" using that by force have "norm ((b - c) *\<^sub>R f' b - (f b - f c)) \<le> norm ((b - c) *\<^sub>R f' b) + norm (f b - f c)" by (rule norm_triangle_ineq4) also have "\<dots> \<le> e * (b-a) / 8 + e * (b-a) / 8" proof (rule add_mono) have "norm ((b - c) *\<^sub>R f' b) \<le> norm (l *\<^sub>R f' b)" by (auto intro: mult_right_mono [OF lel]) also have "... \<le> e * (b-a) / 8" by (rule l) finally show "norm ((b - c) *\<^sub>R f' b) \<le> e * (b-a) / 8" . next have "norm (f b - f c) < e * (b-a) / 8" proof (cases "b = c") case True with eba8 show ?thesis by auto next case False show ?thesis by (rule k) (use minkl \<open>c \<le> b\<close> that False in auto) qed then show "norm (f b - f c) \<le> e * (b-a) / 8" by simp qed finally show "norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> e * (b-a) / 4" unfolding content_real[OF \<open>c \<le> b\<close>] by auto qed then show ?thesis by (rule_tac db="min k l" in that) (auto simp: l \<open>0 < k\<close>) qed let ?d = "(\<lambda>x. ball x (if x=a then da else if x=b then db else d x))" show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x,K)\<in>p. content K *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b})" proof (rule exI, safe) show "gauge ?d" using ab \<open>db > 0\<close> \<open>da > 0\<close> d(1) by (auto intro: gauge_ball_dependent) next fix p assume ptag: "p tagged_division_of {a..b}" and fine: "?d fine p" let ?A = "{t. fst t \<in> {a, b}}" note p = tagged_division_ofD[OF ptag] have pA: "p = (p \<inter> ?A) \<union> (p - ?A)" "finite (p \<inter> ?A)" "finite (p - ?A)" "(p \<inter> ?A) \<inter> (p - ?A) = {}" using ptag fine by auto have le_xz: "\<And>w x y z::real. y \<le> z/2 \<Longrightarrow> w - x \<le> z/2 \<Longrightarrow> w + y \<le> x + z" by arith have non: False if xk: "(x,K) \<in> p" and "x \<noteq> a" "x \<noteq> b" and less: "e * (Sup K - Inf K)/2 < norm (content K *\<^sub>R f' x - (f (Sup K) - f (Inf K)))" for x K proof - obtain u v where k: "K = cbox u v" using p(4) xk by blast then have "u \<le> v" and uv: "{u, v} \<subseteq> cbox u v" using p(2)[OF xk] by auto then have result: "e * (v - u)/2 < norm ((v - u) *\<^sub>R f' x - (f v - f u))" using less[unfolded k box_real interval_bounds_real content_real] by auto then have "x \<in> box a b" using p(2) p(3) \<open>x \<noteq> a\<close> \<open>x \<noteq> b\<close> xk by fastforce with d have *: "\<And>y. norm (y-x) < d x \<Longrightarrow> norm (f y - f x - (y-x) *\<^sub>R f' x) \<le> e/2 * norm (y-x)" by metis have xd: "norm (u - x) < d x" "norm (v - x) < d x" using fineD[OF fine xk] \<open>x \<noteq> a\<close> \<open>x \<noteq> b\<close> uv by (auto simp add: k subset_eq dist_commute dist_real_def) have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) = norm ((f u - f x - (u - x) *\<^sub>R f' x) - (f v - f x - (v - x) *\<^sub>R f' x))" by (rule arg_cong[where f=norm]) (auto simp: scaleR_left.diff) also have "\<dots> \<le> e/2 * norm (u - x) + e/2 * norm (v - x)" by (metis norm_triangle_le_diff add_mono * xd) also have "\<dots> \<le> e/2 * norm (v - u)" using p(2)[OF xk] by (auto simp add: field_simps k) also have "\<dots> < norm ((v - u) *\<^sub>R f' x - (f v - f u))" using result by (simp add: \<open>u \<le> v\<close>) finally have "e * (v - u)/2 < e * (v - u)/2" using uv by auto then show False by auto qed have "norm (\<Sum>(x, K)\<in>p - ?A. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \<le> (\<Sum>(x, K)\<in>p - ?A. norm (content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))))" by (auto intro: sum_norm_le) also have "... \<le> (\<Sum>n\<in>p - ?A. e * (case n of (x, k) \<Rightarrow> Sup k - Inf k)/2)" using non by (fastforce intro: sum_mono) finally have I: "norm (\<Sum>(x, k)\<in>p - ?A. content k *\<^sub>R f' x - (f (Sup k) - f (Inf k))) \<le> (\<Sum>n\<in>p - ?A. e * (case n of (x, k) \<Rightarrow> Sup k - Inf k))/2" by (simp add: sum_divide_distrib) have II: "norm (\<Sum>(x, k)\<in>p \<inter> ?A. content k *\<^sub>R f' x - (f (Sup k) - f (Inf k))) - (\<Sum>n\<in>p \<inter> ?A. e * (case n of (x, k) \<Rightarrow> Sup k - Inf k)) \<le> (\<Sum>n\<in>p - ?A. e * (case n of (x, k) \<Rightarrow> Sup k - Inf k))/2" proof - have ge0: "0 \<le> e * (Sup k - Inf k)" if xkp: "(x, k) \<in> p \<inter> ?A" for x k proof - obtain u v where uv: "k = cbox u v" by (meson Int_iff xkp p(4)) with p(2) that uv have "cbox u v \<noteq> {}" by blast then show "0 \<le> e * ((Sup k) - (Inf k))" unfolding uv using e by (auto simp add: field_simps) qed let ?B = "\<lambda>x. {t \<in> p. fst t = x \<and> content (snd t) \<noteq> 0}" let ?C = "{t \<in> p. fst t \<in> {a, b} \<and> content (snd t) \<noteq> 0}" have "norm (\<Sum>(x, k)\<in>p \<inter> {t. fst t \<in> {a, b}}. content k *\<^sub>R f' x - (f (Sup k) - f (Inf k))) \<le> e * (b-a)/2" proof - have *: "\<And>S f e. sum f S = sum f (p \<inter> ?C) \<Longrightarrow> norm (sum f (p \<inter> ?C)) \<le> e \<Longrightarrow> norm (sum f S) \<le> e" by auto have 1: "content K *\<^sub>R (f' x) - (f ((Sup K)) - f ((Inf K))) = 0" if "(x,K) \<in> p \<inter> {t. fst t \<in> {a, b}} - p \<inter> ?C" for x K proof - have xk: "(x,K) \<in> p" and k0: "content K = 0" using that by auto then obtain u v where uv: "K = cbox u v" using p(4) by blast then have "u = v" using xk k0 p(2) by force then show "content K *\<^sub>R (f' x) - (f ((Sup K)) - f ((Inf K))) = 0" using xk unfolding uv by auto qed have 2: "norm(\<Sum>(x,K)\<in>p \<inter> ?C. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \<le> e * (b-a)/2" proof - have norm_le: "norm (sum f S) \<le> e" if "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> x = y" "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> e" "e > 0" for S f and e :: real proof (cases "S = {}") case True with that show ?thesis by auto next case False then obtain x where "x \<in> S" by auto then have "S = {x}" using that(1) by auto then show ?thesis using \<open>x \<in> S\<close> that(2) by auto qed have *: "p \<inter> ?C = ?B a \<union> ?B b" by blast then have "norm (\<Sum>(x,K)\<in>p \<inter> ?C. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) = norm (\<Sum>(x,K) \<in> ?B a \<union> ?B b. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K)))" by simp also have "... = norm ((\<Sum>(x,K) \<in> ?B a. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) + (\<Sum>(x,K) \<in> ?B b. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))))" using p(1) ab e by (subst sum.union_disjoint) auto also have "... \<le> e * (b - a) / 4 + e * (b - a) / 4" proof (rule norm_triangle_le [OF add_mono]) have pa: "\<exists>v. k = cbox a v \<and> a \<le> v" if "(a, k) \<in> p" for k using p(2) p(3) p(4) that by fastforce show "norm (\<Sum>(x,K) \<in> ?B a. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \<le> e * (b - a) / 4" proof (intro norm_le; clarsimp) fix K K' assume K: "(a, K) \<in> p" "(a, K') \<in> p" and ne0: "content K \<noteq> 0" "content K' \<noteq> 0" with pa obtain v v' where v: "K = cbox a v" "a \<le> v" and v': "K' = cbox a v'" "a \<le> v'" by blast let ?v = "min v v'" have "box a ?v \<subseteq> K \<inter> K'" unfolding v v' by (auto simp add: mem_box) then have "interior (box a (min v v')) \<subseteq> interior K \<inter> interior K'" using interior_Int interior_mono by blast moreover have "(a + ?v)/2 \<in> box a ?v" using ne0 unfolding v v' content_eq_0 not_le by (auto simp add: mem_box) ultimately have "(a + ?v)/2 \<in> interior K \<inter> interior K'" unfolding interior_open[OF open_box] by auto then show "K = K'" using p(5)[OF K] by auto next fix K assume K: "(a, K) \<in> p" and ne0: "content K \<noteq> 0" show "norm (content c *\<^sub>R f' a - (f (Sup c) - f (Inf c))) * 4 \<le> e * (b-a)" if "(a, c) \<in> p" and ne0: "content c \<noteq> 0" for c proof - obtain v where v: "c = cbox a v" and "a \<le> v" using pa[OF \<open>(a, c) \<in> p\<close>] by metis then have "a \<in> {a..v}" "v \<le> b" using p(3)[OF \<open>(a, c) \<in> p\<close>] by auto moreover have "{a..v} \<subseteq> ball a da" using fineD[OF \<open>?d fine p\<close> \<open>(a, c) \<in> p\<close>] by (simp add: v split: if_split_asm) ultimately show ?thesis unfolding v interval_bounds_real[OF \<open>a \<le> v\<close>] box_real using da \<open>a \<le> v\<close> by auto qed qed (use ab e in auto) next have pb: "\<exists>v. k = cbox v b \<and> b \<ge> v" if "(b, k) \<in> p" for k using p(2) p(3) p(4) that by fastforce show "norm (\<Sum>(x,K) \<in> ?B b. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \<le> e * (b - a) / 4" proof (intro norm_le; clarsimp) fix K K' assume K: "(b, K) \<in> p" "(b, K') \<in> p" and ne0: "content K \<noteq> 0" "content K' \<noteq> 0" with pb obtain v v' where v: "K = cbox v b" "v \<le> b" and v': "K' = cbox v' b" "v' \<le> b" by blast let ?v = "max v v'" have "box ?v b \<subseteq> K \<inter> K'" unfolding v v' by (auto simp: mem_box) then have "interior (box (max v v') b) \<subseteq> interior K \<inter> interior K'" using interior_Int interior_mono by blast moreover have " ((b + ?v)/2) \<in> box ?v b" using ne0 unfolding v v' content_eq_0 not_le by (auto simp: mem_box) ultimately have "((b + ?v)/2) \<in> interior K \<inter> interior K'" unfolding interior_open[OF open_box] by auto then show "K = K'" using p(5)[OF K] by auto next fix K assume K: "(b, K) \<in> p" and ne0: "content K \<noteq> 0" show "norm (content c *\<^sub>R f' b - (f (Sup c) - f (Inf c))) * 4 \<le> e * (b-a)" if "(b, c) \<in> p" and ne0: "content c \<noteq> 0" for c proof - obtain v where v: "c = cbox v b" and "v \<le> b" using \<open>(b, c) \<in> p\<close> pb by blast then have "v \<ge> a""b \<in> {v.. b}" using p(3)[OF \<open>(b, c) \<in> p\<close>] by auto moreover have "{v..b} \<subseteq> ball b db" using fineD[OF \<open>?d fine p\<close> \<open>(b, c) \<in> p\<close>] box_real(2) v False by force ultimately show ?thesis using db v by auto qed qed (use ab e in auto) qed also have "... = e * (b-a)/2" by simp finally show "norm (\<Sum>(x,k)\<in>p \<inter> ?C. content k *\<^sub>R f' x - (f (Sup k) - f (Inf k))) \<le> e * (b-a)/2" . qed show "norm (\<Sum>(x, k)\<in>p \<inter> ?A. content k *\<^sub>R f' x - (f ((Sup k)) - f ((Inf k)))) \<le> e * (b-a)/2" apply (rule * [OF sum.mono_neutral_right[OF pA(2)]]) using 1 2 by (auto simp: split_paired_all) qed also have "... = (\<Sum>n\<in>p. e * (case n of (x, k) \<Rightarrow> Sup k - Inf k))/2" unfolding sum_distrib_left[symmetric] by (subst additive_tagged_division_1[OF \<open>a \<le> b\<close> ptag]) auto finally have norm_le: "norm (\<Sum>(x,K)\<in>p \<inter> {t. fst t \<in> {a, b}}. content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \<le> (\<Sum>n\<in>p. e * (case n of (x, K) \<Rightarrow> Sup K - Inf K))/2" . have le2: "\<And>x s1 s2::real. 0 \<le> s1 \<Longrightarrow> x \<le> (s1 + s2)/2 \<Longrightarrow> x - s1 \<le> s2/2" by auto show ?thesis apply (rule le2 [OF sum_nonneg]) using ge0 apply force by (metis (no_types, lifting) Diff_Diff_Int Diff_subset norm_le p(1) sum.subset_diff) qed note * = additive_tagged_division_1[OF assms(1) ptag, symmetric] have "norm (\<Sum>(x,K)\<in>p \<inter> ?A \<union> (p - ?A). content K *\<^sub>R f' x - (f (Sup K) - f (Inf K))) \<le> e * (\<Sum>(x,K)\<in>p \<inter> ?A \<union> (p - ?A). Sup K - Inf K)" unfolding sum_distrib_left unfolding sum.union_disjoint[OF pA(2-)] using le_xz norm_triangle_le I II by blast then show "norm ((\<Sum>(x,K)\<in>p. content K *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b}" by (simp only: content_real[OF \<open>a \<le> b\<close>] *[of "\<lambda>x. x"] *[of f] sum_subtractf[symmetric] split_minus pA(1) [symmetric]) qed qed qed subsection \<open>Stronger form with finite number of exceptional points\<close> lemma fundamental_theorem_of_calculus_interior_strong: fixes f :: "real \<Rightarrow> 'a::banach" assumes "finite S" and "a \<le> b" "\<And>x. x \<in> {a <..< b} - S \<Longrightarrow> (f has_vector_derivative f'(x)) (at x)" and "continuous_on {a .. b} f" shows "(f' has_integral (f b - f a)) {a .. b}" using assms proof (induction arbitrary: a b) case empty then show ?case using fundamental_theorem_of_calculus_interior by force next case (insert x S) show ?case proof (cases "x \<in> {a<..<b}") case False then show ?thesis using insert by blast next case True then have "a < x" "x < b" by auto have "(f' has_integral f x - f a) {a..x}" "(f' has_integral f b - f x) {x..b}" using \<open>continuous_on {a..b} f\<close> \<open>a < x\<close> \<open>x < b\<close> continuous_on_subset by (force simp: intro!: insert)+ then have "(f' has_integral f x - f a + (f b - f x)) {a..b}" using \<open>a < x\<close> \<open>x < b\<close> has_integral_combine less_imp_le by blast then show ?thesis by simp qed qed corollary fundamental_theorem_of_calculus_strong: fixes f :: "real \<Rightarrow> 'a::banach" assumes "finite S" and "a \<le> b" and vec: "\<And>x. x \<in> {a..b} - S \<Longrightarrow> (f has_vector_derivative f'(x)) (at x)" and "continuous_on {a..b} f" shows "(f' has_integral (f b - f a)) {a..b}" by (rule fundamental_theorem_of_calculus_interior_strong [OF \<open>finite S\<close>]) (force simp: assms)+ proposition indefinite_integral_continuous_left: fixes f:: "real \<Rightarrow> 'a::banach" assumes intf: "f integrable_on {a..b}" and "a < c" "c \<le> b" "e > 0" obtains d where "d > 0" and "\<forall>t. c - d < t \<and> t \<le> c \<longrightarrow> norm (integral {a..c} f - integral {a..t} f) < e" proof - obtain w where "w > 0" and w: "\<And>t. \<lbrakk>c - w < t; t < c\<rbrakk> \<Longrightarrow> norm (f c) * norm(c - t) < e/3" proof (cases "f c = 0") case False hence e3: "0 < e/3 / norm (f c)" using \<open>e>0\<close> by simp moreover have "norm (f c) * norm (c - t) < e/3" if "t < c" and "c - e/3 / norm (f c) < t" for t proof - have "norm (c - t) < e/3 / norm (f c)" using that by auto then show "norm (f c) * norm (c - t) < e/3" by (metis e3 mult.commute norm_not_less_zero pos_less_divide_eq zero_less_divide_iff) qed ultimately show ?thesis using that by auto next case True then show ?thesis using \<open>e > 0\<close> that by auto qed let ?SUM = "\<lambda>p. (\<Sum>(x,K) \<in> p. content K *\<^sub>R f x)" have e3: "e/3 > 0" using \<open>e > 0\<close> by auto have "f integrable_on {a..c}" using \<open>a < c\<close> \<open>c \<le> b\<close> by (auto intro: integrable_subinterval_real[OF intf]) then obtain d1 where "gauge d1" and d1: "\<And>p. \<lbrakk>p tagged_division_of {a..c}; d1 fine p\<rbrakk> \<Longrightarrow> norm (?SUM p - integral {a..c} f) < e/3" using integrable_integral has_integral_real e3 by metis define d where [abs_def]: "d x = ball x w \<inter> d1 x" for x have "gauge d" unfolding d_def using \<open>w > 0\<close> \<open>gauge d1\<close> by auto then obtain k where "0 < k" and k: "ball c k \<subseteq> d c" by (meson gauge_def open_contains_ball) let ?d = "min k (c - a)/2" show thesis proof (intro that[of ?d] allI impI, safe) show "?d > 0" using \<open>0 < k\<close> \<open>a < c\<close> by auto next fix t assume t: "c - ?d < t" "t \<le> c" show "norm (integral ({a..c}) f - integral ({a..t}) f) < e" proof (cases "t < c") case False with \<open>t \<le> c\<close> show ?thesis by (simp add: \<open>e > 0\<close>) next case True have "f integrable_on {a..t}" using \<open>t < c\<close> \<open>c \<le> b\<close> by (auto intro: integrable_subinterval_real[OF intf]) then obtain d2 where d2: "gauge d2" "\<And>p. p tagged_division_of {a..t} \<and> d2 fine p \<Longrightarrow> norm (?SUM p - integral {a..t} f) < e/3" using integrable_integral has_integral_real e3 by metis define d3 where "d3 x = (if x \<le> t then d1 x \<inter> d2 x else d1 x)" for x have "gauge d3" using \<open>gauge d1\<close> \<open>gauge d2\<close> unfolding d3_def gauge_def by auto then obtain p where ptag: "p tagged_division_of {a..t}" and pfine: "d3 fine p" by (metis box_real(2) fine_division_exists) note p' = tagged_division_ofD[OF ptag] have pt: "(x,K)\<in>p \<Longrightarrow> x \<le> t" for x K by (meson atLeastAtMost_iff p'(2) p'(3) subsetCE) with pfine have "d2 fine p" unfolding fine_def d3_def by fastforce then have d2_fin: "norm (?SUM p - integral {a..t} f) < e/3" using d2(2) ptag by auto have eqs: "{a..c} \<inter> {x. x \<le> t} = {a..t}" "{a..c} \<inter> {x. x \<ge> t} = {t..c}" using t by (auto simp add: field_simps) have "p \<union> {(c, {t..c})} tagged_division_of {a..c}" proof (intro tagged_division_Un_interval_real) show "{(c, {t..c})} tagged_division_of {a..c} \<inter> {x. t \<le> x \<bullet> 1}" using \<open>t \<le> c\<close> by (auto simp: eqs tagged_division_of_self_real) qed (auto simp: eqs ptag) moreover have "d1 fine p \<union> {(c, {t..c})}" unfolding fine_def proof safe fix x K y assume "(x,K) \<in> p" and "y \<in> K" then show "y \<in> d1 x" by (metis Int_iff d3_def subsetD fineD pfine) next fix x assume "x \<in> {t..c}" then have "dist c x < k" using t(1) by (auto simp add: field_simps dist_real_def) with k show "x \<in> d1 c" unfolding d_def by auto qed ultimately have d1_fin: "norm (?SUM(p \<union> {(c, {t..c})}) - integral {a..c} f) < e/3" using d1 by metis have SUMEQ: "?SUM(p \<union> {(c, {t..c})}) = (c - t) *\<^sub>R f c + ?SUM p" proof - have "?SUM(p \<union> {(c, {t..c})}) = (content{t..c} *\<^sub>R f c) + ?SUM p" proof (subst sum.union_disjoint) show "p \<inter> {(c, {t..c})} = {}" using \<open>t < c\<close> pt by force qed (use p'(1) in auto) also have "... = (c - t) *\<^sub>R f c + ?SUM p" using \<open>t \<le> c\<close> by auto finally show ?thesis . qed have "c - k < t" using \<open>k>0\<close> t(1) by (auto simp add: field_simps) moreover have "k \<le> w" proof (rule ccontr) assume "\<not> k \<le> w" then have "c + (k + w) / 2 \<notin> d c" by (auto simp add: field_simps not_le not_less dist_real_def d_def) then have "c + (k + w) / 2 \<notin> ball c k" using k by blast then show False using \<open>0 < w\<close> \<open>\<not> k \<le> w\<close> dist_real_def by auto qed ultimately have cwt: "c - w < t" by (auto simp add: field_simps) have eq: "integral {a..c} f - integral {a..t} f = -(((c - t) *\<^sub>R f c + ?SUM p) - integral {a..c} f) + (?SUM p - integral {a..t} f) + (c - t) *\<^sub>R f c" by auto have "norm (integral {a..c} f - integral {a..t} f) < e/3 + e/3 + e/3" unfolding eq proof (intro norm_triangle_lt add_strict_mono) show "norm (- ((c - t) *\<^sub>R f c + ?SUM p - integral {a..c} f)) < e/3" by (metis SUMEQ d1_fin norm_minus_cancel) show "norm (?SUM p - integral {a..t} f) < e/3" using d2_fin by blast show "norm ((c - t) *\<^sub>R f c) < e/3" using w cwt \<open>t < c\<close> by simp (simp add: field_simps) qed then show ?thesis by simp qed qed qed lemma indefinite_integral_continuous_right: fixes f :: "real \<Rightarrow> 'a::banach" assumes "f integrable_on {a..b}" and "a \<le> c" and "c < b" and "e > 0" obtains d where "0 < d" and "\<forall>t. c \<le> t \<and> t < c + d \<longrightarrow> norm (integral {a..c} f - integral {a..t} f) < e" proof - have intm: "(\<lambda>x. f (- x)) integrable_on {-b .. -a}" "- b < - c" "- c \<le> - a" using assms by auto from indefinite_integral_continuous_left[OF intm \<open>e>0\<close>] obtain d where "0 < d" and d: "\<And>t. \<lbrakk>- c - d < t; t \<le> -c\<rbrakk> \<Longrightarrow> norm (integral {- b..- c} (\<lambda>x. f (-x)) - integral {- b..t} (\<lambda>x. f (-x))) < e" by metis let ?d = "min d (b - c)" show ?thesis proof (intro that[of "?d"] allI impI) show "0 < ?d" using \<open>0 < d\<close> \<open>c < b\<close> by auto fix t :: real assume t: "c \<le> t \<and> t < c + ?d" have *: "integral {a..c} f = integral {a..b} f - integral {c..b} f" "integral {a..t} f = integral {a..b} f - integral {t..b} f" using assms t by (auto simp: algebra_simps integral_combine) have "(- c) - d < (- t)" "- t \<le> - c" using t by auto from d[OF this] show "norm (integral {a..c} f - integral {a..t} f) < e" by (auto simp add: algebra_simps norm_minus_commute *) qed qed lemma indefinite_integral_continuous_1: fixes f :: "real \<Rightarrow> 'a::banach" assumes "f integrable_on {a..b}" shows "continuous_on {a..b} (\<lambda>x. integral {a..x} f)" proof - have "\<exists>d>0. \<forall>x'\<in>{a..b}. dist x' x < d \<longrightarrow> dist (integral {a..x'} f) (integral {a..x} f) < e" if x: "x \<in> {a..b}" and "e > 0" for x e :: real proof (cases "a = b") case True with that show ?thesis by force next case False with x have "a < b" by force with x consider "x = a" | "x = b" | "a < x" "x < b" by force then show ?thesis proof cases case 1 then show ?thesis by (force simp: dist_norm algebra_simps intro: indefinite_integral_continuous_right [OF assms _ \<open>a < b\<close> \<open>e > 0\<close>]) next case 2 then show ?thesis by (force simp: dist_norm norm_minus_commute algebra_simps intro: indefinite_integral_continuous_left [OF assms \<open>a < b\<close> _ \<open>e > 0\<close>]) next case 3 obtain d1 where "0 < d1" and d1: "\<And>t. \<lbrakk>x - d1 < t; t \<le> x\<rbrakk> \<Longrightarrow> norm (integral {a..x} f - integral {a..t} f) < e" using 3 by (auto intro: indefinite_integral_continuous_left [OF assms \<open>a < x\<close> _ \<open>e > 0\<close>]) obtain d2 where "0 < d2" and d2: "\<And>t. \<lbrakk>x \<le> t; t < x + d2\<rbrakk> \<Longrightarrow> norm (integral {a..x} f - integral {a..t} f) < e" using 3 by (auto intro: indefinite_integral_continuous_right [OF assms _ \<open>x < b\<close> \<open>e > 0\<close>]) show ?thesis proof (intro exI ballI conjI impI) show "0 < min d1 d2" using \<open>0 < d1\<close> \<open>0 < d2\<close> by simp show "dist (integral {a..y} f) (integral {a..x} f) < e" if "y \<in> {a..b}" "dist y x < min d1 d2" for y proof (cases "y < x") case True with that d1 show ?thesis by (auto simp: dist_commute dist_norm) next case False with that d2 show ?thesis by (auto simp: dist_commute dist_norm) qed qed qed qed then show ?thesis by (auto simp: continuous_on_iff) qed lemma indefinite_integral_continuous_1': fixes f::"real \<Rightarrow> 'a::banach" assumes "f integrable_on {a..b}" shows "continuous_on {a..b} (\<lambda>x. integral {x..b} f)" proof - have "integral {a..b} f - integral {a..x} f = integral {x..b} f" if "x \<in> {a..b}" for x using integral_combine[OF _ _ assms, of x] that by (auto simp: algebra_simps) with _ show ?thesis by (rule continuous_on_eq) (auto intro!: continuous_intros indefinite_integral_continuous_1 assms) qed theorem integral_has_vector_derivative': fixes f :: "real \<Rightarrow> 'b::banach" assumes "continuous_on {a..b} f" and "x \<in> {a..b}" shows "((\<lambda>u. integral {u..b} f) has_vector_derivative - f x) (at x within {a..b})" proof - have *: "integral {x..b} f = integral {a .. b} f - integral {a .. x} f" if "a \<le> x" "x \<le> b" for x using integral_combine[of a x b for x, OF that integrable_continuous_real[OF assms(1)]] by (simp add: algebra_simps) show ?thesis using \<open>x \<in> _\<close> * by (rule has_vector_derivative_transform) (auto intro!: derivative_eq_intros assms integral_has_vector_derivative) qed lemma integral_has_real_derivative': assumes "continuous_on {a..b} g" assumes "t \<in> {a..b}" shows "((\<lambda>x. integral {x..b} g) has_real_derivative -g t) (at t within {a..b})" using integral_has_vector_derivative'[OF assms] by (auto simp: has_real_derivative_iff_has_vector_derivative) subsection \<open>This doesn't directly involve integration, but that gives an easy proof\<close> lemma has_derivative_zero_unique_strong_interval: fixes f :: "real \<Rightarrow> 'a::banach" assumes "finite k" and contf: "continuous_on {a..b} f" and "f a = y" and fder: "\<And>x. x \<in> {a..b} - k \<Longrightarrow> (f has_derivative (\<lambda>h. 0)) (at x within {a..b})" and x: "x \<in> {a..b}" shows "f x = y" proof - have "a \<le> b" "a \<le> x" using assms by auto have "((\<lambda>x. 0::'a) has_integral f x - f a) {a..x}" proof (rule fundamental_theorem_of_calculus_interior_strong[OF \<open>finite k\<close> \<open>a \<le> x\<close>]; clarify?) have "{a..x} \<subseteq> {a..b}" using x by auto then show "continuous_on {a..x} f" by (rule continuous_on_subset[OF contf]) show "(f has_vector_derivative 0) (at z)" if z: "z \<in> {a<..<x}" and notin: "z \<notin> k" for z unfolding has_vector_derivative_def proof (simp add: at_within_open[OF z, symmetric]) show "(f has_derivative (\<lambda>x. 0)) (at z within {a<..<x})" by (rule has_derivative_subset [OF fder]) (use x z notin in auto) qed qed from has_integral_unique[OF has_integral_0 this] show ?thesis unfolding assms by auto qed subsection \<open>Generalize a bit to any convex set\<close> lemma has_derivative_zero_unique_strong_convex: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes "convex S" "finite K" and contf: "continuous_on S f" and "c \<in> S" "f c = y" and derf: "\<And>x. x \<in> S - K \<Longrightarrow> (f has_derivative (\<lambda>h. 0)) (at x within S)" and "x \<in> S" shows "f x = y" proof (cases "x = c") case True with \<open>f c = y\<close> show ?thesis by blast next case False let ?\<phi> = "\<lambda>u. (1 - u) *\<^sub>R c + u *\<^sub>R x" have contf': "continuous_on {0 ..1} (f \<circ> ?\<phi>)" proof (rule continuous_intros continuous_on_subset[OF contf])+ show "(\<lambda>u. (1 - u) *\<^sub>R c + u *\<^sub>R x) ` {0..1} \<subseteq> S" using \<open>convex S\<close> \<open>x \<in> S\<close> \<open>c \<in> S\<close> by (auto simp add: convex_alt algebra_simps) qed have "t = u" if "?\<phi> t = ?\<phi> u" for t u proof - from that have "(t - u) *\<^sub>R x = (t - u) *\<^sub>R c" by (auto simp add: algebra_simps) then show ?thesis using \<open>x \<noteq> c\<close> by auto qed then have eq: "(SOME t. ?\<phi> t = ?\<phi> u) = u" for u by blast then have "(?\<phi> -` K) \<subseteq> (\<lambda>z. SOME t. ?\<phi> t = z) ` K" by (clarsimp simp: image_iff) (metis (no_types) eq) then have fin: "finite (?\<phi> -` K)" by (rule finite_surj[OF \<open>finite K\<close>]) have derf': "((\<lambda>u. f (?\<phi> u)) has_derivative (\<lambda>h. 0)) (at t within {0..1})" if "t \<in> {0..1} - {t. ?\<phi> t \<in> K}" for t proof - have df: "(f has_derivative (\<lambda>h. 0)) (at (?\<phi> t) within ?\<phi> ` {0..1})" using \<open>convex S\<close> \<open>x \<in> S\<close> \<open>c \<in> S\<close> that by (auto simp add: convex_alt algebra_simps intro: has_derivative_subset [OF derf]) have "(f \<circ> ?\<phi> has_derivative (\<lambda>x. 0) \<circ> (\<lambda>z. (0 - z *\<^sub>R c) + z *\<^sub>R x)) (at t within {0..1})" by (rule derivative_eq_intros df | simp)+ then show ?thesis unfolding o_def . qed have "(f \<circ> ?\<phi>) 1 = y" apply (rule has_derivative_zero_unique_strong_interval[OF fin contf']) unfolding o_def using \<open>f c = y\<close> derf' by auto then show ?thesis by auto qed text \<open>Also to any open connected set with finite set of exceptions. Could generalize to locally convex set with limpt-free set of exceptions.\<close> lemma has_derivative_zero_unique_strong_connected: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes "connected S" and "open S" and "finite K" and contf: "continuous_on S f" and "c \<in> S" and "f c = y" and derf: "\<And>x. x \<in> S - K \<Longrightarrow> (f has_derivative (\<lambda>h. 0)) (at x within S)" and "x \<in> S" shows "f x = y" proof - have "\<exists>e>0. ball x e \<subseteq> (S \<inter> f -` {f x})" if "x \<in> S" for x proof - obtain e where "0 < e" and e: "ball x e \<subseteq> S" using \<open>x \<in> S\<close> \<open>open S\<close> open_contains_ball by blast have "ball x e \<subseteq> {u \<in> S. f u \<in> {f x}}" proof safe fix y assume y: "y \<in> ball x e" then show "y \<in> S" using e by auto show "f y = f x" proof (rule has_derivative_zero_unique_strong_convex[OF convex_ball \<open>finite K\<close>]) show "continuous_on (ball x e) f" using contf continuous_on_subset e by blast show "(f has_derivative (\<lambda>h. 0)) (at u within ball x e)" if "u \<in> ball x e - K" for u by (metis Diff_iff contra_subsetD derf e has_derivative_subset that) qed (use y e \<open>0 < e\<close> in auto) qed then show "\<exists>e>0. ball x e \<subseteq> (S \<inter> f -` {f x})" using \<open>0 < e\<close> by blast qed then have "openin (top_of_set S) (S \<inter> f -` {y})" by (auto intro!: open_openin_trans[OF \<open>open S\<close>] simp: open_contains_ball) moreover have "closedin (top_of_set S) (S \<inter> f -` {y})" by (force intro!: continuous_closedin_preimage [OF contf]) ultimately have "(S \<inter> f -` {y}) = {} \<or> (S \<inter> f -` {y}) = S" using \<open>connected S\<close> by (simp add: connected_clopen) then show ?thesis using \<open>x \<in> S\<close> \<open>f c = y\<close> \<open>c \<in> S\<close> by auto qed lemma has_derivative_zero_connected_constant: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes "connected S" and "open S" and "finite k" and "continuous_on S f" and "\<forall>x\<in>(S - k). (f has_derivative (\<lambda>h. 0)) (at x within S)" obtains c where "\<And>x. x \<in> S \<Longrightarrow> f(x) = c" proof (cases "S = {}") case True then show ?thesis by (metis empty_iff that) next case False then obtain c where "c \<in> S" by (metis equals0I) then show ?thesis by (metis has_derivative_zero_unique_strong_connected assms that) qed lemma DERIV_zero_connected_constant: fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a" assumes "connected S" and "open S" and "finite K" and "continuous_on S f" and "\<forall>x\<in>(S - K). DERIV f x :> 0" obtains c where "\<And>x. x \<in> S \<Longrightarrow> f(x) = c" using has_derivative_zero_connected_constant [OF assms(1-4)] assms by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def) subsection \<open>Integrating characteristic function of an interval\<close> lemma has_integral_restrict_open_subinterval: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes intf: "(f has_integral i) (cbox c d)" and cb: "cbox c d \<subseteq> cbox a b" shows "((\<lambda>x. if x \<in> box c d then f x else 0) has_integral i) (cbox a b)" proof (cases "cbox c d = {}") case True then have "box c d = {}" by (metis bot.extremum_uniqueI box_subset_cbox) then show ?thesis using True intf by auto next case False then obtain p where pdiv: "p division_of cbox a b" and inp: "cbox c d \<in> p" using cb partial_division_extend_1 by blast define g where [abs_def]: "g x = (if x \<in>box c d then f x else 0)" for x interpret operative "lift_option plus" "Some (0 :: 'b)" "\<lambda>i. if g integrable_on i then Some (integral i g) else None" by (fact operative_integralI) note operat = division [OF pdiv, symmetric] show ?thesis proof (cases "(g has_integral i) (cbox a b)") case True then show ?thesis by (simp add: g_def) next case False have iterate:"F (\<lambda>i. if g integrable_on i then Some (integral i g) else None) (p - {cbox c d}) = Some 0" proof (intro neutral ballI) fix x assume x: "x \<in> p - {cbox c d}" then have "x \<in> p" by auto then obtain u v where uv: "x = cbox u v" using pdiv by blast have "interior x \<inter> interior (cbox c d) = {}" using pdiv inp x by blast then have "(g has_integral 0) x" unfolding uv using has_integral_spike_interior[where f="\<lambda>x. 0"] by (metis (no_types, lifting) disjoint_iff_not_equal g_def has_integral_0_eq interior_cbox) then show "(if g integrable_on x then Some (integral x g) else None) = Some 0" by auto qed interpret comm_monoid_set "lift_option plus" "Some (0 :: 'b)" by (intro comm_monoid_set.intro comm_monoid_lift_option add.comm_monoid_axioms) have intg: "g integrable_on cbox c d" using integrable_spike_interior[where f=f] by (meson g_def has_integral_integrable intf) moreover have "integral (cbox c d) g = i" proof (rule has_integral_unique[OF has_integral_spike_interior intf]) show "\<And>x. x \<in> box c d \<Longrightarrow> f x = g x" by (auto simp: g_def) show "(g has_integral integral (cbox c d) g) (cbox c d)" by (rule integrable_integral[OF intg]) qed ultimately have "F (\<lambda>A. if g integrable_on A then Some (integral A g) else None) p = Some i" by (metis (full_types, lifting) division_of_finite inp iterate pdiv remove right_neutral) then have "(g has_integral i) (cbox a b)" by (metis integrable_on_def integral_unique operat option.inject option.simps(3)) with False show ?thesis by blast qed qed lemma has_integral_restrict_closed_subinterval: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes "(f has_integral i) (cbox c d)" and "cbox c d \<subseteq> cbox a b" shows "((\<lambda>x. if x \<in> cbox c d then f x else 0) has_integral i) (cbox a b)" proof - note has_integral_restrict_open_subinterval[OF assms] note * = has_integral_spike[OF negligible_frontier_interval _ this] show ?thesis by (rule *[of c d]) (use box_subset_cbox[of c d] in auto) qed lemma has_integral_restrict_closed_subintervals_eq: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes "cbox c d \<subseteq> cbox a b" shows "((\<lambda>x. if x \<in> cbox c d then f x else 0) has_integral i) (cbox a b) \<longleftrightarrow> (f has_integral i) (cbox c d)" (is "?l = ?r") proof (cases "cbox c d = {}") case False let ?g = "\<lambda>x. if x \<in> cbox c d then f x else 0" show ?thesis proof assume ?l then have "?g integrable_on cbox c d" using assms has_integral_integrable integrable_subinterval by blast then have "f integrable_on cbox c d" by (rule integrable_eq) auto moreover then have "i = integral (cbox c d) f" by (meson \<open>((\<lambda>x. if x \<in> cbox c d then f x else 0) has_integral i) (cbox a b)\<close> assms has_integral_restrict_closed_subinterval has_integral_unique integrable_integral) ultimately show ?r by auto next assume ?r then show ?l by (rule has_integral_restrict_closed_subinterval[OF _ assms]) qed qed auto text \<open>Hence we can apply the limit process uniformly to all integrals.\<close> lemma has_integral': fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" shows "(f has_integral i) S \<longleftrightarrow> (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> S then f(x) else 0) has_integral z) (cbox a b) \<and> norm(z - i) < e))" (is "?l \<longleftrightarrow> (\<forall>e>0. ?r e)") proof (cases "\<exists>a b. S = cbox a b") case False then show ?thesis by (simp add: has_integral_alt) next case True then obtain a b where S: "S = cbox a b" by blast obtain B where " 0 < B" and B: "\<And>x. x \<in> cbox a b \<Longrightarrow> norm x \<le> B" using bounded_cbox[unfolded bounded_pos] by blast show ?thesis proof safe fix e :: real assume ?l and "e > 0" have "((\<lambda>x. if x \<in> S then f x else 0) has_integral i) (cbox c d)" if "ball 0 (B+1) \<subseteq> cbox c d" for c d unfolding S using B that by (force intro: \<open>?l\<close>[unfolded S] has_integral_restrict_closed_subinterval) then show "?r e" by (meson \<open>0 < B\<close> \<open>0 < e\<close> add_pos_pos le_less_trans zero_less_one norm_pths(2)) next assume as: "\<forall>e>0. ?r e" then obtain C where C: "\<And>a b. ball 0 C \<subseteq> cbox a b \<Longrightarrow> \<exists>z. ((\<lambda>x. if x \<in> S then f x else 0) has_integral z) (cbox a b)" by (meson zero_less_one) define c :: 'n where "c = (\<Sum>i\<in>Basis. (- max B C) *\<^sub>R i)" define d :: 'n where "d = (\<Sum>i\<in>Basis. max B C *\<^sub>R i)" have "c \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> d \<bullet> i" if "norm x \<le> B" "i \<in> Basis" for x i using that and Basis_le_norm[OF \<open>i\<in>Basis\<close>, of x] by (auto simp add: field_simps sum_negf c_def d_def) then have c_d: "cbox a b \<subseteq> cbox c d" by (meson B mem_box(2) subsetI) have "c \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> d \<bullet> i" if x: "norm (0 - x) < C" and i: "i \<in> Basis" for x i using Basis_le_norm[OF i, of x] x i by (auto simp: sum_negf c_def d_def) then have "ball 0 C \<subseteq> cbox c d" by (auto simp: mem_box dist_norm) with C obtain y where y: "(f has_integral y) (cbox a b)" using c_d has_integral_restrict_closed_subintervals_eq S by blast have "y = i" proof (rule ccontr) assume "y \<noteq> i" then have "0 < norm (y - i)" by auto from as[rule_format,OF this] obtain C where C: "\<And>a b. ball 0 C \<subseteq> cbox a b \<Longrightarrow> \<exists>z. ((\<lambda>x. if x \<in> S then f x else 0) has_integral z) (cbox a b) \<and> norm (z-i) < norm (y-i)" by auto define c :: 'n where "c = (\<Sum>i\<in>Basis. (- max B C) *\<^sub>R i)" define d :: 'n where "d = (\<Sum>i\<in>Basis. max B C *\<^sub>R i)" have "c \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> d \<bullet> i" if "norm x \<le> B" and "i \<in> Basis" for x i using that Basis_le_norm[of i x] by (auto simp add: field_simps sum_negf c_def d_def) then have c_d: "cbox a b \<subseteq> cbox c d" by (simp add: B mem_box(2) subset_eq) have "c \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> d \<bullet> i" if "norm (0 - x) < C" and "i \<in> Basis" for x i using Basis_le_norm[of i x] that by (auto simp: sum_negf c_def d_def) then have "ball 0 C \<subseteq> cbox c d" by (auto simp: mem_box dist_norm) with C obtain z where z: "(f has_integral z) (cbox a b)" "norm (z-i) < norm (y-i)" using has_integral_restrict_closed_subintervals_eq[OF c_d] S by blast moreover then have "z = y" by (blast intro: has_integral_unique[OF _ y]) ultimately show False by auto qed then show ?l using y by (auto simp: S) qed qed lemma has_integral_le: fixes f :: "'n::euclidean_space \<Rightarrow> real" assumes fg: "(f has_integral i) S" "(g has_integral j) S" and le: "\<And>x. x \<in> S \<Longrightarrow> f x \<le> g x" shows "i \<le> j" using has_integral_component_le[OF _ fg, of 1] le by auto lemma integral_le: fixes f :: "'n::euclidean_space \<Rightarrow> real" assumes "f integrable_on S" and "g integrable_on S" and "\<And>x. x \<in> S \<Longrightarrow> f x \<le> g x" shows "integral S f \<le> integral S g" by (rule has_integral_le[OF assms(1,2)[unfolded has_integral_integral] assms(3)]) lemma has_integral_nonneg: fixes f :: "'n::euclidean_space \<Rightarrow> real" assumes "(f has_integral i) S" and "\<And>x. x \<in> S \<Longrightarrow> 0 \<le> f x" shows "0 \<le> i" using has_integral_component_nonneg[of 1 f i S] unfolding o_def using assms by auto lemma integral_nonneg: fixes f :: "'n::euclidean_space \<Rightarrow> real" assumes f: "f integrable_on S" and 0: "\<And>x. x \<in> S \<Longrightarrow> 0 \<le> f x" shows "0 \<le> integral S f" by (rule has_integral_nonneg[OF f[unfolded has_integral_integral] 0]) text \<open>Hence a general restriction property.\<close> lemma has_integral_restrict [simp]: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" assumes "S \<subseteq> T" shows "((\<lambda>x. if x \<in> S then f x else 0) has_integral i) T \<longleftrightarrow> (f has_integral i) S" proof - have *: "\<And>x. (if x \<in> T then if x \<in> S then f x else 0 else 0) = (if x\<in>S then f x else 0)" using assms by auto show ?thesis apply (subst(2) has_integral') apply (subst has_integral') apply (simp add: *) done qed corollary has_integral_restrict_UNIV: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" shows "((\<lambda>x. if x \<in> s then f x else 0) has_integral i) UNIV \<longleftrightarrow> (f has_integral i) s" by auto lemma has_integral_restrict_Int: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" shows "((\<lambda>x. if x \<in> S then f x else 0) has_integral i) T \<longleftrightarrow> (f has_integral i) (S \<inter> T)" proof - have "((\<lambda>x. if x \<in> T then if x \<in> S then f x else 0 else 0) has_integral i) UNIV = ((\<lambda>x. if x \<in> S \<inter> T then f x else 0) has_integral i) UNIV" by (rule has_integral_cong) auto then show ?thesis using has_integral_restrict_UNIV by fastforce qed lemma integral_restrict_Int: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" shows "integral T (\<lambda>x. if x \<in> S then f x else 0) = integral (S \<inter> T) f" by (metis (no_types, lifting) has_integral_cong has_integral_restrict_Int integrable_integral integral_unique not_integrable_integral) lemma integrable_restrict_Int: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" shows "(\<lambda>x. if x \<in> S then f x else 0) integrable_on T \<longleftrightarrow> f integrable_on (S \<inter> T)" using has_integral_restrict_Int by fastforce lemma has_integral_on_superset: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes f: "(f has_integral i) S" and "\<And>x. x \<notin> S \<Longrightarrow> f x = 0" and "S \<subseteq> T" shows "(f has_integral i) T" proof - have "(\<lambda>x. if x \<in> S then f x else 0) = (\<lambda>x. if x \<in> T then f x else 0)" using assms by fastforce with f show ?thesis by (simp only: has_integral_restrict_UNIV [symmetric, of f]) qed lemma integrable_on_superset: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "f integrable_on S" and "\<And>x. x \<notin> S \<Longrightarrow> f x = 0" and "S \<subseteq> t" shows "f integrable_on t" using assms unfolding integrable_on_def by (auto intro:has_integral_on_superset) lemma integral_restrict_UNIV: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" shows "integral UNIV (\<lambda>x. if x \<in> S then f x else 0) = integral S f" by (simp add: integral_restrict_Int) lemma integrable_restrict_UNIV: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" shows "(\<lambda>x. if x \<in> s then f x else 0) integrable_on UNIV \<longleftrightarrow> f integrable_on s" unfolding integrable_on_def by auto lemma has_integral_subset_component_le: fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" assumes k: "k \<in> Basis" and as: "S \<subseteq> T" "(f has_integral i) S" "(f has_integral j) T" "\<And>x. x\<in>T \<Longrightarrow> 0 \<le> f(x)\<bullet>k" shows "i\<bullet>k \<le> j\<bullet>k" proof - have \<section>: "((\<lambda>x. if x \<in> S then f x else 0) has_integral i) UNIV" "((\<lambda>x. if x \<in> T then f x else 0) has_integral j) UNIV" by (simp_all add: assms) show ?thesis using as by (force intro!: has_integral_component_le[OF k \<section>]) qed subsection\<open>Integrals on set differences\<close> lemma has_integral_setdiff: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes S: "(f has_integral i) S" and T: "(f has_integral j) T" and neg: "negligible (T - S)" shows "(f has_integral (i - j)) (S - T)" proof - show ?thesis unfolding has_integral_restrict_UNIV [symmetric, of f] proof (rule has_integral_spike [OF neg]) have eq: "(\<lambda>x. (if x \<in> S then f x else 0) - (if x \<in> T then f x else 0)) = (\<lambda>x. if x \<in> T - S then - f x else if x \<in> S - T then f x else 0)" by (force simp add: ) have "((\<lambda>x. if x \<in> S then f x else 0) has_integral i) UNIV" "((\<lambda>x. if x \<in> T then f x else 0) has_integral j) UNIV" using S T has_integral_restrict_UNIV by auto from has_integral_diff [OF this] show "((\<lambda>x. if x \<in> T - S then - f x else if x \<in> S - T then f x else 0) has_integral i-j) UNIV" by (simp add: eq) qed force qed lemma integral_setdiff: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes "f integrable_on S" "f integrable_on T" "negligible(T - S)" shows "integral (S - T) f = integral S f - integral T f" by (rule integral_unique) (simp add: assms has_integral_setdiff integrable_integral) lemma integrable_setdiff: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" assumes "(f has_integral i) S" "(f has_integral j) T" "negligible (T - S)" shows "f integrable_on (S - T)" using has_integral_setdiff [OF assms] by (simp add: has_integral_iff) lemma negligible_setdiff [simp]: "T \<subseteq> S \<Longrightarrow> negligible (T - S)" by (metis Diff_eq_empty_iff negligible_empty) lemma negligible_on_intervals: "negligible s \<longleftrightarrow> (\<forall>a b. negligible(s \<inter> cbox a b))" (is "?l \<longleftrightarrow> ?r") proof assume R: ?r show ?l unfolding negligible_def proof safe fix a b have "negligible (s \<inter> cbox a b)" by (simp add: R) then show "(indicator s has_integral 0) (cbox a b)" by (meson Diff_iff Int_iff has_integral_negligible indicator_simps(2)) qed qed (simp add: negligible_Int) lemma negligible_translation: assumes "negligible S" shows "negligible ((+) c ` S)" proof - have inj: "inj ((+) c)" by simp show ?thesis using assms proof (clarsimp simp: negligible_def) fix a b assume "\<forall>x y. (indicator S has_integral 0) (cbox x y)" then have *: "(indicator S has_integral 0) (cbox (a-c) (b-c))" by (meson Diff_iff assms has_integral_negligible indicator_simps(2)) have eq: "indicator ((+) c ` S) = (\<lambda>x. indicator S (x - c))" by (force simp add: indicator_def) show "(indicator ((+) c ` S) has_integral 0) (cbox a b)" using has_integral_affinity [OF *, of 1 "-c"] cbox_translation [of "c" "-c+a" "-c+b"] by (simp add: eq) (simp add: ac_simps) qed qed lemma negligible_translation_rev: assumes "negligible ((+) c ` S)" shows "negligible S" by (metis negligible_translation [OF assms, of "-c"] translation_galois) lemma negligible_atLeastAtMostI: "b \<le> a \<Longrightarrow> negligible {a..(b::real)}" using negligible_insert by fastforce lemma has_integral_spike_set_eq: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "negligible {x \<in> S - T. f x \<noteq> 0}" "negligible {x \<in> T - S. f x \<noteq> 0}" shows "(f has_integral y) S \<longleftrightarrow> (f has_integral y) T" proof - have "((\<lambda>x. if x \<in> S then f x else 0) has_integral y) UNIV = ((\<lambda>x. if x \<in> T then f x else 0) has_integral y) UNIV" proof (rule has_integral_spike_eq) show "negligible ({x \<in> S - T. f x \<noteq> 0} \<union> {x \<in> T - S. f x \<noteq> 0})" by (rule negligible_Un [OF assms]) qed auto then show ?thesis by (simp add: has_integral_restrict_UNIV) qed corollary integral_spike_set: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "negligible {x \<in> S - T. f x \<noteq> 0}" "negligible {x \<in> T - S. f x \<noteq> 0}" shows "integral S f = integral T f" using has_integral_spike_set_eq [OF assms] by (metis eq_integralD integral_unique) lemma integrable_spike_set: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes f: "f integrable_on S" and neg: "negligible {x \<in> S - T. f x \<noteq> 0}" "negligible {x \<in> T - S. f x \<noteq> 0}" shows "f integrable_on T" using has_integral_spike_set_eq [OF neg] f by blast lemma integrable_spike_set_eq: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "negligible ((S - T) \<union> (T - S))" shows "f integrable_on S \<longleftrightarrow> f integrable_on T" by (blast intro: integrable_spike_set assms negligible_subset) lemma integrable_on_insert_iff: "f integrable_on (insert x X) \<longleftrightarrow> f integrable_on X" for f::"_ \<Rightarrow> 'a::banach" by (rule integrable_spike_set_eq) (auto simp: insert_Diff_if) lemma has_integral_interior: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" shows "negligible(frontier S) \<Longrightarrow> (f has_integral y) (interior S) \<longleftrightarrow> (f has_integral y) S" by (rule has_integral_spike_set_eq [OF empty_imp_negligible negligible_subset]) (use interior_subset in \<open>auto simp: frontier_def closure_def\<close>) lemma has_integral_closure: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" shows "negligible(frontier S) \<Longrightarrow> (f has_integral y) (closure S) \<longleftrightarrow> (f has_integral y) S" by (rule has_integral_spike_set_eq [OF negligible_subset empty_imp_negligible]) (auto simp: closure_Un_frontier ) lemma has_integral_open_interval: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" shows "(f has_integral y) (box a b) \<longleftrightarrow> (f has_integral y) (cbox a b)" unfolding interior_cbox [symmetric] by (metis frontier_cbox has_integral_interior negligible_frontier_interval) lemma integrable_on_open_interval: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" shows "f integrable_on box a b \<longleftrightarrow> f integrable_on cbox a b" by (simp add: has_integral_open_interval integrable_on_def) lemma integral_open_interval: fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: banach" shows "integral(box a b) f = integral(cbox a b) f" by (metis has_integral_integrable_integral has_integral_open_interval not_integrable_integral) lemma has_integral_Icc_iff_Ioo: fixes f :: "real \<Rightarrow> 'a :: banach" shows "(f has_integral I) {a..b} \<longleftrightarrow> (f has_integral I) {a<..<b}" proof (rule has_integral_spike_set_eq) show "negligible {x \<in> {a..b} - {a<..<b}. f x \<noteq> 0}" by (rule negligible_subset [of "{a,b}"]) auto show "negligible {x \<in> {a<..<b} - {a..b}. f x \<noteq> 0}" by (rule negligible_subset [of "{}"]) auto qed lemma integrable_on_Icc_iff_Ioo: fixes f :: "real \<Rightarrow> 'a :: banach" shows "f integrable_on {a..b} \<longleftrightarrow> f integrable_on {a<..<b}" using has_integral_Icc_iff_Ioo by blast subsection \<open>More lemmas that are useful later\<close> lemma has_integral_subset_le: fixes f :: "'n::euclidean_space \<Rightarrow> real" assumes "s \<subseteq> t" and "(f has_integral i) s" and "(f has_integral j) t" and "\<forall>x\<in>t. 0 \<le> f x" shows "i \<le> j" using has_integral_subset_component_le[OF _ assms(1), of 1 f i j] using assms by auto lemma integral_subset_component_le: fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" assumes "k \<in> Basis" and "s \<subseteq> t" and "f integrable_on s" and "f integrable_on t" and "\<forall>x \<in> t. 0 \<le> f x \<bullet> k" shows "(integral s f)\<bullet>k \<le> (integral t f)\<bullet>k" by (meson assms has_integral_subset_component_le integrable_integral) lemma integral_subset_le: fixes f :: "'n::euclidean_space \<Rightarrow> real" assumes "s \<subseteq> t" and "f integrable_on s" and "f integrable_on t" and "\<forall>x \<in> t. 0 \<le> f x" shows "integral s f \<le> integral t f" using assms has_integral_subset_le by blast lemma has_integral_alt': fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" shows "(f has_integral i) s \<longleftrightarrow> (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on cbox a b) \<and> (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> norm (integral (cbox a b) (\<lambda>x. if x \<in> s then f x else 0) - i) < e)" (is "?l = ?r") proof assume rhs: ?r show ?l proof (subst has_integral', intro allI impI) fix e::real assume "e > 0" from rhs[THEN conjunct2,rule_format,OF this] show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then f x else 0) has_integral z) (cbox a b) \<and> norm (z - i) < e)" by (simp add: has_integral_iff rhs) qed next let ?\<Phi> = "\<lambda>e a b. \<exists>z. ((\<lambda>x. if x \<in> s then f x else 0) has_integral z) (cbox a b) \<and> norm (z - i) < e" assume ?l then have lhs: "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> ?\<Phi> e a b" if "e > 0" for e using that has_integral'[of f] by auto let ?f = "\<lambda>x. if x \<in> s then f x else 0" show ?r proof (intro conjI allI impI) fix a b :: 'n from lhs[OF zero_less_one] obtain B where "0 < B" and B: "\<And>a b. ball 0 B \<subseteq> cbox a b \<Longrightarrow> ?\<Phi> 1 a b" by blast let ?a = "\<Sum>i\<in>Basis. min (a\<bullet>i) (-B) *\<^sub>R i::'n" let ?b = "\<Sum>i\<in>Basis. max (b\<bullet>i) B *\<^sub>R i::'n" show "?f integrable_on cbox a b" proof (rule integrable_subinterval[of _ ?a ?b]) have "?a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> ?b \<bullet> i" if "norm (0 - x) < B" "i \<in> Basis" for x i using Basis_le_norm[of i x] that by (auto simp add:field_simps) then have "ball 0 B \<subseteq> cbox ?a ?b" by (auto simp: mem_box dist_norm) then show "?f integrable_on cbox ?a ?b" unfolding integrable_on_def using B by blast show "cbox a b \<subseteq> cbox ?a ?b" by (force simp: mem_box) qed fix e :: real assume "e > 0" with lhs show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> norm (integral (cbox a b) (\<lambda>x. if x \<in> s then f x else 0) - i) < e" by (metis (no_types, lifting) has_integral_integrable_integral) qed qed subsection \<open>Continuity of the integral (for a 1-dimensional interval)\<close> lemma integrable_alt: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" shows "f integrable_on s \<longleftrightarrow> (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on cbox a b) \<and> (\<forall>e>0. \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d \<longrightarrow> norm (integral (cbox a b) (\<lambda>x. if x \<in> s then f x else 0) - integral (cbox c d) (\<lambda>x. if x \<in> s then f x else 0)) < e)" (is "?l = ?r") proof let ?F = "\<lambda>x. if x \<in> s then f x else 0" assume ?l then obtain y where intF: "\<And>a b. ?F integrable_on cbox a b" and y: "\<And>e. 0 < e \<Longrightarrow> \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> norm (integral (cbox a b) ?F - y) < e" unfolding integrable_on_def has_integral_alt'[of f] by auto show ?r proof (intro conjI allI impI intF) fix e::real assume "e > 0" then have "e/2 > 0" by auto obtain B where "0 < B" and B: "\<And>a b. ball 0 B \<subseteq> cbox a b \<Longrightarrow> norm (integral (cbox a b) ?F - y) < e/2" using \<open>0 < e/2\<close> y by blast show "\<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d \<longrightarrow> norm (integral (cbox a b) ?F - integral (cbox c d) ?F) < e" proof (intro conjI exI impI allI, rule \<open>0 < B\<close>) fix a b c d::'n assume sub: "ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d" show "norm (integral (cbox a b) ?F - integral (cbox c d) ?F) < e" using sub by (auto intro: norm_triangle_half_l dest: B) qed qed next let ?F = "\<lambda>x. if x \<in> s then f x else 0" assume rhs: ?r let ?cube = "\<lambda>n. cbox (\<Sum>i\<in>Basis. - real n *\<^sub>R i::'n) (\<Sum>i\<in>Basis. real n *\<^sub>R i)" have "Cauchy (\<lambda>n. integral (?cube n) ?F)" unfolding Cauchy_def proof (intro allI impI) fix e::real assume "e > 0" with rhs obtain B where "0 < B" and B: "\<And>a b c d. ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d \<Longrightarrow> norm (integral (cbox a b) ?F - integral (cbox c d) ?F) < e" by blast obtain N where N: "B \<le> real N" using real_arch_simple by blast have "ball 0 B \<subseteq> ?cube n" if n: "n \<ge> N" for n proof - have "sum ((*\<^sub>R) (- real n)) Basis \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> sum ((*\<^sub>R) (real n)) Basis \<bullet> i" if "norm x < B" "i \<in> Basis" for x i::'n using Basis_le_norm[of i x] n N that by (auto simp add: field_simps sum_negf) then show ?thesis by (auto simp: mem_box dist_norm) qed then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (integral (?cube m) ?F) (integral (?cube n) ?F) < e" by (fastforce simp add: dist_norm intro!: B) qed then obtain i where i: "(\<lambda>n. integral (?cube n) ?F) \<longlonglongrightarrow> i" using convergent_eq_Cauchy by blast have "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> norm (integral (cbox a b) ?F - i) < e" if "e > 0" for e proof - have *: "e/2 > 0" using that by auto then obtain N where N: "\<And>n. N \<le> n \<Longrightarrow> norm (i - integral (?cube n) ?F) < e/2" using i[THEN LIMSEQ_D, simplified norm_minus_commute] by meson obtain B where "0 < B" and B: "\<And>a b c d. \<lbrakk>ball 0 B \<subseteq> cbox a b; ball 0 B \<subseteq> cbox c d\<rbrakk> \<Longrightarrow> norm (integral (cbox a b) ?F - integral (cbox c d) ?F) < e/2" using rhs * by meson let ?B = "max (real N) B" show ?thesis proof (intro exI conjI allI impI) show "0 < ?B" using \<open>B > 0\<close> by auto fix a b :: 'n assume "ball 0 ?B \<subseteq> cbox a b" moreover obtain n where n: "max (real N) B \<le> real n" using real_arch_simple by blast moreover have "ball 0 B \<subseteq> ?cube n" proof fix x :: 'n assume x: "x \<in> ball 0 B" have "\<lbrakk>norm (0 - x) < B; i \<in> Basis\<rbrakk> \<Longrightarrow> sum ((*\<^sub>R) (-n)) Basis \<bullet> i\<le> x \<bullet> i \<and> x \<bullet> i \<le> sum ((*\<^sub>R) n) Basis \<bullet> i" for i using Basis_le_norm[of i x] n by (auto simp add: field_simps sum_negf) then show "x \<in> ?cube n" using x by (auto simp: mem_box dist_norm) qed ultimately show "norm (integral (cbox a b) ?F - i) < e" using norm_triangle_half_l [OF B N] by force qed qed then show ?l unfolding integrable_on_def has_integral_alt'[of f] using rhs by blast qed lemma integrable_altD: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "f integrable_on s" shows "\<And>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on cbox a b" and "\<And>e. e > 0 \<Longrightarrow> \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d \<longrightarrow> norm (integral (cbox a b) (\<lambda>x. if x \<in> s then f x else 0) - integral (cbox c d) (\<lambda>x. if x \<in> s then f x else 0)) < e" using assms[unfolded integrable_alt[of f]] by auto lemma integrable_alt_subset: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::banach" shows "f integrable_on S \<longleftrightarrow> (\<forall>a b. (\<lambda>x. if x \<in> S then f x else 0) integrable_on cbox a b) \<and> (\<forall>e>0. \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> cbox a b \<and> cbox a b \<subseteq> cbox c d \<longrightarrow> norm(integral (cbox a b) (\<lambda>x. if x \<in> S then f x else 0) - integral (cbox c d) (\<lambda>x. if x \<in> S then f x else 0)) < e)" (is "_ = ?rhs") proof - let ?g = "\<lambda>x. if x \<in> S then f x else 0" have "f integrable_on S \<longleftrightarrow> (\<forall>a b. ?g integrable_on cbox a b) \<and> (\<forall>e>0. \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d \<longrightarrow> norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e)" by (rule integrable_alt) also have "\<dots> = ?rhs" proof - { fix e :: "real" assume e: "\<And>e. e>0 \<Longrightarrow> \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> cbox a b \<and> cbox a b \<subseteq> cbox c d \<longrightarrow> norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e" and "e > 0" obtain B where "B > 0" and B: "\<And>a b c d. \<lbrakk>ball 0 B \<subseteq> cbox a b; cbox a b \<subseteq> cbox c d\<rbrakk> \<Longrightarrow> norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e/2" using \<open>e > 0\<close> e [of "e/2"] by force have "\<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d \<longrightarrow> norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e" proof (intro exI allI conjI impI) fix a b c d :: "'a" let ?\<alpha> = "\<Sum>i\<in>Basis. max (a \<bullet> i) (c \<bullet> i) *\<^sub>R i" let ?\<beta> = "\<Sum>i\<in>Basis. min (b \<bullet> i) (d \<bullet> i) *\<^sub>R i" show "norm (integral (cbox a b) ?g - integral (cbox c d) ?g) < e" if ball: "ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d" proof - have B': "norm (integral (cbox a b \<inter> cbox c d) ?g - integral (cbox x y) ?g) < e/2" if "cbox a b \<inter> cbox c d \<subseteq> cbox x y" for x y using B [of ?\<alpha> ?\<beta> x y] ball that by (simp add: Int_interval [symmetric]) show ?thesis using B' [of a b] B' [of c d] norm_triangle_half_r by blast qed qed (use \<open>B > 0\<close> in auto)} then show ?thesis by force qed finally show ?thesis . qed lemma integrable_on_subcbox: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes intf: "f integrable_on S" and sub: "cbox a b \<subseteq> S" shows "f integrable_on cbox a b" proof - have "(\<lambda>x. if x \<in> S then f x else 0) integrable_on cbox a b" by (simp add: intf integrable_altD(1)) then show ?thesis by (metis (mono_tags) sub integrable_restrict_Int le_inf_iff order_refl subset_antisym) qed subsection \<open>A straddling criterion for integrability\<close> lemma integrable_straddle_interval: fixes f :: "'n::euclidean_space \<Rightarrow> real" assumes "\<And>e. e>0 \<Longrightarrow> \<exists>g h i j. (g has_integral i) (cbox a b) \<and> (h has_integral j) (cbox a b) \<and> \<bar>i - j\<bar> < e \<and> (\<forall>x\<in>cbox a b. (g x) \<le> f x \<and> f x \<le> h x)" shows "f integrable_on cbox a b" proof - have "\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of cbox a b \<and> d fine p1 \<and> p2 tagged_division_of cbox a b \<and> d fine p2 \<longrightarrow> \<bar>(\<Sum>(x,K)\<in>p1. content K *\<^sub>R f x) - (\<Sum>(x,K)\<in>p2. content K *\<^sub>R f x)\<bar> < e)" if "e > 0" for e proof - have e: "e/3 > 0" using that by auto then obtain g h i j where ij: "\<bar>i - j\<bar> < e/3" and "(g has_integral i) (cbox a b)" and "(h has_integral j) (cbox a b)" and fgh: "\<And>x. x \<in> cbox a b \<Longrightarrow> g x \<le> f x \<and> f x \<le> h x" using assms real_norm_def by metis then obtain d1 d2 where "gauge d1" "gauge d2" and d1: "\<And>p. \<lbrakk>p tagged_division_of cbox a b; d1 fine p\<rbrakk> \<Longrightarrow> \<bar>(\<Sum>(x,K)\<in>p. content K *\<^sub>R g x) - i\<bar> < e/3" and d2: "\<And>p. \<lbrakk>p tagged_division_of cbox a b; d2 fine p\<rbrakk> \<Longrightarrow> \<bar>(\<Sum>(x,K) \<in> p. content K *\<^sub>R h x) - j\<bar> < e/3" by (metis e has_integral real_norm_def) have "\<bar>(\<Sum>(x,K) \<in> p1. content K *\<^sub>R f x) - (\<Sum>(x,K) \<in> p2. content K *\<^sub>R f x)\<bar> < e" if p1: "p1 tagged_division_of cbox a b" and 11: "d1 fine p1" and 21: "d2 fine p1" and p2: "p2 tagged_division_of cbox a b" and 12: "d1 fine p2" and 22: "d2 fine p2" for p1 p2 proof - have *: "\<And>g1 g2 h1 h2 f1 f2. \<lbrakk>\<bar>g2 - i\<bar> < e/3; \<bar>g1 - i\<bar> < e/3; \<bar>h2 - j\<bar> < e/3; \<bar>h1 - j\<bar> < e/3; g1 - h2 \<le> f1 - f2; f1 - f2 \<le> h1 - g2\<rbrakk> \<Longrightarrow> \<bar>f1 - f2\<bar> < e" using \<open>e > 0\<close> ij by arith have 0: "(\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p1. content k *\<^sub>R g x) \<ge> 0" "0 \<le> (\<Sum>(x, k)\<in>p2. content k *\<^sub>R h x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)" "(\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R g x) \<ge> 0" "0 \<le> (\<Sum>(x, k)\<in>p1. content k *\<^sub>R h x) - (\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x)" unfolding sum_subtractf[symmetric] apply (auto intro!: sum_nonneg) apply (meson fgh measure_nonneg mult_left_mono tag_in_interval that sum_nonneg)+ done show ?thesis proof (rule *) show "\<bar>(\<Sum>(x,K) \<in> p2. content K *\<^sub>R g x) - i\<bar> < e/3" by (rule d1[OF p2 12]) show "\<bar>(\<Sum>(x,K) \<in> p1. content K *\<^sub>R g x) - i\<bar> < e/3" by (rule d1[OF p1 11]) show "\<bar>(\<Sum>(x,K) \<in> p2. content K *\<^sub>R h x) - j\<bar> < e/3" by (rule d2[OF p2 22]) show "\<bar>(\<Sum>(x,K) \<in> p1. content K *\<^sub>R h x) - j\<bar> < e/3" by (rule d2[OF p1 21]) qed (use 0 in auto) qed then show ?thesis by (rule_tac x="\<lambda>x. d1 x \<inter> d2 x" in exI) (auto simp: fine_Int intro: \<open>gauge d1\<close> \<open>gauge d2\<close> d1 d2) qed then show ?thesis by (simp add: integrable_Cauchy) qed lemma integrable_straddle: fixes f :: "'n::euclidean_space \<Rightarrow> real" assumes "\<And>e. e>0 \<Longrightarrow> \<exists>g h i j. (g has_integral i) s \<and> (h has_integral j) s \<and> \<bar>i - j\<bar> < e \<and> (\<forall>x\<in>s. g x \<le> f x \<and> f x \<le> h x)" shows "f integrable_on s" proof - let ?fs = "(\<lambda>x. if x \<in> s then f x else 0)" have "?fs integrable_on cbox a b" for a b proof (rule integrable_straddle_interval) fix e::real assume "e > 0" then have *: "e/4 > 0" by auto with assms obtain g h i j where g: "(g has_integral i) s" and h: "(h has_integral j) s" and ij: "\<bar>i - j\<bar> < e/4" and fgh: "\<And>x. x \<in> s \<Longrightarrow> g x \<le> f x \<and> f x \<le> h x" by metis let ?gs = "(\<lambda>x. if x \<in> s then g x else 0)" let ?hs = "(\<lambda>x. if x \<in> s then h x else 0)" obtain Bg where Bg: "\<And>a b. ball 0 Bg \<subseteq> cbox a b \<Longrightarrow> \<bar>integral (cbox a b) ?gs - i\<bar> < e/4" and int_g: "\<And>a b. ?gs integrable_on cbox a b" using g * unfolding has_integral_alt' real_norm_def by meson obtain Bh where Bh: "\<And>a b. ball 0 Bh \<subseteq> cbox a b \<Longrightarrow> \<bar>integral (cbox a b) ?hs - j\<bar> < e/4" and int_h: "\<And>a b. ?hs integrable_on cbox a b" using h * unfolding has_integral_alt' real_norm_def by meson define c where "c = (\<Sum>i\<in>Basis. min (a\<bullet>i) (- (max Bg Bh)) *\<^sub>R i)" define d where "d = (\<Sum>i\<in>Basis. max (b\<bullet>i) (max Bg Bh) *\<^sub>R i)" have "\<lbrakk>norm (0 - x) < Bg; i \<in> Basis\<rbrakk> \<Longrightarrow> c \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> d \<bullet> i" for x i using Basis_le_norm[of i x] unfolding c_def d_def by auto then have ballBg: "ball 0 Bg \<subseteq> cbox c d" by (auto simp: mem_box dist_norm) have "\<lbrakk>norm (0 - x) < Bh; i \<in> Basis\<rbrakk> \<Longrightarrow> c \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> d \<bullet> i" for x i using Basis_le_norm[of i x] unfolding c_def d_def by auto then have ballBh: "ball 0 Bh \<subseteq> cbox c d" by (auto simp: mem_box dist_norm) have ab_cd: "cbox a b \<subseteq> cbox c d" by (auto simp: c_def d_def subset_box_imp) have **: "\<And>ch cg ag ah::real. \<lbrakk>\<bar>ah - ag\<bar> \<le> \<bar>ch - cg\<bar>; \<bar>cg - i\<bar> < e/4; \<bar>ch - j\<bar> < e/4\<rbrakk> \<Longrightarrow> \<bar>ag - ah\<bar> < e" using ij by arith show "\<exists>g h i j. (g has_integral i) (cbox a b) \<and> (h has_integral j) (cbox a b) \<and> \<bar>i - j\<bar> < e \<and> (\<forall>x\<in>cbox a b. g x \<le> (if x \<in> s then f x else 0) \<and> (if x \<in> s then f x else 0) \<le> h x)" proof (intro exI ballI conjI) have eq: "\<And>x f g. (if x \<in> s then f x else 0) - (if x \<in> s then g x else 0) = (if x \<in> s then f x - g x else (0::real))" by auto have int_hg: "(\<lambda>x. if x \<in> s then h x - g x else 0) integrable_on cbox a b" "(\<lambda>x. if x \<in> s then h x - g x else 0) integrable_on cbox c d" by (metis (no_types) integrable_diff g h has_integral_integrable integrable_altD(1))+ show "(?gs has_integral integral (cbox a b) ?gs) (cbox a b)" "(?hs has_integral integral (cbox a b) ?hs) (cbox a b)" by (intro integrable_integral int_g int_h)+ then have "integral (cbox a b) ?gs \<le> integral (cbox a b) ?hs" using fgh by (force intro: has_integral_le) then have "0 \<le> integral (cbox a b) ?hs - integral (cbox a b) ?gs" by simp then have "\<bar>integral (cbox a b) ?hs - integral (cbox a b) ?gs\<bar> \<le> \<bar>integral (cbox c d) ?hs - integral (cbox c d) ?gs\<bar>" apply (simp add: integral_diff [symmetric] int_g int_h) apply (subst abs_of_nonneg[OF integral_nonneg[OF integrable_diff, OF int_h int_g]]) using fgh apply (force simp: eq intro!: integral_subset_le [OF ab_cd int_hg])+ done then show "\<bar>integral (cbox a b) ?gs - integral (cbox a b) ?hs\<bar> < e" using ** Bg ballBg Bh ballBh by blast show "\<And>x. x \<in> cbox a b \<Longrightarrow> ?gs x \<le> ?fs x" "\<And>x. x \<in> cbox a b \<Longrightarrow> ?fs x \<le> ?hs x" using fgh by auto qed qed then have int_f: "?fs integrable_on cbox a b" for a b by simp have "\<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> cbox a b \<and> ball 0 B \<subseteq> cbox c d \<longrightarrow> abs (integral (cbox a b) ?fs - integral (cbox c d) ?fs) < e" if "0 < e" for e proof - have *: "e/3 > 0" using that by auto with assms obtain g h i j where g: "(g has_integral i) s" and h: "(h has_integral j) s" and ij: "\<bar>i - j\<bar> < e/3" and fgh: "\<And>x. x \<in> s \<Longrightarrow> g x \<le> f x \<and> f x \<le> h x" by metis let ?gs = "(\<lambda>x. if x \<in> s then g x else 0)" let ?hs = "(\<lambda>x. if x \<in> s then h x else 0)" obtain Bg where "Bg > 0" and Bg: "\<And>a b. ball 0 Bg \<subseteq> cbox a b \<Longrightarrow> \<bar>integral (cbox a b) ?gs - i\<bar> < e/3" and int_g: "\<And>a b. ?gs integrable_on cbox a b" using g * unfolding has_integral_alt' real_norm_def by meson obtain Bh where "Bh > 0" and Bh: "\<And>a b. ball 0 Bh \<subseteq> cbox a b \<Longrightarrow> \<bar>integral (cbox a b) ?hs - j\<bar> < e/3" and int_h: "\<And>a b. ?hs integrable_on cbox a b" using h * unfolding has_integral_alt' real_norm_def by meson { fix a b c d :: 'n assume as: "ball 0 (max Bg Bh) \<subseteq> cbox a b" "ball 0 (max Bg Bh) \<subseteq> cbox c d" have **: "ball 0 Bg \<subseteq> ball (0::'n) (max Bg Bh)" "ball 0 Bh \<subseteq> ball (0::'n) (max Bg Bh)" by auto have *: "\<And>ga gc ha hc fa fc. \<lbrakk>\<bar>ga - i\<bar> < e/3; \<bar>gc - i\<bar> < e/3; \<bar>ha - j\<bar> < e/3; \<bar>hc - j\<bar> < e/3; ga \<le> fa; fa \<le> ha; gc \<le> fc; fc \<le> hc\<rbrakk> \<Longrightarrow> \<bar>fa - fc\<bar> < e" using ij by arith have "abs (integral (cbox a b) (\<lambda>x. if x \<in> s then f x else 0) - integral (cbox c d) (\<lambda>x. if x \<in> s then f x else 0)) < e" proof (rule *) show "\<bar>integral (cbox a b) ?gs - i\<bar> < e/3" using "**" Bg as by blast show "\<bar>integral (cbox c d) ?gs - i\<bar> < e/3" using "**" Bg as by blast show "\<bar>integral (cbox a b) ?hs - j\<bar> < e/3" using "**" Bh as by blast show "\<bar>integral (cbox c d) ?hs - j\<bar> < e/3" using "**" Bh as by blast qed (use int_f int_g int_h fgh in \<open>simp_all add: integral_le\<close>) } then show ?thesis apply (rule_tac x="max Bg Bh" in exI) using \<open>Bg > 0\<close> by auto qed then show ?thesis unfolding integrable_alt[of f] real_norm_def by (blast intro: int_f) qed subsection \<open>Adding integrals over several sets\<close> lemma has_integral_Un: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes f: "(f has_integral i) S" "(f has_integral j) T" and neg: "negligible (S \<inter> T)" shows "(f has_integral (i + j)) (S \<union> T)" unfolding has_integral_restrict_UNIV[symmetric, of f] proof (rule has_integral_spike[OF neg]) let ?f = "\<lambda>x. (if x \<in> S then f x else 0) + (if x \<in> T then f x else 0)" show "(?f has_integral i + j) UNIV" by (simp add: f has_integral_add) qed auto lemma integral_Un [simp]: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "f integrable_on S" "f integrable_on T" "negligible (S \<inter> T)" shows "integral (S \<union> T) f = integral S f + integral T f" by (simp add: has_integral_Un assms integrable_integral integral_unique) lemma integrable_Un: fixes f :: "'a::euclidean_space \<Rightarrow> 'b :: banach" assumes "negligible (A \<inter> B)" "f integrable_on A" "f integrable_on B" shows "f integrable_on (A \<union> B)" proof - from assms obtain y z where "(f has_integral y) A" "(f has_integral z) B" by (auto simp: integrable_on_def) from has_integral_Un[OF this assms(1)] show ?thesis by (auto simp: integrable_on_def) qed lemma integrable_Un': fixes f :: "'a::euclidean_space \<Rightarrow> 'b :: banach" assumes "f integrable_on A" "f integrable_on B" "negligible (A \<inter> B)" "C = A \<union> B" shows "f integrable_on C" using integrable_Un[of A B f] assms by simp lemma has_integral_UN: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "finite I" and int: "\<And>i. i \<in> I \<Longrightarrow> (f has_integral (g i)) (\<T> i)" and neg: "pairwise (\<lambda>i i'. negligible (\<T> i \<inter> \<T> i')) I" shows "(f has_integral (sum g I)) (\<Union>i\<in>I. \<T> i)" proof - let ?\<U> = "((\<lambda>(a,b). \<T> a \<inter> \<T> b) ` {(a,b). a \<in> I \<and> b \<in> I-{a}})" have "((\<lambda>x. if x \<in> (\<Union>i\<in>I. \<T> i) then f x else 0) has_integral sum g I) UNIV" proof (rule has_integral_spike) show "negligible (\<Union>?\<U>)" proof (rule negligible_Union) have "finite (I \<times> I)" by (simp add: \<open>finite I\<close>) moreover have "{(a,b). a \<in> I \<and> b \<in> I-{a}} \<subseteq> I \<times> I" by auto ultimately show "finite ?\<U>" by (simp add: finite_subset) show "\<And>t. t \<in> ?\<U> \<Longrightarrow> negligible t" using neg unfolding pairwise_def by auto qed next show "(if x \<in> (\<Union>i\<in>I. \<T> i) then f x else 0) = (\<Sum>i\<in>I. if x \<in> \<T> i then f x else 0)" if "x \<in> UNIV - (\<Union>?\<U>)" for x proof clarsimp fix i assume i: "i \<in> I" "x \<in> \<T> i" then have "\<forall>j\<in>I. x \<in> \<T> j \<longleftrightarrow> j = i" using that by blast with i show "f x = (\<Sum>i\<in>I. if x \<in> \<T> i then f x else 0)" by (simp add: sum.delta[OF \<open>finite I\<close>]) qed next show "((\<lambda>x. (\<Sum>i\<in>I. if x \<in> \<T> i then f x else 0)) has_integral sum g I) UNIV" using int by (simp add: has_integral_restrict_UNIV has_integral_sum [OF \<open>finite I\<close>]) qed then show ?thesis using has_integral_restrict_UNIV by blast qed lemma has_integral_Union: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "finite \<T>" and "\<And>S. S \<in> \<T> \<Longrightarrow> (f has_integral (i S)) S" and "pairwise (\<lambda>S S'. negligible (S \<inter> S')) \<T>" shows "(f has_integral (sum i \<T>)) (\<Union>\<T>)" proof - have "(f has_integral (sum i \<T>)) (\<Union>S\<in>\<T>. S)" by (intro has_integral_UN assms) then show ?thesis by force qed text \<open>In particular adding integrals over a division, maybe not of an interval.\<close> lemma has_integral_combine_division: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "\<D> division_of S" and "\<And>k. k \<in> \<D> \<Longrightarrow> (f has_integral (i k)) k" shows "(f has_integral (sum i \<D>)) S" proof - note \<D> = division_ofD[OF assms(1)] have neg: "negligible (S \<inter> s')" if "S \<in> \<D>" "s' \<in> \<D>" "S \<noteq> s'" for S s' proof - obtain a c b \<D> where obt: "S = cbox a b" "s' = cbox c \<D>" by (meson \<open>S \<in> \<D>\<close> \<open>s' \<in> \<D>\<close> \<D>(4)) from \<D>(5)[OF that] show ?thesis unfolding obt interior_cbox by (metis (no_types, lifting) Diff_empty Int_interval box_Int_box negligible_frontier_interval) qed show ?thesis unfolding \<D>(6)[symmetric] by (auto intro: \<D> neg assms has_integral_Union pairwiseI) qed lemma integral_combine_division_bottomup: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "\<D> division_of S" "\<And>k. k \<in> \<D> \<Longrightarrow> f integrable_on k" shows "integral S f = sum (\<lambda>i. integral i f) \<D>" by (meson assms integral_unique has_integral_combine_division has_integral_integrable_integral) lemma has_integral_combine_division_topdown: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes f: "f integrable_on S" and \<D>: "\<D> division_of K" and "K \<subseteq> S" shows "(f has_integral (sum (\<lambda>i. integral i f) \<D>)) K" proof - have "f integrable_on L" if "L \<in> \<D>" for L proof - have "L \<subseteq> S" using \<open>K \<subseteq> S\<close> \<D> that by blast then show "f integrable_on L" using that by (metis (no_types) f \<D> division_ofD(4) integrable_on_subcbox) qed then show ?thesis by (meson \<D> has_integral_combine_division has_integral_integrable_integral) qed lemma integral_combine_division_topdown: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "f integrable_on S" and "\<D> division_of S" shows "integral S f = sum (\<lambda>i. integral i f) \<D>" using assms has_integral_combine_division_topdown by blast lemma integrable_combine_division: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes \<D>: "\<D> division_of S" and f: "\<And>i. i \<in> \<D> \<Longrightarrow> f integrable_on i" shows "f integrable_on S" using f unfolding integrable_on_def by (metis has_integral_combine_division[OF \<D>]) lemma integrable_on_subdivision: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes \<D>: "\<D> division_of i" and f: "f integrable_on S" and "i \<subseteq> S" shows "f integrable_on i" proof - have "f integrable_on i" if "i \<in> \<D>" for i proof - have "i \<subseteq> S" using assms that by auto then show "f integrable_on i" using that by (metis (no_types) \<D> f division_ofD(4) integrable_on_subcbox) qed then show ?thesis using \<D> integrable_combine_division by blast qed subsection \<open>Also tagged divisions\<close> lemma has_integral_combine_tagged_division: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "p tagged_division_of S" and "\<And>x k. (x,k) \<in> p \<Longrightarrow> (f has_integral (i k)) k" shows "(f has_integral (\<Sum>(x,k)\<in>p. i k)) S" proof - have *: "(f has_integral (\<Sum>k\<in>snd`p. integral k f)) S" proof - have "snd ` p division_of S" by (simp add: assms(1) division_of_tagged_division) with assms show ?thesis by (metis (mono_tags, lifting) has_integral_combine_division has_integral_integrable_integral imageE prod.collapse) qed also have "(\<Sum>k\<in>snd`p. integral k f) = (\<Sum>(x, k)\<in>p. integral k f)" by (intro sum.over_tagged_division_lemma[OF assms(1), symmetric] integral_null) (simp add: content_eq_0_interior) finally show ?thesis using assms by (auto simp add: has_integral_iff intro!: sum.cong) qed lemma integral_combine_tagged_division_bottomup: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes p: "p tagged_division_of (cbox a b)" and f: "\<And>x k. (x,k)\<in>p \<Longrightarrow> f integrable_on k" shows "integral (cbox a b) f = sum (\<lambda>(x,k). integral k f) p" by (simp add: has_integral_combine_tagged_division[OF p] integral_unique f integrable_integral) lemma has_integral_combine_tagged_division_topdown: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes f: "f integrable_on cbox a b" and p: "p tagged_division_of (cbox a b)" shows "(f has_integral (sum (\<lambda>(x,K). integral K f) p)) (cbox a b)" proof - have "(f has_integral integral K f) K" if "(x,K) \<in> p" for x K by (metis assms integrable_integral integrable_on_subcbox tagged_division_ofD(3,4) that) then show ?thesis by (simp add: has_integral_combine_tagged_division p) qed lemma integral_combine_tagged_division_topdown: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes "f integrable_on cbox a b" and "p tagged_division_of (cbox a b)" shows "integral (cbox a b) f = sum (\<lambda>(x,k). integral k f) p" using assms by (auto intro: integral_unique [OF has_integral_combine_tagged_division_topdown]) subsection \<open>Henstock's lemma\<close> lemma Henstock_lemma_part1: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes intf: "f integrable_on cbox a b" and "e > 0" and "gauge d" and less_e: "\<And>p. \<lbrakk>p tagged_division_of (cbox a b); d fine p\<rbrakk> \<Longrightarrow> norm (sum (\<lambda>(x,K). content K *\<^sub>R f x) p - integral(cbox a b) f) < e" and p: "p tagged_partial_division_of (cbox a b)" "d fine p" shows "norm (sum (\<lambda>(x,K). content K *\<^sub>R f x - integral K f) p) \<le> e" (is "?lhs \<le> e") proof (rule field_le_epsilon) fix k :: real assume "k > 0" let ?SUM = "\<lambda>p. (\<Sum>(x,K) \<in> p. content K *\<^sub>R f x)" note p' = tagged_partial_division_ofD[OF p(1)] have "\<Union>(snd ` p) \<subseteq> cbox a b" using p'(3) by fastforce then obtain q where q: "snd ` p \<subseteq> q" and qdiv: "q division_of cbox a b" by (meson p(1) partial_division_extend_interval partial_division_of_tagged_division) note q' = division_ofD[OF qdiv] define r where "r = q - snd ` p" have "snd ` p \<inter> r = {}" unfolding r_def by auto have "finite r" using q' unfolding r_def by auto have "\<exists>p. p tagged_division_of i \<and> d fine p \<and> norm (?SUM p - integral i f) < k / (real (card r) + 1)" if "i\<in>r" for i proof - have gt0: "k / (real (card r) + 1) > 0" using \<open>k > 0\<close> by simp have i: "i \<in> q" using that unfolding r_def by auto then obtain u v where uv: "i = cbox u v" using q'(4) by blast then have "cbox u v \<subseteq> cbox a b" using i q'(2) by auto then have "f integrable_on cbox u v" by (rule integrable_subinterval[OF intf]) with integrable_integral[OF this, unfolded has_integral[of f]] obtain dd where "gauge dd" and dd: "\<And>\<D>. \<lbrakk>\<D> tagged_division_of cbox u v; dd fine \<D>\<rbrakk> \<Longrightarrow> norm (?SUM \<D> - integral (cbox u v) f) < k / (real (card r) + 1)" using gt0 by auto with gauge_Int[OF \<open>gauge d\<close> \<open>gauge dd\<close>] obtain qq where qq: "qq tagged_division_of cbox u v" "(\<lambda>x. d x \<inter> dd x) fine qq" using fine_division_exists by blast with dd[of qq] show ?thesis by (auto simp: fine_Int uv) qed then obtain qq where qq: "\<And>i. i \<in> r \<Longrightarrow> qq i tagged_division_of i \<and> d fine qq i \<and> norm (?SUM (qq i) - integral i f) < k / (real (card r) + 1)" by metis let ?p = "p \<union> \<Union>(qq ` r)" have "norm (?SUM ?p - integral (cbox a b) f) < e" proof (rule less_e) show "d fine ?p" by (metis (mono_tags, opaque_lifting) qq fine_Un fine_Union imageE p(2)) note ptag = tagged_partial_division_of_Union_self[OF p(1)] have "p \<union> \<Union>(qq ` r) tagged_division_of \<Union>(snd ` p) \<union> \<Union>r" proof (rule tagged_division_Un[OF ptag tagged_division_Union [OF \<open>finite r\<close>]]) show "\<And>i. i \<in> r \<Longrightarrow> qq i tagged_division_of i" using qq by auto show "\<And>i1 i2. \<lbrakk>i1 \<in> r; i2 \<in> r; i1 \<noteq> i2\<rbrakk> \<Longrightarrow> interior i1 \<inter> interior i2 = {}" by (simp add: q'(5) r_def) show "interior (\<Union>(snd ` p)) \<inter> interior (\<Union>r) = {}" proof (rule Int_interior_Union_intervals [OF \<open>finite r\<close>]) show "open (interior (\<Union>(snd ` p)))" by blast show "\<And>T. T \<in> r \<Longrightarrow> \<exists>a b. T = cbox a b" by (simp add: q'(4) r_def) have "interior T \<inter> interior (\<Union>(snd ` p)) = {}" if "T \<in> r" for T proof (rule Int_interior_Union_intervals) show "\<And>U. U \<in> snd ` p \<Longrightarrow> \<exists>a b. U = cbox a b" using q q'(4) by blast show "\<And>U. U \<in> snd ` p \<Longrightarrow> interior T \<inter> interior U = {}" by (metis DiffE q q'(5) r_def subsetD that) qed (use p' in auto) then show "\<And>T. T \<in> r \<Longrightarrow> interior (\<Union>(snd ` p)) \<inter> interior T = {}" by (metis Int_commute) qed qed moreover have "\<Union>(snd ` p) \<union> \<Union>r = cbox a b" and "{qq i |i. i \<in> r} = qq ` r" using qdiv q unfolding Union_Un_distrib[symmetric] r_def by auto ultimately show "?p tagged_division_of (cbox a b)" by fastforce qed then have "norm (?SUM p + (?SUM (\<Union>(qq ` r))) - integral (cbox a b) f) < e" proof (subst sum.union_inter_neutral[symmetric, OF \<open>finite p\<close>], safe) show "content L *\<^sub>R f x = 0" if "(x, L) \<in> p" "(x, L) \<in> qq K" "K \<in> r" for x K L proof - obtain u v where uv: "L = cbox u v" using \<open>(x,L) \<in> p\<close> p'(4) by blast have "L \<subseteq> K" using qq[OF that(3)] tagged_division_ofD(3) \<open>(x,L) \<in> qq K\<close> by metis have "L \<in> snd ` p" using \<open>(x,L) \<in> p\<close> image_iff by fastforce then have "L \<in> q" "K \<in> q" "L \<noteq> K" using that(1,3) q(1) unfolding r_def by auto with q'(5) have "interior L = {}" using interior_mono[OF \<open>L \<subseteq> K\<close>] by blast then show "content L *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[symmetric] by auto qed show "finite (\<Union>(qq ` r))" by (meson finite_UN qq \<open>finite r\<close> tagged_division_of_finite) qed moreover have "content M *\<^sub>R f x = 0" if x: "(x,M) \<in> qq K" "(x,M) \<in> qq L" and KL: "qq K \<noteq> qq L" and r: "K \<in> r" "L \<in> r" for x M K L proof - note kl = tagged_division_ofD(3,4)[OF qq[THEN conjunct1]] obtain u v where uv: "M = cbox u v" using \<open>(x, M) \<in> qq L\<close> \<open>L \<in> r\<close> kl(2) by blast have empty: "interior (K \<inter> L) = {}" by (metis DiffD1 interior_Int q'(5) r_def KL r) have "interior M = {}" by (metis (no_types, lifting) Int_assoc empty inf.absorb_iff2 interior_Int kl(1) subset_empty x r) then show "content M *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[symmetric] by auto qed ultimately have "norm (?SUM p + sum ?SUM (qq ` r) - integral (cbox a b) f) < e" apply (subst (asm) sum.Union_comp) using qq by (force simp: split_paired_all)+ moreover have "content M *\<^sub>R f x = 0" if "K \<in> r" "L \<in> r" "K \<noteq> L" "qq K = qq L" "(x, M) \<in> qq K" for K L x M using tagged_division_ofD(6) qq that by (metis (no_types, lifting)) ultimately have less_e: "norm (?SUM p + sum (?SUM \<circ> qq) r - integral (cbox a b) f) < e" proof (subst (asm) sum.reindex_nontrivial [OF \<open>finite r\<close>]) qed (auto simp: split_paired_all sum.neutral) have norm_le: "norm (cp - ip) \<le> e + k" if "norm ((cp + cr) - i) < e" "norm (cr - ir) < k" "ip + ir = i" for ir ip i cr cp::'a proof - from that show ?thesis using norm_triangle_le[of "cp + cr - i" "- (cr - ir)"] unfolding that(3)[symmetric] norm_minus_cancel by (auto simp add: algebra_simps) qed have "?lhs = norm (?SUM p - (\<Sum>(x, k)\<in>p. integral k f))" unfolding split_def sum_subtractf .. also have "\<dots> \<le> e + k" proof (rule norm_le[OF less_e]) have lessk: "k * real (card r) / (1 + real (card r)) < k" using \<open>k>0\<close> by (auto simp add: field_simps) have "norm (sum (?SUM \<circ> qq) r - (\<Sum>k\<in>r. integral k f)) \<le> (\<Sum>x\<in>r. k / (real (card r) + 1))" unfolding sum_subtractf[symmetric] by (force dest: qq intro!: sum_norm_le) also have "... < k" by (simp add: lessk add.commute mult.commute) finally show "norm (sum (?SUM \<circ> qq) r - (\<Sum>k\<in>r. integral k f)) < k" . next from q(1) have [simp]: "snd ` p \<union> q = q" by auto have "integral l f = 0" if inp: "(x, l) \<in> p" "(y, m) \<in> p" and ne: "(x, l) \<noteq> (y, m)" and "l = m" for x l y m proof - obtain u v where uv: "l = cbox u v" using inp p'(4) by blast have "content (cbox u v) = 0" unfolding content_eq_0_interior using that p(1) uv by (auto dest: tagged_partial_division_ofD) then show ?thesis using uv by blast qed then have "(\<Sum>(x, K)\<in>p. integral K f) = (\<Sum>K\<in>snd ` p. integral K f)" apply (subst sum.reindex_nontrivial [OF \<open>finite p\<close>]) unfolding split_paired_all split_def by auto then show "(\<Sum>(x, k)\<in>p. integral k f) + (\<Sum>k\<in>r. integral k f) = integral (cbox a b) f" unfolding integral_combine_division_topdown[OF intf qdiv] r_def using q'(1) p'(1) sum.union_disjoint [of "snd ` p" "q - snd ` p", symmetric] by simp qed finally show "?lhs \<le> e + k" . qed lemma Henstock_lemma_part2: fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space" assumes fed: "f integrable_on cbox a b" "e > 0" "gauge d" and less_e: "\<And>\<D>. \<lbrakk>\<D> tagged_division_of (cbox a b); d fine \<D>\<rbrakk> \<Longrightarrow> norm (sum (\<lambda>(x,k). content k *\<^sub>R f x) \<D> - integral (cbox a b) f) < e" and tag: "p tagged_partial_division_of (cbox a b)" and "d fine p" shows "sum (\<lambda>(x,k). norm (content k *\<^sub>R f x - integral k f)) p \<le> 2 * real (DIM('n)) * e" proof - have "finite p" using tag tagged_partial_division_ofD by blast then show ?thesis unfolding split_def proof (rule sum_norm_allsubsets_bound) fix Q assume Q: "Q \<subseteq> p" then have fine: "d fine Q" by (simp add: \<open>d fine p\<close> fine_subset) show "norm (\<Sum>x\<in>Q. content (snd x) *\<^sub>R f (fst x) - integral (snd x) f) \<le> e" apply (rule Henstock_lemma_part1[OF fed less_e, unfolded split_def]) using Q tag tagged_partial_division_subset by (force simp add: fine)+ qed qed lemma Henstock_lemma: fixes f :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space" assumes intf: "f integrable_on cbox a b" and "e > 0" obtains \<gamma> where "gauge \<gamma>" and "\<And>p. \<lbrakk>p tagged_partial_division_of (cbox a b); \<gamma> fine p\<rbrakk> \<Longrightarrow> sum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p < e" proof - have *: "e/(2 * (real DIM('n) + 1)) > 0" using \<open>e > 0\<close> by simp with integrable_integral[OF intf, unfolded has_integral] obtain \<gamma> where "gauge \<gamma>" and \<gamma>: "\<And>\<D>. \<lbrakk>\<D> tagged_division_of cbox a b; \<gamma> fine \<D>\<rbrakk> \<Longrightarrow> norm ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f x) - integral (cbox a b) f) < e/(2 * (real DIM('n) + 1))" by metis show thesis proof (rule that [OF \<open>gauge \<gamma>\<close>]) fix p assume p: "p tagged_partial_division_of cbox a b" "\<gamma> fine p" have "(\<Sum>(x,K)\<in>p. norm (content K *\<^sub>R f x - integral K f)) \<le> 2 * real DIM('n) * (e/(2 * (real DIM('n) + 1)))" using Henstock_lemma_part2[OF intf * \<open>gauge \<gamma>\<close> \<gamma> p] by metis also have "... < e" using \<open>e > 0\<close> by (auto simp add: field_simps) finally show "(\<Sum>(x,K)\<in>p. norm (content K *\<^sub>R f x - integral K f)) < e" . qed qed subsection \<open>Monotone convergence (bounded interval first)\<close> lemma bounded_increasing_convergent: fixes f :: "nat \<Rightarrow> real" shows "\<lbrakk>bounded (range f); \<And>n. f n \<le> f (Suc n)\<rbrakk> \<Longrightarrow> \<exists>l. f \<longlonglongrightarrow> l" using Bseq_mono_convergent[of f] incseq_Suc_iff[of f] by (auto simp: image_def Bseq_eq_bounded convergent_def incseq_def) lemma monotone_convergence_interval: fixes f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> real" assumes intf: "\<And>k. (f k) integrable_on cbox a b" and le: "\<And>k x. x \<in> cbox a b \<Longrightarrow> (f k x) \<le> f (Suc k) x" and fg: "\<And>x. x \<in> cbox a b \<Longrightarrow> ((\<lambda>k. f k x) \<longlongrightarrow> g x) sequentially" and bou: "bounded (range (\<lambda>k. integral (cbox a b) (f k)))" shows "g integrable_on cbox a b \<and> ((\<lambda>k. integral (cbox a b) (f k)) \<longlongrightarrow> integral (cbox a b) g) sequentially" proof (cases "content (cbox a b) = 0") case True then show ?thesis by auto next case False have fg1: "(f k x) \<le> (g x)" if x: "x \<in> cbox a b" for x k proof - have "\<forall>\<^sub>F j in sequentially. f k x \<le> f j x" proof (rule eventually_sequentiallyI [of k]) show "\<And>j. k \<le> j \<Longrightarrow> f k x \<le> f j x" using le x by (force intro: transitive_stepwise_le) qed then show "f k x \<le> g x" using tendsto_lowerbound [OF fg] x trivial_limit_sequentially by blast qed have int_inc: "\<And>n. integral (cbox a b) (f n) \<le> integral (cbox a b) (f (Suc n))" by (metis integral_le intf le) then obtain i where i: "(\<lambda>k. integral (cbox a b) (f k)) \<longlonglongrightarrow> i" using bounded_increasing_convergent bou by blast have "\<And>k. \<forall>\<^sub>F x in sequentially. integral (cbox a b) (f k) \<le> integral (cbox a b) (f x)" unfolding eventually_sequentially by (force intro: transitive_stepwise_le int_inc) then have i': "\<And>k. (integral(cbox a b) (f k)) \<le> i" using tendsto_le [OF trivial_limit_sequentially i] by blast have "(g has_integral i) (cbox a b)" unfolding has_integral real_norm_def proof clarify fix e::real assume e: "e > 0" have "\<And>k. (\<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of (cbox a b) \<and> \<gamma> fine \<D> \<longrightarrow> abs ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f k x) - integral (cbox a b) (f k)) < e/2 ^ (k + 2)))" using intf e by (auto simp: has_integral_integral has_integral) then obtain c where c: "\<And>x. gauge (c x)" "\<And>x \<D>. \<lbrakk>\<D> tagged_division_of cbox a b; c x fine \<D>\<rbrakk> \<Longrightarrow> abs ((\<Sum>(u,K)\<in>\<D>. content K *\<^sub>R f x u) - integral (cbox a b) (f x)) < e/2 ^ (x + 2)" by metis have "\<exists>r. \<forall>k\<ge>r. 0 \<le> i - (integral (cbox a b) (f k)) \<and> i - (integral (cbox a b) (f k)) < e/4" proof - have "e/4 > 0" using e by auto show ?thesis using LIMSEQ_D [OF i \<open>e/4 > 0\<close>] i' by auto qed then obtain r where r: "\<And>k. r \<le> k \<Longrightarrow> 0 \<le> i - integral (cbox a b) (f k)" "\<And>k. r \<le> k \<Longrightarrow> i - integral (cbox a b) (f k) < e/4" by metis have "\<exists>n\<ge>r. \<forall>k\<ge>n. 0 \<le> (g x) - (f k x) \<and> (g x) - (f k x) < e/(4 * content(cbox a b))" if "x \<in> cbox a b" for x proof - have "e/(4 * content (cbox a b)) > 0" by (simp add: False content_lt_nz e) with fg that LIMSEQ_D obtain N where "\<forall>n\<ge>N. norm (f n x - g x) < e/(4 * content (cbox a b))" by metis then show "\<exists>n\<ge>r. \<forall>k\<ge>n. 0 \<le> g x - f k x \<and> g x - f k x < e/(4 * content (cbox a b))" apply (rule_tac x="N + r" in exI) using fg1[OF that] by (auto simp add: field_simps) qed then obtain m where r_le_m: "\<And>x. x \<in> cbox a b \<Longrightarrow> r \<le> m x" and m: "\<And>x k. \<lbrakk>x \<in> cbox a b; m x \<le> k\<rbrakk> \<Longrightarrow> 0 \<le> g x - f k x \<and> g x - f k x < e/(4 * content (cbox a b))" by metis define d where "d x = c (m x) x" for x show "\<exists>\<gamma>. gauge \<gamma> \<and> (\<forall>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<longrightarrow> abs ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - i) < e)" proof (rule exI, safe) show "gauge d" using c(1) unfolding gauge_def d_def by auto next fix \<D> assume ptag: "\<D> tagged_division_of (cbox a b)" and "d fine \<D>" note p'=tagged_division_ofD[OF ptag] obtain s where s: "\<And>x. x \<in> \<D> \<Longrightarrow> m (fst x) \<le> s" by (metis finite_imageI finite_nat_set_iff_bounded_le p'(1) rev_image_eqI) have *: "\<bar>a - d\<bar> < e" if "\<bar>a - b\<bar> \<le> e/4" "\<bar>b - c\<bar> < e/2" "\<bar>c - d\<bar> < e/4" for a b c d using that norm_triangle_lt[of "a - b" "b - c" "3* e/4"] norm_triangle_lt[of "a - b + (b - c)" "c - d" e] by (auto simp add: algebra_simps) show "\<bar>(\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R g x) - i\<bar> < e" proof (rule *) have "\<bar>(\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f (m x) x)\<bar> \<le> (\<Sum>i\<in>\<D>. \<bar>(case i of (x, K) \<Rightarrow> content K *\<^sub>R g x) - (case i of (x, K) \<Rightarrow> content K *\<^sub>R f (m x) x)\<bar>)" by (metis (mono_tags) sum_subtractf sum_abs) also have "... \<le> (\<Sum>(x, k)\<in>\<D>. content k * (e/(4 * content (cbox a b))))" proof (rule sum_mono, simp add: split_paired_all) fix x K assume xk: "(x,K) \<in> \<D>" with ptag have x: "x \<in> cbox a b" by blast then have "abs (content K * (g x - f (m x) x)) \<le> content K * (e/(4 * content (cbox a b)))" by (metis m[OF x] mult_nonneg_nonneg abs_of_nonneg less_eq_real_def measure_nonneg mult_left_mono order_refl) then show "\<bar>content K * g x - content K * f (m x) x\<bar> \<le> content K * e/(4 * content (cbox a b))" by (simp add: algebra_simps) qed also have "... = (e/(4 * content (cbox a b))) * (\<Sum>(x, k)\<in>\<D>. content k)" by (simp add: sum_distrib_left sum_divide_distrib split_def mult.commute) also have "... \<le> e/4" by (metis False additive_content_tagged_division [OF ptag] nonzero_mult_divide_mult_cancel_right order_refl times_divide_eq_left) finally show "\<bar>(\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R g x) - (\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f (m x) x)\<bar> \<le> e/4" . next have "norm ((\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f (m x) x) - (\<Sum>(x,K)\<in>\<D>. integral K (f (m x)))) \<le> norm (\<Sum>j = 0..s. \<Sum>(x,K)\<in>{xk \<in> \<D>. m (fst xk) = j}. content K *\<^sub>R f (m x) x - integral K (f (m x)))" apply (subst sum.group) using s by (auto simp: sum_subtractf split_def p'(1)) also have "\<dots> < e/2" proof - have "norm (\<Sum>j = 0..s. \<Sum>(x, k)\<in>{xk \<in> \<D>. m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x))) \<le> (\<Sum>i = 0..s. e/2 ^ (i + 2))" proof (rule sum_norm_le) fix t assume "t \<in> {0..s}" have "norm (\<Sum>(x,k)\<in>{xk \<in> \<D>. m (fst xk) = t}. content k *\<^sub>R f (m x) x - integral k (f (m x))) = norm (\<Sum>(x,k)\<in>{xk \<in> \<D>. m (fst xk) = t}. content k *\<^sub>R f t x - integral k (f t))" by (force intro!: sum.cong arg_cong[where f=norm]) also have "... \<le> e/2 ^ (t + 2)" proof (rule Henstock_lemma_part1 [OF intf]) show "{xk \<in> \<D>. m (fst xk) = t} tagged_partial_division_of cbox a b" proof (rule tagged_partial_division_subset[of \<D>]) show "\<D> tagged_partial_division_of cbox a b" using ptag tagged_division_of_def by blast qed auto show "c t fine {xk \<in> \<D>. m (fst xk) = t}" using \<open>d fine \<D>\<close> by (auto simp: fine_def d_def) qed (use c e in auto) finally show "norm (\<Sum>(x,K)\<in>{xk \<in> \<D>. m (fst xk) = t}. content K *\<^sub>R f (m x) x - integral K (f (m x))) \<le> e/2 ^ (t + 2)" . qed also have "... = (e/2/2) * (\<Sum>i = 0..s. (1/2) ^ i)" by (simp add: sum_distrib_left field_simps) also have "\<dots> < e/2" by (simp add: sum_gp mult_strict_left_mono[OF _ e]) finally show "norm (\<Sum>j = 0..s. \<Sum>(x, k)\<in>{xk \<in> \<D>. m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x))) < e/2" . qed finally show "\<bar>(\<Sum>(x,K)\<in>\<D>. content K *\<^sub>R f (m x) x) - (\<Sum>(x,K)\<in>\<D>. integral K (f (m x)))\<bar> < e/2" by simp next have comb: "integral (cbox a b) (f y) = (\<Sum>(x, k)\<in>\<D>. integral k (f y))" for y using integral_combine_tagged_division_topdown[OF intf ptag] by metis have f_le: "\<And>y m n. \<lbrakk>y \<in> cbox a b; n\<ge>m\<rbrakk> \<Longrightarrow> f m y \<le> f n y" using le by (auto intro: transitive_stepwise_le) have "(\<Sum>(x, k)\<in>\<D>. integral k (f r)) \<le> (\<Sum>(x, K)\<in>\<D>. integral K (f (m x)))" proof (rule sum_mono, simp add: split_paired_all) fix x K assume xK: "(x, K) \<in> \<D>" show "integral K (f r) \<le> integral K (f (m x))" proof (rule integral_le) show "f r integrable_on K" by (metis integrable_on_subcbox intf p'(3) p'(4) xK) show "f (m x) integrable_on K" by (metis elementary_interval integrable_on_subdivision intf p'(3) p'(4) xK) show "f r y \<le> f (m x) y" if "y \<in> K" for y using that r_le_m[of x] p'(2-3)[OF xK] f_le by auto qed qed moreover have "(\<Sum>(x, K)\<in>\<D>. integral K (f (m x))) \<le> (\<Sum>(x, k)\<in>\<D>. integral k (f s))" proof (rule sum_mono, simp add: split_paired_all) fix x K assume xK: "(x, K) \<in> \<D>" show "integral K (f (m x)) \<le> integral K (f s)" proof (rule integral_le) show "f (m x) integrable_on K" by (metis elementary_interval integrable_on_subdivision intf p'(3) p'(4) xK) show "f s integrable_on K" by (metis integrable_on_subcbox intf p'(3) p'(4) xK) show "f (m x) y \<le> f s y" if "y \<in> K" for y using that s xK f_le p'(3) by fastforce qed qed moreover have "0 \<le> i - integral (cbox a b) (f r)" "i - integral (cbox a b) (f r) < e/4" using r by auto ultimately show "\<bar>(\<Sum>(x,K)\<in>\<D>. integral K (f (m x))) - i\<bar> < e/4" using comb i'[of s] by auto qed qed qed with i integral_unique show ?thesis by blast qed lemma monotone_convergence_increasing: fixes f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> real" assumes int_f: "\<And>k. (f k) integrable_on S" and "\<And>k x. x \<in> S \<Longrightarrow> (f k x) \<le> (f (Suc k) x)" and fg: "\<And>x. x \<in> S \<Longrightarrow> ((\<lambda>k. f k x) \<longlongrightarrow> g x) sequentially" and bou: "bounded (range (\<lambda>k. integral S (f k)))" shows "g integrable_on S \<and> ((\<lambda>k. integral S (f k)) \<longlongrightarrow> integral S g) sequentially" proof - have lem: "g integrable_on S \<and> ((\<lambda>k. integral S (f k)) \<longlongrightarrow> integral S g) sequentially" if f0: "\<And>k x. x \<in> S \<Longrightarrow> 0 \<le> f k x" and int_f: "\<And>k. (f k) integrable_on S" and le: "\<And>k x. x \<in> S \<Longrightarrow> f k x \<le> f (Suc k) x" and lim: "\<And>x. x \<in> S \<Longrightarrow> ((\<lambda>k. f k x) \<longlongrightarrow> g x) sequentially" and bou: "bounded (range(\<lambda>k. integral S (f k)))" for f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> real" and g S proof - have fg: "(f k x) \<le> (g x)" if "x \<in> S" for x k proof - have "\<And>xa. k \<le> xa \<Longrightarrow> f k x \<le> f xa x" using le by (force intro: transitive_stepwise_le that) then show ?thesis using tendsto_lowerbound [OF lim [OF that]] eventually_sequentiallyI by force qed obtain i where i: "(\<lambda>k. integral S (f k)) \<longlonglongrightarrow> i" using bounded_increasing_convergent [OF bou] le int_f integral_le by blast have i': "(integral S (f k)) \<le> i" for k proof - have "\<And>k. \<And>x. x \<in> S \<Longrightarrow> \<forall>n\<ge>k. f k x \<le> f n x" using le by (force intro: transitive_stepwise_le) then show ?thesis using tendsto_lowerbound [OF i eventually_sequentiallyI trivial_limit_sequentially] by (meson int_f integral_le) qed let ?f = "(\<lambda>k x. if x \<in> S then f k x else 0)" let ?g = "(\<lambda>x. if x \<in> S then g x else 0)" have int: "?f k integrable_on cbox a b" for a b k by (simp add: int_f integrable_altD(1)) have int': "\<And>k a b. f k integrable_on cbox a b \<inter> S" using int by (simp add: Int_commute integrable_restrict_Int) have g: "?g integrable_on cbox a b \<and> (\<lambda>k. integral (cbox a b) (?f k)) \<longlonglongrightarrow> integral (cbox a b) ?g" for a b proof (rule monotone_convergence_interval) have "norm (integral (cbox a b) (?f k)) \<le> norm (integral S (f k))" for k proof - have "0 \<le> integral (cbox a b) (?f k)" by (metis (no_types) integral_nonneg Int_iff f0 inf_commute integral_restrict_Int int') moreover have "0 \<le> integral S (f k)" by (simp add: integral_nonneg f0 int_f) moreover have "integral (S \<inter> cbox a b) (f k) \<le> integral S (f k)" by (metis f0 inf_commute int' int_f integral_subset_le le_inf_iff order_refl) ultimately show ?thesis by (simp add: integral_restrict_Int) qed moreover obtain B where "\<And>x. x \<in> range (\<lambda>k. integral S (f k)) \<Longrightarrow> norm x \<le> B" using bou unfolding bounded_iff by blast ultimately show "bounded (range (\<lambda>k. integral (cbox a b) (?f k)))" unfolding bounded_iff by (blast intro: order_trans) qed (use int le lim in auto) moreover have "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> cbox a b \<longrightarrow> norm (integral (cbox a b) ?g - i) < e" if "0 < e" for e proof - have "e/4>0" using that by auto with LIMSEQ_D [OF i] obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> norm (integral S (f n) - i) < e/4" by metis with int_f[of N, unfolded has_integral_integral has_integral_alt'[of "f N"]] obtain B where "0 < B" and B: "\<And>a b. ball 0 B \<subseteq> cbox a b \<Longrightarrow> norm (integral (cbox a b) (?f N) - integral S (f N)) < e/4" by (meson \<open>0 < e/4\<close>) have "norm (integral (cbox a b) ?g - i) < e" if ab: "ball 0 B \<subseteq> cbox a b" for a b proof - obtain M where M: "\<And>n. n \<ge> M \<Longrightarrow> abs (integral (cbox a b) (?f n) - integral (cbox a b) ?g) < e/2" using \<open>e > 0\<close> g by (fastforce simp add: dest!: LIMSEQ_D [where r = "e/2"]) have *: "\<And>\<alpha> \<beta> g. \<lbrakk>\<bar>\<alpha> - i\<bar> < e/2; \<bar>\<beta> - g\<bar> < e/2; \<alpha> \<le> \<beta>; \<beta> \<le> i\<rbrakk> \<Longrightarrow> \<bar>g - i\<bar> < e" unfolding real_inner_1_right by arith show "norm (integral (cbox a b) ?g - i) < e" unfolding real_norm_def proof (rule *) show "\<bar>integral (cbox a b) (?f N) - i\<bar> < e/2" proof (rule abs_triangle_half_l) show "\<bar>integral (cbox a b) (?f N) - integral S (f N)\<bar> < e/2/2" using B[OF ab] by simp show "abs (i - integral S (f N)) < e/2/2" using N by (simp add: abs_minus_commute) qed show "\<bar>integral (cbox a b) (?f (M + N)) - integral (cbox a b) ?g\<bar> < e/2" by (metis le_add1 M[of "M + N"]) show "integral (cbox a b) (?f N) \<le> integral (cbox a b) (?f (M + N))" proof (intro ballI integral_le[OF int int]) fix x assume "x \<in> cbox a b" have "(f m x) \<le> (f n x)" if "x \<in> S" "n \<ge> m" for m n proof (rule transitive_stepwise_le [OF \<open>n \<ge> m\<close> order_refl]) show "\<And>u y z. \<lbrakk>f u x \<le> f y x; f y x \<le> f z x\<rbrakk> \<Longrightarrow> f u x \<le> f z x" using dual_order.trans by blast qed (simp add: le \<open>x \<in> S\<close>) then show "(?f N)x \<le> (?f (M+N))x" by auto qed have "integral (cbox a b \<inter> S) (f (M + N)) \<le> integral S (f (M + N))" by (metis Int_lower1 f0 inf_commute int' int_f integral_subset_le) then have "integral (cbox a b) (?f (M + N)) \<le> integral S (f (M + N))" by (metis (no_types) inf_commute integral_restrict_Int) also have "... \<le> i" using i'[of "M + N"] by auto finally show "integral (cbox a b) (?f (M + N)) \<le> i" . qed qed then show ?thesis using \<open>0 < B\<close> by blast qed ultimately have "(g has_integral i) S" unfolding has_integral_alt' by auto then show ?thesis using has_integral_integrable_integral i integral_unique by metis qed have sub: "\<And>k. integral S (\<lambda>x. f k x - f 0 x) = integral S (f k) - integral S (f 0)" by (simp add: integral_diff int_f) have *: "\<And>x m n. x \<in> S \<Longrightarrow> n\<ge>m \<Longrightarrow> f m x \<le> f n x" using assms(2) by (force intro: transitive_stepwise_le) have gf: "(\<lambda>x. g x - f 0 x) integrable_on S \<and> ((\<lambda>k. integral S (\<lambda>x. f (Suc k) x - f 0 x)) \<longlongrightarrow> integral S (\<lambda>x. g x - f 0 x)) sequentially" proof (rule lem) show "\<And>k. (\<lambda>x. f (Suc k) x - f 0 x) integrable_on S" by (simp add: integrable_diff int_f) show "(\<lambda>k. f (Suc k) x - f 0 x) \<longlonglongrightarrow> g x - f 0 x" if "x \<in> S" for x proof - have "(\<lambda>n. f (Suc n) x) \<longlonglongrightarrow> g x" using LIMSEQ_ignore_initial_segment[OF fg[OF \<open>x \<in> S\<close>], of 1] by simp then show ?thesis by (simp add: tendsto_diff) qed show "bounded (range (\<lambda>k. integral S (\<lambda>x. f (Suc k) x - f 0 x)))" proof - obtain B where B: "\<And>k. norm (integral S (f k)) \<le> B" using bou by (auto simp: bounded_iff) then have "norm (integral S (\<lambda>x. f (Suc k) x - f 0 x)) \<le> B + norm (integral S (f 0))" for k unfolding sub by (meson add_le_cancel_right norm_triangle_le_diff) then show ?thesis unfolding bounded_iff by blast qed qed (use * in auto) then have "(\<lambda>x. integral S (\<lambda>xa. f (Suc x) xa - f 0 xa) + integral S (f 0)) \<longlonglongrightarrow> integral S (\<lambda>x. g x - f 0 x) + integral S (f 0)" by (auto simp add: tendsto_add) moreover have "(\<lambda>x. g x - f 0 x + f 0 x) integrable_on S" using gf integrable_add int_f [of 0] by metis ultimately show ?thesis by (simp add: integral_diff int_f LIMSEQ_imp_Suc sub) qed lemma has_integral_monotone_convergence_increasing: fixes f :: "nat \<Rightarrow> 'a::euclidean_space \<Rightarrow> real" assumes f: "\<And>k. (f k has_integral x k) s" assumes "\<And>k x. x \<in> s \<Longrightarrow> f k x \<le> f (Suc k) x" assumes "\<And>x. x \<in> s \<Longrightarrow> (\<lambda>k. f k x) \<longlonglongrightarrow> g x" assumes "x \<longlonglongrightarrow> x'" shows "(g has_integral x') s" proof - have x_eq: "x = (\<lambda>i. integral s (f i))" by (simp add: integral_unique[OF f]) then have x: "range(\<lambda>k. integral s (f k)) = range x" by auto have *: "g integrable_on s \<and> (\<lambda>k. integral s (f k)) \<longlonglongrightarrow> integral s g" proof (intro monotone_convergence_increasing allI ballI assms) show "bounded (range(\<lambda>k. integral s (f k)))" using x convergent_imp_bounded assms by metis qed (use f in auto) then have "integral s g = x'" by (intro LIMSEQ_unique[OF _ \<open>x \<longlonglongrightarrow> x'\<close>]) (simp add: x_eq) with * show ?thesis by (simp add: has_integral_integral) qed lemma monotone_convergence_decreasing: fixes f :: "nat \<Rightarrow> 'n::euclidean_space \<Rightarrow> real" assumes intf: "\<And>k. (f k) integrable_on S" and le: "\<And>k x. x \<in> S \<Longrightarrow> f (Suc k) x \<le> f k x" and fg: "\<And>x. x \<in> S \<Longrightarrow> ((\<lambda>k. f k x) \<longlongrightarrow> g x) sequentially" and bou: "bounded (range(\<lambda>k. integral S (f k)))" shows "g integrable_on S \<and> (\<lambda>k. integral S (f k)) \<longlonglongrightarrow> integral S g" proof - have *: "range(\<lambda>k. integral S (\<lambda>x. - f k x)) = (*\<^sub>R) (- 1) ` (range(\<lambda>k. integral S (f k)))" by force have "(\<lambda>x. - g x) integrable_on S \<and> (\<lambda>k. integral S (\<lambda>x. - f k x)) \<longlonglongrightarrow> integral S (\<lambda>x. - g x)" proof (rule monotone_convergence_increasing) show "\<And>k. (\<lambda>x. - f k x) integrable_on S" by (blast intro: integrable_neg intf) show "\<And>k x. x \<in> S \<Longrightarrow> - f k x \<le> - f (Suc k) x" by (simp add: le) show "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>k. - f k x) \<longlonglongrightarrow> - g x" by (simp add: fg tendsto_minus) show "bounded (range(\<lambda>k. integral S (\<lambda>x. - f k x)))" using "*" bou bounded_scaling by auto qed then show ?thesis by (force dest: integrable_neg tendsto_minus) qed lemma integral_norm_bound_integral: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" assumes int_f: "f integrable_on S" and int_g: "g integrable_on S" and le_g: "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> g x" shows "norm (integral S f) \<le> integral S g" proof - have norm: "norm \<eta> \<le> y + e" if "norm \<zeta> \<le> x" and "\<bar>x - y\<bar> < e/2" and "norm (\<zeta> - \<eta>) < e/2" for e x y and \<zeta> \<eta> :: 'a proof - have "norm (\<eta> - \<zeta>) < e/2" by (metis norm_minus_commute that(3)) moreover have "x \<le> y + e/2" using that(2) by linarith ultimately show ?thesis using that(1) le_less_trans[OF norm_triangle_sub[of \<eta> \<zeta>]] by (auto simp: less_imp_le) qed have lem: "norm (integral(cbox a b) f) \<le> integral (cbox a b) g" if f: "f integrable_on cbox a b" and g: "g integrable_on cbox a b" and nle: "\<And>x. x \<in> cbox a b \<Longrightarrow> norm (f x) \<le> g x" for f :: "'n \<Rightarrow> 'a" and g a b proof (rule field_le_epsilon) fix e :: real assume "e > 0" then have e: "e/2 > 0" by auto with integrable_integral[OF f,unfolded has_integral[of f]] obtain \<gamma> where \<gamma>: "gauge \<gamma>" "\<And>\<D>. \<D> tagged_division_of cbox a b \<and> \<gamma> fine \<D> \<Longrightarrow> norm ((\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R f x) - integral (cbox a b) f) < e/2" by meson moreover from integrable_integral[OF g,unfolded has_integral[of g]] e obtain \<delta> where \<delta>: "gauge \<delta>" "\<And>\<D>. \<D> tagged_division_of cbox a b \<and> \<delta> fine \<D> \<Longrightarrow> norm ((\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R g x) - integral (cbox a b) g) < e/2" by meson ultimately have "gauge (\<lambda>x. \<gamma> x \<inter> \<delta> x)" using gauge_Int by blast with fine_division_exists obtain \<D> where p: "\<D> tagged_division_of cbox a b" "(\<lambda>x. \<gamma> x \<inter> \<delta> x) fine \<D>" by metis have "\<gamma> fine \<D>" "\<delta> fine \<D>" using fine_Int p(2) by blast+ show "norm (integral (cbox a b) f) \<le> integral (cbox a b) g + e" proof (rule norm) have "norm (content K *\<^sub>R f x) \<le> content K *\<^sub>R g x" if "(x, K) \<in> \<D>" for x K proof- have K: "x \<in> K" "K \<subseteq> cbox a b" using \<open>(x, K) \<in> \<D>\<close> p(1) by blast+ obtain u v where "K = cbox u v" using \<open>(x, K) \<in> \<D>\<close> p(1) by blast moreover have "content K * norm (f x) \<le> content K * g x" by (meson K(1) K(2) content_pos_le mult_left_mono nle subsetD) then show ?thesis by simp qed then show "norm (\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R f x) \<le> (\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R g x)" by (simp add: sum_norm_le split_def) show "norm ((\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R f x) - integral (cbox a b) f) < e/2" using \<open>\<gamma> fine \<D>\<close> \<gamma> p(1) by simp show "\<bar>(\<Sum>(x, k)\<in>\<D>. content k *\<^sub>R g x) - integral (cbox a b) g\<bar> < e/2" using \<open>\<delta> fine \<D>\<close> \<delta> p(1) by simp qed qed show ?thesis proof (rule field_le_epsilon) fix e :: real assume "e > 0" then have e: "e/2 > 0" by auto let ?f = "(\<lambda>x. if x \<in> S then f x else 0)" let ?g = "(\<lambda>x. if x \<in> S then g x else 0)" have f: "?f integrable_on cbox a b" and g: "?g integrable_on cbox a b" for a b using int_f int_g integrable_altD by auto obtain Bf where "0 < Bf" and Bf: "\<And>a b. ball 0 Bf \<subseteq> cbox a b \<Longrightarrow> \<exists>z. (?f has_integral z) (cbox a b) \<and> norm (z - integral S f) < e/2" using integrable_integral [OF int_f,unfolded has_integral'[of f]] e that by blast obtain Bg where "0 < Bg" and Bg: "\<And>a b. ball 0 Bg \<subseteq> cbox a b \<Longrightarrow> \<exists>z. (?g has_integral z) (cbox a b) \<and> norm (z - integral S g) < e/2" using integrable_integral [OF int_g,unfolded has_integral'[of g]] e that by blast obtain a b::'n where ab: "ball 0 Bf \<union> ball 0 Bg \<subseteq> cbox a b" using ball_max_Un by (metis bounded_ball bounded_subset_cbox_symmetric) have "ball 0 Bf \<subseteq> cbox a b" using ab by auto with Bf obtain z where int_fz: "(?f has_integral z) (cbox a b)" and z: "norm (z - integral S f) < e/2" by meson have "ball 0 Bg \<subseteq> cbox a b" using ab by auto with Bg obtain w where int_gw: "(?g has_integral w) (cbox a b)" and w: "norm (w - integral S g) < e/2" by meson show "norm (integral S f) \<le> integral S g + e" proof (rule norm) show "norm (integral (cbox a b) ?f) \<le> integral (cbox a b) ?g" by (simp add: le_g lem[OF f g, of a b]) show "\<bar>integral (cbox a b) ?g - integral S g\<bar> < e/2" using int_gw integral_unique w by auto show "norm (integral (cbox a b) ?f - integral S f) < e/2" using int_fz integral_unique z by blast qed qed qed lemma continuous_on_imp_absolutely_integrable_on: fixes f::"real \<Rightarrow> 'a::banach" shows "continuous_on {a..b} f \<Longrightarrow> norm (integral {a..b} f) \<le> integral {a..b} (\<lambda>x. norm (f x))" by (intro integral_norm_bound_integral integrable_continuous_real continuous_on_norm) auto lemma integral_bound: fixes f::"real \<Rightarrow> 'a::banach" assumes "a \<le> b" assumes "continuous_on {a .. b} f" assumes "\<And>t. t \<in> {a .. b} \<Longrightarrow> norm (f t) \<le> B" shows "norm (integral {a .. b} f) \<le> B * (b - a)" proof - note continuous_on_imp_absolutely_integrable_on[OF assms(2)] also have "integral {a..b} (\<lambda>x. norm (f x)) \<le> integral {a..b} (\<lambda>_. B)" by (rule integral_le) (auto intro!: integrable_continuous_real continuous_intros assms) also have "\<dots> = B * (b - a)" using assms by simp finally show ?thesis . qed lemma integral_norm_bound_integral_component: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" fixes g :: "'n \<Rightarrow> 'b::euclidean_space" assumes f: "f integrable_on S" and g: "g integrable_on S" and fg: "\<And>x. x \<in> S \<Longrightarrow> norm(f x) \<le> (g x)\<bullet>k" shows "norm (integral S f) \<le> (integral S g)\<bullet>k" proof - have "norm (integral S f) \<le> integral S ((\<lambda>x. x \<bullet> k) \<circ> g)" using integral_norm_bound_integral[OF f integrable_linear[OF g]] by (simp add: bounded_linear_inner_left fg) then show ?thesis unfolding o_def integral_component_eq[OF g] . qed lemma has_integral_norm_bound_integral_component: fixes f :: "'n::euclidean_space \<Rightarrow> 'a::banach" fixes g :: "'n \<Rightarrow> 'b::euclidean_space" assumes f: "(f has_integral i) S" and g: "(g has_integral j) S" and "\<And>x. x \<in> S \<Longrightarrow> norm (f x) \<le> (g x)\<bullet>k" shows "norm i \<le> j\<bullet>k" using integral_norm_bound_integral_component[of f S g k] unfolding integral_unique[OF f] integral_unique[OF g] using assms by auto lemma uniformly_convergent_improper_integral: fixes f :: "'b \<Rightarrow> real \<Rightarrow> 'a :: {banach}" assumes deriv: "\<And>x. x \<ge> a \<Longrightarrow> (G has_field_derivative g x) (at x within {a..})" assumes integrable: "\<And>a' b x. x \<in> A \<Longrightarrow> a' \<ge> a \<Longrightarrow> b \<ge> a' \<Longrightarrow> f x integrable_on {a'..b}" assumes G: "convergent G" assumes le: "\<And>y x. y \<in> A \<Longrightarrow> x \<ge> a \<Longrightarrow> norm (f y x) \<le> g x" shows "uniformly_convergent_on A (\<lambda>b x. integral {a..b} (f x))" proof (intro Cauchy_uniformly_convergent uniformly_Cauchy_onI', goal_cases) case (1 \<epsilon>) from G have "Cauchy G" by (auto intro!: convergent_Cauchy) with 1 obtain M where M: "dist (G (real m)) (G (real n)) < \<epsilon>" if "m \<ge> M" "n \<ge> M" for m n by (force simp: Cauchy_def) define M' where "M' = max (nat \<lceil>a\<rceil>) M" show ?case proof (rule exI[of _ M'], safe, goal_cases) case (1 x m n) have M': "M' \<ge> a" "M' \<ge> M" unfolding M'_def by linarith+ have int_g: "(g has_integral (G (real n) - G (real m))) {real m..real n}" using 1 M' by (intro fundamental_theorem_of_calculus) (auto simp: has_real_derivative_iff_has_vector_derivative [symmetric] intro!: DERIV_subset[OF deriv]) have int_f: "f x integrable_on {a'..real n}" if "a' \<ge> a" for a' using that 1 by (cases "a' \<le> real n") (auto intro: integrable) have "dist (integral {a..real m} (f x)) (integral {a..real n} (f x)) = norm (integral {a..real n} (f x) - integral {a..real m} (f x))" by (simp add: dist_norm norm_minus_commute) also have "integral {a..real m} (f x) + integral {real m..real n} (f x) = integral {a..real n} (f x)" using M' and 1 by (intro integral_combine int_f) auto hence "integral {a..real n} (f x) - integral {a..real m} (f x) = integral {real m..real n} (f x)" by (simp add: algebra_simps) also have "norm \<dots> \<le> integral {real m..real n} g" using le 1 M' int_f int_g by (intro integral_norm_bound_integral) auto also from int_g have "integral {real m..real n} g = G (real n) - G (real m)" by (simp add: has_integral_iff) also have "\<dots> \<le> dist (G m) (G n)" by (simp add: dist_norm) also from 1 and M' have "\<dots> < \<epsilon>" by (intro M) auto finally show ?case . qed qed lemma uniformly_convergent_improper_integral': fixes f :: "'b \<Rightarrow> real \<Rightarrow> 'a :: {banach, real_normed_algebra}" assumes deriv: "\<And>x. x \<ge> a \<Longrightarrow> (G has_field_derivative g x) (at x within {a..})" assumes integrable: "\<And>a' b x. x \<in> A \<Longrightarrow> a' \<ge> a \<Longrightarrow> b \<ge> a' \<Longrightarrow> f x integrable_on {a'..b}" assumes G: "convergent G" assumes le: "eventually (\<lambda>x. \<forall>y\<in>A. norm (f y x) \<le> g x) at_top" shows "uniformly_convergent_on A (\<lambda>b x. integral {a..b} (f x))" proof - from le obtain a'' where le: "\<And>y x. y \<in> A \<Longrightarrow> x \<ge> a'' \<Longrightarrow> norm (f y x) \<le> g x" by (auto simp: eventually_at_top_linorder) define a' where "a' = max a a''" have "uniformly_convergent_on A (\<lambda>b x. integral {a'..real b} (f x))" proof (rule uniformly_convergent_improper_integral) fix t assume t: "t \<ge> a'" hence "(G has_field_derivative g t) (at t within {a..})" by (intro deriv) (auto simp: a'_def) moreover have "{a'..} \<subseteq> {a..}" unfolding a'_def by auto ultimately show "(G has_field_derivative g t) (at t within {a'..})" by (rule DERIV_subset) qed (insert le, auto simp: a'_def intro: integrable G) hence "uniformly_convergent_on A (\<lambda>b x. integral {a..a'} (f x) + integral {a'..real b} (f x))" (is ?P) by (intro uniformly_convergent_add) auto also have "eventually (\<lambda>x. \<forall>y\<in>A. integral {a..a'} (f y) + integral {a'..x} (f y) = integral {a..x} (f y)) sequentially" by (intro eventually_mono [OF eventually_ge_at_top[of "nat \<lceil>a'\<rceil>"]] ballI integral_combine) (auto simp: a'_def intro: integrable) hence "?P \<longleftrightarrow> ?thesis" by (intro uniformly_convergent_cong) simp_all finally show ?thesis . qed subsection \<open>differentiation under the integral sign\<close> lemma integral_continuous_on_param: fixes f::"'a::topological_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::banach" assumes cont_fx: "continuous_on (U \<times> cbox a b) (\<lambda>(x, t). f x t)" shows "continuous_on U (\<lambda>x. integral (cbox a b) (f x))" proof cases assume "content (cbox a b) \<noteq> 0" then have ne: "cbox a b \<noteq> {}" by auto note [continuous_intros] = continuous_on_compose2[OF cont_fx, where f="\<lambda>y. Pair x y" for x, unfolded split_beta fst_conv snd_conv] show ?thesis unfolding continuous_on_def proof (safe intro!: tendstoI) fix e'::real and x assume "e' > 0" define e where "e = e' / (content (cbox a b) + 1)" have "e > 0" using \<open>e' > 0\<close> by (auto simp: e_def intro!: divide_pos_pos add_nonneg_pos) assume "x \<in> U" from continuous_on_prod_compactE[OF cont_fx compact_cbox \<open>x \<in> U\<close> \<open>0 < e\<close>] obtain X0 where X0: "x \<in> X0" "open X0" and fx_bound: "\<And>y t. y \<in> X0 \<inter> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> norm (f y t - f x t) \<le> e" unfolding split_beta fst_conv snd_conv dist_norm by metis have "\<forall>\<^sub>F y in at x within U. y \<in> X0 \<inter> U" using X0(1) X0(2) eventually_at_topological by auto then show "\<forall>\<^sub>F y in at x within U. dist (integral (cbox a b) (f y)) (integral (cbox a b) (f x)) < e'" proof eventually_elim case (elim y) have "dist (integral (cbox a b) (f y)) (integral (cbox a b) (f x)) = norm (integral (cbox a b) (\<lambda>t. f y t - f x t))" using elim \<open>x \<in> U\<close> unfolding dist_norm by (subst integral_diff) (auto intro!: integrable_continuous continuous_intros) also have "\<dots> \<le> e * content (cbox a b)" using elim \<open>x \<in> U\<close> by (intro integrable_bound) (auto intro!: fx_bound \<open>x \<in> U \<close> less_imp_le[OF \<open>0 < e\<close>] integrable_continuous continuous_intros) also have "\<dots> < e'" using \<open>0 < e'\<close> \<open>e > 0\<close> by (auto simp: e_def field_split_simps) finally show "dist (integral (cbox a b) (f y)) (integral (cbox a b) (f x)) < e'" . qed qed qed (auto intro!: continuous_on_const) lemma leibniz_rule: fixes f::"'a::banach \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::banach" assumes fx: "\<And>x t. x \<in> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> ((\<lambda>x. f x t) has_derivative blinfun_apply (fx x t)) (at x within U)" assumes integrable_f2: "\<And>x. x \<in> U \<Longrightarrow> f x integrable_on cbox a b" assumes cont_fx: "continuous_on (U \<times> (cbox a b)) (\<lambda>(x, t). fx x t)" assumes [intro]: "x0 \<in> U" assumes "convex U" shows "((\<lambda>x. integral (cbox a b) (f x)) has_derivative integral (cbox a b) (fx x0)) (at x0 within U)" (is "(?F has_derivative ?dF) _") proof cases assume "content (cbox a b) \<noteq> 0" then have ne: "cbox a b \<noteq> {}" by auto note [continuous_intros] = continuous_on_compose2[OF cont_fx, where f="\<lambda>y. Pair x y" for x, unfolded split_beta fst_conv snd_conv] show ?thesis proof (intro has_derivativeI bounded_linear_scaleR_left tendstoI, fold norm_conv_dist) have cont_f1: "\<And>t. t \<in> cbox a b \<Longrightarrow> continuous_on U (\<lambda>x. f x t)" by (auto simp: continuous_on_eq_continuous_within intro!: has_derivative_continuous fx) note [continuous_intros] = continuous_on_compose2[OF cont_f1] fix e'::real assume "e' > 0" define e where "e = e' / (content (cbox a b) + 1)" have "e > 0" using \<open>e' > 0\<close> by (auto simp: e_def intro!: divide_pos_pos add_nonneg_pos) from continuous_on_prod_compactE[OF cont_fx compact_cbox \<open>x0 \<in> U\<close> \<open>e > 0\<close>] obtain X0 where X0: "x0 \<in> X0" "open X0" and fx_bound: "\<And>x t. x \<in> X0 \<inter> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> norm (fx x t - fx x0 t) \<le> e" unfolding split_beta fst_conv snd_conv by (metis dist_norm) note eventually_closed_segment[OF \<open>open X0\<close> \<open>x0 \<in> X0\<close>, of U] moreover have "\<forall>\<^sub>F x in at x0 within U. x \<in> X0" using \<open>open X0\<close> \<open>x0 \<in> X0\<close> eventually_at_topological by blast moreover have "\<forall>\<^sub>F x in at x0 within U. x \<noteq> x0" by (auto simp: eventually_at_filter) moreover have "\<forall>\<^sub>F x in at x0 within U. x \<in> U" by (auto simp: eventually_at_filter) ultimately show "\<forall>\<^sub>F x in at x0 within U. norm ((?F x - ?F x0 - ?dF (x - x0)) /\<^sub>R norm (x - x0)) < e'" proof eventually_elim case (elim x) from elim have "0 < norm (x - x0)" by simp have "closed_segment x0 x \<subseteq> U" by (rule \<open>convex U\<close>[unfolded convex_contains_segment, rule_format, OF \<open>x0 \<in> U\<close> \<open>x \<in> U\<close>]) from elim have [intro]: "x \<in> U" by auto have "?F x - ?F x0 - ?dF (x - x0) = integral (cbox a b) (\<lambda>y. f x y - f x0 y - fx x0 y (x - x0))" (is "_ = ?id") using \<open>x \<noteq> x0\<close> by (subst blinfun_apply_integral integral_diff, auto intro!: integrable_diff integrable_f2 continuous_intros intro: integrable_continuous)+ also { fix t assume t: "t \<in> (cbox a b)" have seg: "\<And>t. t \<in> {0..1} \<Longrightarrow> x0 + t *\<^sub>R (x - x0) \<in> X0 \<inter> U" using \<open>closed_segment x0 x \<subseteq> U\<close> \<open>closed_segment x0 x \<subseteq> X0\<close> by (force simp: closed_segment_def algebra_simps) from t have deriv: "((\<lambda>x. f x t) has_derivative (fx y t)) (at y within X0 \<inter> U)" if "y \<in> X0 \<inter> U" for y unfolding has_vector_derivative_def[symmetric] using that \<open>x \<in> X0\<close> by (intro has_derivative_subset[OF fx]) auto have "\<And>x. x \<in> X0 \<inter> U \<Longrightarrow> onorm (blinfun_apply (fx x t) - (fx x0 t)) \<le> e" using fx_bound t by (auto simp add: norm_blinfun_def fun_diff_def blinfun.bilinear_simps[symmetric]) from differentiable_bound_linearization[OF seg deriv this] X0 have "norm (f x t - f x0 t - fx x0 t (x - x0)) \<le> e * norm (x - x0)" by (auto simp add: ac_simps) } then have "norm ?id \<le> integral (cbox a b) (\<lambda>_. e * norm (x - x0))" by (intro integral_norm_bound_integral) (auto intro!: continuous_intros integrable_diff integrable_f2 intro: integrable_continuous) also have "\<dots> = content (cbox a b) * e * norm (x - x0)" by simp also have "\<dots> < e' * norm (x - x0)" proof (intro mult_strict_right_mono[OF _ \<open>0 < norm (x - x0)\<close>]) show "content (cbox a b) * e < e'" using \<open>e' > 0\<close> by (simp add: divide_simps e_def not_less) qed finally have "norm (?F x - ?F x0 - ?dF (x - x0)) < e' * norm (x - x0)" . then show ?case by (auto simp: divide_simps) qed qed (rule blinfun.bounded_linear_right) qed (auto intro!: derivative_eq_intros simp: blinfun.bilinear_simps) lemma has_vector_derivative_eq_has_derivative_blinfun: "(f has_vector_derivative f') (at x within U) \<longleftrightarrow> (f has_derivative blinfun_scaleR_left f') (at x within U)" by (simp add: has_vector_derivative_def) lemma leibniz_rule_vector_derivative: fixes f::"real \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::banach" assumes fx: "\<And>x t. x \<in> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> ((\<lambda>x. f x t) has_vector_derivative (fx x t)) (at x within U)" assumes integrable_f2: "\<And>x. x \<in> U \<Longrightarrow> (f x) integrable_on cbox a b" assumes cont_fx: "continuous_on (U \<times> cbox a b) (\<lambda>(x, t). fx x t)" assumes U: "x0 \<in> U" "convex U" shows "((\<lambda>x. integral (cbox a b) (f x)) has_vector_derivative integral (cbox a b) (fx x0)) (at x0 within U)" proof - note [continuous_intros] = continuous_on_compose2[OF cont_fx, where f="\<lambda>y. Pair x y" for x, unfolded split_beta fst_conv snd_conv] show ?thesis unfolding has_vector_derivative_eq_has_derivative_blinfun proof (rule has_derivative_eq_rhs [OF leibniz_rule[OF _ integrable_f2 _ U]]) show "continuous_on (U \<times> cbox a b) (\<lambda>(x, t). blinfun_scaleR_left (fx x t))" using cont_fx by (auto simp: split_beta intro!: continuous_intros) show "blinfun_apply (integral (cbox a b) (\<lambda>t. blinfun_scaleR_left (fx x0 t))) = blinfun_apply (blinfun_scaleR_left (integral (cbox a b) (fx x0)))" by (subst integral_linear[symmetric]) (auto simp: has_vector_derivative_def o_def intro!: integrable_continuous U continuous_intros bounded_linear_intros) qed (use fx in \<open>auto simp: has_vector_derivative_def\<close>) qed lemma has_field_derivative_eq_has_derivative_blinfun: "(f has_field_derivative f') (at x within U) \<longleftrightarrow> (f has_derivative blinfun_mult_right f') (at x within U)" by (simp add: has_field_derivative_def) lemma leibniz_rule_field_derivative: fixes f::"'a::{real_normed_field, banach} \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'a" assumes fx: "\<And>x t. x \<in> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> ((\<lambda>x. f x t) has_field_derivative fx x t) (at x within U)" assumes integrable_f2: "\<And>x. x \<in> U \<Longrightarrow> (f x) integrable_on cbox a b" assumes cont_fx: "continuous_on (U \<times> (cbox a b)) (\<lambda>(x, t). fx x t)" assumes U: "x0 \<in> U" "convex U" shows "((\<lambda>x. integral (cbox a b) (f x)) has_field_derivative integral (cbox a b) (fx x0)) (at x0 within U)" proof - note [continuous_intros] = continuous_on_compose2[OF cont_fx, where f="\<lambda>y. Pair x y" for x, unfolded split_beta fst_conv snd_conv] have *: "blinfun_mult_right (integral (cbox a b) (fx x0)) = integral (cbox a b) (\<lambda>t. blinfun_mult_right (fx x0 t))" by (subst integral_linear[symmetric]) (auto simp: has_vector_derivative_def o_def intro!: integrable_continuous U continuous_intros bounded_linear_intros) show ?thesis unfolding has_field_derivative_eq_has_derivative_blinfun proof (rule has_derivative_eq_rhs [OF leibniz_rule[OF _ integrable_f2 _ U, where fx="\<lambda>x t. blinfun_mult_right (fx x t)"]]) show "continuous_on (U \<times> cbox a b) (\<lambda>(x, t). blinfun_mult_right (fx x t))" using cont_fx by (auto simp: split_beta intro!: continuous_intros) show "blinfun_apply (integral (cbox a b) (\<lambda>t. blinfun_mult_right (fx x0 t))) = blinfun_apply (blinfun_mult_right (integral (cbox a b) (fx x0)))" by (subst integral_linear[symmetric]) (auto simp: has_vector_derivative_def o_def intro!: integrable_continuous U continuous_intros bounded_linear_intros) qed (use fx in \<open>auto simp: has_field_derivative_def\<close>) qed lemma leibniz_rule_field_differentiable: fixes f::"'a::{real_normed_field, banach} \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'a" assumes "\<And>x t. x \<in> U \<Longrightarrow> t \<in> cbox a b \<Longrightarrow> ((\<lambda>x. f x t) has_field_derivative fx x t) (at x within U)" assumes "\<And>x. x \<in> U \<Longrightarrow> (f x) integrable_on cbox a b" assumes "continuous_on (U \<times> (cbox a b)) (\<lambda>(x, t). fx x t)" assumes "x0 \<in> U" "convex U" shows "(\<lambda>x. integral (cbox a b) (f x)) field_differentiable at x0 within U" using leibniz_rule_field_derivative[OF assms] by (auto simp: field_differentiable_def) subsection \<open>Exchange uniform limit and integral\<close> lemma uniform_limit_integral_cbox: fixes f::"'a \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::banach" assumes u: "uniform_limit (cbox a b) f g F" assumes c: "\<And>n. continuous_on (cbox a b) (f n)" assumes [simp]: "F \<noteq> bot" obtains I J where "\<And>n. (f n has_integral I n) (cbox a b)" "(g has_integral J) (cbox a b)" "(I \<longlongrightarrow> J) F" proof - have fi[simp]: "f n integrable_on (cbox a b)" for n by (auto intro!: integrable_continuous assms) then obtain I where I: "\<And>n. (f n has_integral I n) (cbox a b)" by atomize_elim (auto simp: integrable_on_def intro!: choice) moreover have gi[simp]: "g integrable_on (cbox a b)" by (auto intro!: integrable_continuous uniform_limit_theorem[OF _ u] eventuallyI c) then obtain J where J: "(g has_integral J) (cbox a b)" by blast moreover have "(I \<longlongrightarrow> J) F" proof cases assume "content (cbox a b) = 0" hence "I = (\<lambda>_. 0)" "J = 0" by (auto intro!: has_integral_unique I J) thus ?thesis by simp next assume content_nonzero: "content (cbox a b) \<noteq> 0" show ?thesis proof (rule tendstoI) fix e::real assume "e > 0" define e' where "e' = e/2" with \<open>e > 0\<close> have "e' > 0" by simp then have "\<forall>\<^sub>F n in F. \<forall>x\<in>cbox a b. norm (f n x - g x) < e' / content (cbox a b)" using u content_nonzero by (auto simp: uniform_limit_iff dist_norm zero_less_measure_iff) then show "\<forall>\<^sub>F n in F. dist (I n) J < e" proof eventually_elim case (elim n) have "I n = integral (cbox a b) (f n)" "J = integral (cbox a b) g" using I[of n] J by (simp_all add: integral_unique) then have "dist (I n) J = norm (integral (cbox a b) (\<lambda>x. f n x - g x))" by (simp add: integral_diff dist_norm) also have "\<dots> \<le> integral (cbox a b) (\<lambda>x. (e' / content (cbox a b)))" using elim by (intro integral_norm_bound_integral) (auto intro!: integrable_diff) also have "\<dots> < e" using \<open>0 < e\<close> by (simp add: e'_def) finally show ?case . qed qed qed ultimately show ?thesis .. qed lemma uniform_limit_integral: fixes f::"'a \<Rightarrow> 'b::ordered_euclidean_space \<Rightarrow> 'c::banach" assumes u: "uniform_limit {a..b} f g F" assumes c: "\<And>n. continuous_on {a..b} (f n)" assumes [simp]: "F \<noteq> bot" obtains I J where "\<And>n. (f n has_integral I n) {a..b}" "(g has_integral J) {a..b}" "(I \<longlongrightarrow> J) F" by (metis interval_cbox assms uniform_limit_integral_cbox) subsection \<open>Integration by parts\<close> lemma integration_by_parts_interior_strong: fixes prod :: "_ \<Rightarrow> _ \<Rightarrow> 'b :: banach" assumes bilinear: "bounded_bilinear (prod)" assumes s: "finite s" and le: "a \<le> b" assumes cont [continuous_intros]: "continuous_on {a..b} f" "continuous_on {a..b} g" assumes deriv: "\<And>x. x\<in>{a<..<b} - s \<Longrightarrow> (f has_vector_derivative f' x) (at x)" "\<And>x. x\<in>{a<..<b} - s \<Longrightarrow> (g has_vector_derivative g' x) (at x)" assumes int: "((\<lambda>x. prod (f x) (g' x)) has_integral (prod (f b) (g b) - prod (f a) (g a) - y)) {a..b}" shows "((\<lambda>x. prod (f' x) (g x)) has_integral y) {a..b}" proof - interpret bounded_bilinear prod by fact have "((\<lambda>x. prod (f x) (g' x) + prod (f' x) (g x)) has_integral (prod (f b) (g b) - prod (f a) (g a))) {a..b}" using deriv by (intro fundamental_theorem_of_calculus_interior_strong[OF s le]) (auto intro!: continuous_intros continuous_on has_vector_derivative) from has_integral_diff[OF this int] show ?thesis by (simp add: algebra_simps) qed lemma integration_by_parts_interior: fixes prod :: "_ \<Rightarrow> _ \<Rightarrow> 'b :: banach" assumes "bounded_bilinear (prod)" "a \<le> b" "continuous_on {a..b} f" "continuous_on {a..b} g" assumes "\<And>x. x\<in>{a<..<b} \<Longrightarrow> (f has_vector_derivative f' x) (at x)" "\<And>x. x\<in>{a<..<b} \<Longrightarrow> (g has_vector_derivative g' x) (at x)" assumes "((\<lambda>x. prod (f x) (g' x)) has_integral (prod (f b) (g b) - prod (f a) (g a) - y)) {a..b}" shows "((\<lambda>x. prod (f' x) (g x)) has_integral y) {a..b}" by (rule integration_by_parts_interior_strong[of _ "{}" _ _ f g f' g']) (insert assms, simp_all) lemma integration_by_parts: fixes prod :: "_ \<Rightarrow> _ \<Rightarrow> 'b :: banach" assumes "bounded_bilinear (prod)" "a \<le> b" "continuous_on {a..b} f" "continuous_on {a..b} g" assumes "\<And>x. x\<in>{a..b} \<Longrightarrow> (f has_vector_derivative f' x) (at x)" "\<And>x. x\<in>{a..b} \<Longrightarrow> (g has_vector_derivative g' x) (at x)" assumes "((\<lambda>x. prod (f x) (g' x)) has_integral (prod (f b) (g b) - prod (f a) (g a) - y)) {a..b}" shows "((\<lambda>x. prod (f' x) (g x)) has_integral y) {a..b}" by (rule integration_by_parts_interior[of _ _ _ f g f' g']) (insert assms, simp_all) lemma integrable_by_parts_interior_strong: fixes prod :: "_ \<Rightarrow> _ \<Rightarrow> 'b :: banach" assumes bilinear: "bounded_bilinear (prod)" assumes s: "finite s" and le: "a \<le> b" assumes cont [continuous_intros]: "continuous_on {a..b} f" "continuous_on {a..b} g" assumes deriv: "\<And>x. x\<in>{a<..<b} - s \<Longrightarrow> (f has_vector_derivative f' x) (at x)" "\<And>x. x\<in>{a<..<b} - s \<Longrightarrow> (g has_vector_derivative g' x) (at x)" assumes int: "(\<lambda>x. prod (f x) (g' x)) integrable_on {a..b}" shows "(\<lambda>x. prod (f' x) (g x)) integrable_on {a..b}" proof - from int obtain I where "((\<lambda>x. prod (f x) (g' x)) has_integral I) {a..b}" unfolding integrable_on_def by blast hence "((\<lambda>x. prod (f x) (g' x)) has_integral (prod (f b) (g b) - prod (f a) (g a) - (prod (f b) (g b) - prod (f a) (g a) - I))) {a..b}" by simp from integration_by_parts_interior_strong[OF assms(1-7) this] show ?thesis unfolding integrable_on_def by blast qed lemma integrable_by_parts_interior: fixes prod :: "_ \<Rightarrow> _ \<Rightarrow> 'b :: banach" assumes "bounded_bilinear (prod)" "a \<le> b" "continuous_on {a..b} f" "continuous_on {a..b} g" assumes "\<And>x. x\<in>{a<..<b} \<Longrightarrow> (f has_vector_derivative f' x) (at x)" "\<And>x. x\<in>{a<..<b} \<Longrightarrow> (g has_vector_derivative g' x) (at x)" assumes "(\<lambda>x. prod (f x) (g' x)) integrable_on {a..b}" shows "(\<lambda>x. prod (f' x) (g x)) integrable_on {a..b}" by (rule integrable_by_parts_interior_strong[of _ "{}" _ _ f g f' g']) (insert assms, simp_all) lemma integrable_by_parts: fixes prod :: "_ \<Rightarrow> _ \<Rightarrow> 'b :: banach" assumes "bounded_bilinear (prod)" "a \<le> b" "continuous_on {a..b} f" "continuous_on {a..b} g" assumes "\<And>x. x\<in>{a..b} \<Longrightarrow> (f has_vector_derivative f' x) (at x)" "\<And>x. x\<in>{a..b} \<Longrightarrow> (g has_vector_derivative g' x) (at x)" assumes "(\<lambda>x. prod (f x) (g' x)) integrable_on {a..b}" shows "(\<lambda>x. prod (f' x) (g x)) integrable_on {a..b}" by (rule integrable_by_parts_interior_strong[of _ "{}" _ _ f g f' g']) (insert assms, simp_all) subsection \<open>Integration by substitution\<close> lemma has_integral_substitution_general: fixes f :: "real \<Rightarrow> 'a::euclidean_space" and g :: "real \<Rightarrow> real" assumes s: "finite s" and le: "a \<le> b" and subset: "g ` {a..b} \<subseteq> {c..d}" and f [continuous_intros]: "continuous_on {c..d} f" and g [continuous_intros]: "continuous_on {a..b} g" and deriv [derivative_intros]: "\<And>x. x \<in> {a..b} - s \<Longrightarrow> (g has_field_derivative g' x) (at x within {a..b})" shows "((\<lambda>x. g' x *\<^sub>R f (g x)) has_integral (integral {g a..g b} f - integral {g b..g a} f)) {a..b}" proof - let ?F = "\<lambda>x. integral {c..g x} f" have cont_int: "continuous_on {a..b} ?F" by (rule continuous_on_compose2[OF _ g subset] indefinite_integral_continuous_1 f integrable_continuous_real)+ have deriv: "(((\<lambda>x. integral {c..x} f) \<circ> g) has_vector_derivative g' x *\<^sub>R f (g x)) (at x within {a..b})" if "x \<in> {a..b} - s" for x proof (rule has_vector_derivative_eq_rhs [OF vector_diff_chain_within refl]) show "(g has_vector_derivative g' x) (at x within {a..b})" using deriv has_real_derivative_iff_has_vector_derivative that by blast show "((\<lambda>x. integral {c..x} f) has_vector_derivative f (g x)) (at (g x) within g ` {a..b})" using that le subset by (blast intro: has_vector_derivative_within_subset integral_has_vector_derivative f) qed have deriv: "(?F has_vector_derivative g' x *\<^sub>R f (g x)) (at x)" if "x \<in> {a..b} - (s \<union> {a,b})" for x using deriv[of x] that by (simp add: at_within_Icc_at o_def) have "((\<lambda>x. g' x *\<^sub>R f (g x)) has_integral (?F b - ?F a)) {a..b}" using le cont_int s deriv cont_int by (intro fundamental_theorem_of_calculus_interior_strong[of "s \<union> {a,b}"]) simp_all also from subset have "g x \<in> {c..d}" if "x \<in> {a..b}" for x using that by blast from this[of a] this[of b] le have cd: "c \<le> g a" "g b \<le> d" "c \<le> g b" "g a \<le> d" by auto have "integral {c..g b} f - integral {c..g a} f = integral {g a..g b} f - integral {g b..g a} f" proof cases assume "g a \<le> g b" note le = le this from cd have "integral {c..g a} f + integral {g a..g b} f = integral {c..g b} f" by (intro integral_combine integrable_continuous_real continuous_on_subset[OF f] le) simp_all with le show ?thesis by (cases "g a = g b") (simp_all add: algebra_simps) next assume less: "\<not>g a \<le> g b" then have "g a \<ge> g b" by simp note le = le this from cd have "integral {c..g b} f + integral {g b..g a} f = integral {c..g a} f" by (intro integral_combine integrable_continuous_real continuous_on_subset[OF f] le) simp_all with less show ?thesis by (simp_all add: algebra_simps) qed finally show ?thesis . qed lemma has_integral_substitution_strong: fixes f :: "real \<Rightarrow> 'a::euclidean_space" and g :: "real \<Rightarrow> real" assumes s: "finite s" and le: "a \<le> b" "g a \<le> g b" and subset: "g ` {a..b} \<subseteq> {c..d}" and f [continuous_intros]: "continuous_on {c..d} f" and g [continuous_intros]: "continuous_on {a..b} g" and deriv [derivative_intros]: "\<And>x. x \<in> {a..b} - s \<Longrightarrow> (g has_field_derivative g' x) (at x within {a..b})" shows "((\<lambda>x. g' x *\<^sub>R f (g x)) has_integral (integral {g a..g b} f)) {a..b}" using has_integral_substitution_general[OF s le(1) subset f g deriv] le(2) by (cases "g a = g b") auto lemma has_integral_substitution: fixes f :: "real \<Rightarrow> 'a::euclidean_space" and g :: "real \<Rightarrow> real" assumes "a \<le> b" "g a \<le> g b" "g ` {a..b} \<subseteq> {c..d}" and "continuous_on {c..d} f" and "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_field_derivative g' x) (at x within {a..b})" shows "((\<lambda>x. g' x *\<^sub>R f (g x)) has_integral (integral {g a..g b} f)) {a..b}" by (intro has_integral_substitution_strong[of "{}" a b g c d] assms) (auto intro: DERIV_continuous_on assms) lemma integral_shift: fixes f :: "real \<Rightarrow> 'a::euclidean_space" assumes cont: "continuous_on {a + c..b + c} f" shows "integral {a..b} (f \<circ> (\<lambda>x. x + c)) = integral {a + c..b + c} f" proof (cases "a \<le> b") case True have "((\<lambda>x. 1 *\<^sub>R f (x + c)) has_integral integral {a+c..b+c} f) {a..b}" using True cont by (intro has_integral_substitution[where c = "a + c" and d = "b + c"]) (auto intro!: derivative_eq_intros) thus ?thesis by (simp add: has_integral_iff o_def) qed auto subsection \<open>Compute a double integral using iterated integrals and switching the order of integration\<close> lemma continuous_on_imp_integrable_on_Pair1: fixes f :: "_ \<Rightarrow> 'b::banach" assumes con: "continuous_on (cbox (a,c) (b,d)) f" and x: "x \<in> cbox a b" shows "(\<lambda>y. f (x, y)) integrable_on (cbox c d)" proof - have "f \<circ> (\<lambda>y. (x, y)) integrable_on (cbox c d)" proof (intro integrable_continuous continuous_on_compose [OF _ continuous_on_subset [OF con]]) show "continuous_on (cbox c d) (Pair x)" by (simp add: continuous_on_Pair) show "Pair x ` cbox c d \<subseteq> cbox (a,c) (b,d)" using x by blast qed then show ?thesis by (simp add: o_def) qed lemma integral_integrable_2dim: fixes f :: "('a::euclidean_space * 'b::euclidean_space) \<Rightarrow> 'c::banach" assumes "continuous_on (cbox (a,c) (b,d)) f" shows "(\<lambda>x. integral (cbox c d) (\<lambda>y. f (x,y))) integrable_on cbox a b" proof (cases "content(cbox c d) = 0") case True then show ?thesis by (simp add: True integrable_const) next case False have uc: "uniformly_continuous_on (cbox (a,c) (b,d)) f" by (simp add: assms compact_cbox compact_uniformly_continuous) { fix x::'a and e::real assume x: "x \<in> cbox a b" and e: "0 < e" then have e2_gt: "0 < e/2 / content (cbox c d)" and e2_less: "e/2 / content (cbox c d) * content (cbox c d) < e" by (auto simp: False content_lt_nz e) then obtain dd where dd: "\<And>x x'. \<lbrakk>x\<in>cbox (a, c) (b, d); x'\<in>cbox (a, c) (b, d); norm (x' - x) < dd\<rbrakk> \<Longrightarrow> norm (f x' - f x) \<le> e/(2 * content (cbox c d))" "dd>0" using uc [unfolded uniformly_continuous_on_def, THEN spec, of "e/(2 * content (cbox c d))"] by (auto simp: dist_norm intro: less_imp_le) have "\<exists>delta>0. \<forall>x'\<in>cbox a b. norm (x' - x) < delta \<longrightarrow> norm (integral (cbox c d) (\<lambda>u. f (x', u) - f (x, u))) < e" using dd e2_gt assms x apply (rule_tac x=dd in exI) apply clarify apply (rule le_less_trans [OF integrable_bound e2_less]) apply (auto intro: integrable_diff continuous_on_imp_integrable_on_Pair1) done } note * = this show ?thesis proof (rule integrable_continuous) show "continuous_on (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. f (x, y)))" by (simp add: * continuous_on_iff dist_norm integral_diff [symmetric] continuous_on_imp_integrable_on_Pair1 [OF assms]) qed qed lemma integral_split: fixes f :: "'a::euclidean_space \<Rightarrow> 'b::{real_normed_vector,complete_space}" assumes f: "f integrable_on (cbox a b)" and k: "k \<in> Basis" shows "integral (cbox a b) f = integral (cbox a b \<inter> {x. x\<bullet>k \<le> c}) f + integral (cbox a b \<inter> {x. x\<bullet>k \<ge> c}) f" using k f by (auto simp: has_integral_integral intro: integral_unique [OF has_integral_split]) lemma integral_swap_operativeI: fixes f :: "('a::euclidean_space * 'b::euclidean_space) \<Rightarrow> 'c::banach" assumes f: "continuous_on s f" and e: "0 < e" shows "operative conj True (\<lambda>k. \<forall>a b c d. cbox (a,c) (b,d) \<subseteq> k \<and> cbox (a,c) (b,d) \<subseteq> s \<longrightarrow> norm(integral (cbox (a,c) (b,d)) f - integral (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. f((x,y))))) \<le> e * content (cbox (a,c) (b,d)))" proof (standard, auto) fix a::'a and c::'b and b::'a and d::'b and u::'a and v::'a and w::'b and z::'b assume *: "box (a, c) (b, d) = {}" and cb1: "cbox (u, w) (v, z) \<subseteq> cbox (a, c) (b, d)" and cb2: "cbox (u, w) (v, z) \<subseteq> s" then have c0: "content (cbox (a, c) (b, d)) = 0" using * unfolding content_eq_0_interior by simp have c0': "content (cbox (u, w) (v, z)) = 0" by (fact content_0_subset [OF c0 cb1]) show "norm (integral (cbox (u,w) (v,z)) f - integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x, y)))) \<le> e * content (cbox (u,w) (v,z))" using content_cbox_pair_eq0_D [OF c0'] by (force simp add: c0') next fix a::'a and c::'b and b::'a and d::'b and M::real and i::'a and j::'b and u::'a and v::'a and w::'b and z::'b assume ij: "(i,j) \<in> Basis" and n1: "\<forall>a' b' c' d'. cbox (a',c') (b',d') \<subseteq> cbox (a,c) (b,d) \<and> cbox (a',c') (b',d') \<subseteq> {x. x \<bullet> (i,j) \<le> M} \<and> cbox (a',c') (b',d') \<subseteq> s \<longrightarrow> norm (integral (cbox (a',c') (b',d')) f - integral (cbox a' b') (\<lambda>x. integral (cbox c' d') (\<lambda>y. f (x,y)))) \<le> e * content (cbox (a',c') (b',d'))" and n2: "\<forall>a' b' c' d'. cbox (a',c') (b',d') \<subseteq> cbox (a,c) (b,d) \<and> cbox (a',c') (b',d') \<subseteq> {x. M \<le> x \<bullet> (i,j)} \<and> cbox (a',c') (b',d') \<subseteq> s \<longrightarrow> norm (integral (cbox (a',c') (b',d')) f - integral (cbox a' b') (\<lambda>x. integral (cbox c' d') (\<lambda>y. f (x,y)))) \<le> e * content (cbox (a',c') (b',d'))" and subs: "cbox (u,w) (v,z) \<subseteq> cbox (a,c) (b,d)" "cbox (u,w) (v,z) \<subseteq> s" have fcont: "continuous_on (cbox (u, w) (v, z)) f" using assms(1) continuous_on_subset subs(2) by blast then have fint: "f integrable_on cbox (u, w) (v, z)" by (metis integrable_continuous) consider "i \<in> Basis" "j=0" | "j \<in> Basis" "i=0" using ij by (auto simp: Euclidean_Space.Basis_prod_def) then show "norm (integral (cbox (u,w) (v,z)) f - integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x,y)))) \<le> e * content (cbox (u,w) (v,z))" (is ?normle) proof cases case 1 then have e: "e * content (cbox (u, w) (v, z)) = e * (content (cbox u v \<inter> {x. x \<bullet> i \<le> M}) * content (cbox w z)) + e * (content (cbox u v \<inter> {x. M \<le> x \<bullet> i}) * content (cbox w z))" by (simp add: content_split [where c=M] content_Pair algebra_simps) have *: "integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x, y))) = integral (cbox u v \<inter> {x. x \<bullet> i \<le> M}) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x, y))) + integral (cbox u v \<inter> {x. M \<le> x \<bullet> i}) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x, y)))" using 1 f subs integral_integrable_2dim continuous_on_subset by (blast intro: integral_split) show ?normle apply (rule norm_diff2 [OF integral_split [where c=M, OF fint ij] * e]) using 1 subs apply (simp_all add: cbox_Pair_eq setcomp_dot1 [of "\<lambda>u. M\<le>u"] setcomp_dot1 [of "\<lambda>u. u\<le>M"] Sigma_Int_Paircomp1) apply (simp_all add: interval_split ij flip: cbox_Pair_eq content_Pair) apply (force simp flip: interval_split intro!: n1 [rule_format]) apply (force simp flip: interval_split intro!: n2 [rule_format]) done next case 2 then have e: "e * content (cbox (u, w) (v, z)) = e * (content (cbox u v) * content (cbox w z \<inter> {x. x \<bullet> j \<le> M})) + e * (content (cbox u v) * content (cbox w z \<inter> {x. M \<le> x \<bullet> j}))" by (simp add: content_split [where c=M] content_Pair algebra_simps) have "(\<lambda>x. integral (cbox w z \<inter> {x. x \<bullet> j \<le> M}) (\<lambda>y. f (x, y))) integrable_on cbox u v" "(\<lambda>x. integral (cbox w z \<inter> {x. M \<le> x \<bullet> j}) (\<lambda>y. f (x, y))) integrable_on cbox u v" using 2 subs apply (simp_all add: interval_split) apply (rule integral_integrable_2dim [OF continuous_on_subset [OF f]]; auto simp: cbox_Pair_eq interval_split [symmetric])+ done with 2 have *: "integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x, y))) = integral (cbox u v) (\<lambda>x. integral (cbox w z \<inter> {x. x \<bullet> j \<le> M}) (\<lambda>y. f (x, y))) + integral (cbox u v) (\<lambda>x. integral (cbox w z \<inter> {x. M \<le> x \<bullet> j}) (\<lambda>y. f (x, y)))" by (simp add: integral_add [symmetric] integral_split [symmetric] continuous_on_imp_integrable_on_Pair1 [OF fcont] cong: integral_cong) show ?normle apply (rule norm_diff2 [OF integral_split [where c=M, OF fint ij] * e]) using 2 subs apply (simp_all add: cbox_Pair_eq setcomp_dot2 [of "\<lambda>u. M\<le>u"] setcomp_dot2 [of "\<lambda>u. u\<le>M"] Sigma_Int_Paircomp2) apply (simp_all add: interval_split ij flip: cbox_Pair_eq content_Pair) apply (force simp flip: interval_split intro!: n1 [rule_format]) apply (force simp flip: interval_split intro!: n2 [rule_format]) done qed qed lemma integral_Pair_const: "integral (cbox (a,c) (b,d)) (\<lambda>x. k) = integral (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. k))" by (simp add: content_Pair) lemma integral_prod_continuous: fixes f :: "('a::euclidean_space * 'b::euclidean_space) \<Rightarrow> 'c::banach" assumes "continuous_on (cbox (a, c) (b, d)) f" (is "continuous_on ?CBOX f") shows "integral (cbox (a, c) (b, d)) f = integral (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. f (x, y)))" proof (cases "content ?CBOX = 0") case True then show ?thesis by (auto simp: content_Pair) next case False then have cbp: "content ?CBOX > 0" using content_lt_nz by blast have "norm (integral ?CBOX f - integral (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. f (x,y)))) = 0" proof (rule dense_eq0_I, simp) fix e :: real assume "0 < e" with \<open>content ?CBOX > 0\<close> have "0 < e/content ?CBOX" by simp have f_int_acbd: "f integrable_on ?CBOX" by (rule integrable_continuous [OF assms]) { fix p assume p: "p division_of ?CBOX" then have "finite p" by blast define e' where "e' = e/content ?CBOX" with \<open>0 < e\<close> \<open>0 < e/content ?CBOX\<close> have "0 < e'" by simp interpret operative conj True "\<lambda>k. \<forall>a' b' c' d'. cbox (a', c') (b', d') \<subseteq> k \<and> cbox (a', c') (b', d') \<subseteq> ?CBOX \<longrightarrow> norm (integral (cbox (a', c') (b', d')) f - integral (cbox a' b') (\<lambda>x. integral (cbox c' d') (\<lambda>y. f ((x, y))))) \<le> e' * content (cbox (a', c') (b', d'))" using assms \<open>0 < e'\<close> by (rule integral_swap_operativeI) have "norm (integral ?CBOX f - integral (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. f (x, y)))) \<le> e' * content ?CBOX" if "\<And>t u v w z. t \<in> p \<Longrightarrow> cbox (u, w) (v, z) \<subseteq> t \<Longrightarrow> cbox (u, w) (v, z) \<subseteq> ?CBOX \<Longrightarrow> norm (integral (cbox (u, w) (v, z)) f - integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x, y)))) \<le> e' * content (cbox (u, w) (v, z))" using that division [of p "(a, c)" "(b, d)"] p \<open>finite p\<close> by (auto simp add: comm_monoid_set_F_and) with False have "norm (integral ?CBOX f - integral (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. f (x, y)))) \<le> e" if "\<And>t u v w z. t \<in> p \<Longrightarrow> cbox (u, w) (v, z) \<subseteq> t \<Longrightarrow> cbox (u, w) (v, z) \<subseteq> ?CBOX \<Longrightarrow> norm (integral (cbox (u, w) (v, z)) f - integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x, y)))) \<le> e * content (cbox (u, w) (v, z)) / content ?CBOX" using that by (simp add: e'_def) } note op_acbd = this { fix k::real and \<D> and u::'a and v w and z::'b and t1 t2 l assume k: "0 < k" and nf: "\<And>x y u v. \<lbrakk>x \<in> cbox a b; y \<in> cbox c d; u \<in> cbox a b; v\<in>cbox c d; norm (u-x, v-y) < k\<rbrakk> \<Longrightarrow> norm (f(u,v) - f(x,y)) < e/(2 * (content ?CBOX))" and p_acbd: "\<D> tagged_division_of cbox (a,c) (b,d)" and fine: "(\<lambda>x. ball x k) fine \<D>" "((t1,t2), l) \<in> \<D>" and uwvz_sub: "cbox (u,w) (v,z) \<subseteq> l" "cbox (u,w) (v,z) \<subseteq> cbox (a,c) (b,d)" have t: "t1 \<in> cbox a b" "t2 \<in> cbox c d" by (meson fine p_acbd cbox_Pair_iff tag_in_interval)+ have ls: "l \<subseteq> ball (t1,t2) k" using fine by (simp add: fine_def Ball_def) { fix x1 x2 assume xuvwz: "x1 \<in> cbox u v" "x2 \<in> cbox w z" then have x: "x1 \<in> cbox a b" "x2 \<in> cbox c d" using uwvz_sub by auto have "norm (x1 - t1, x2 - t2) = norm (t1 - x1, t2 - x2)" by (simp add: norm_Pair norm_minus_commute) also have "norm (t1 - x1, t2 - x2) < k" using xuvwz ls uwvz_sub unfolding ball_def by (force simp add: cbox_Pair_eq dist_norm ) finally have "norm (f (x1,x2) - f (t1,t2)) \<le> e/content ?CBOX/2" using nf [OF t x] by simp } note nf' = this have f_int_uwvz: "f integrable_on cbox (u,w) (v,z)" using f_int_acbd uwvz_sub integrable_on_subcbox by blast have f_int_uv: "\<And>x. x \<in> cbox u v \<Longrightarrow> (\<lambda>y. f (x,y)) integrable_on cbox w z" using assms continuous_on_subset uwvz_sub by (blast intro: continuous_on_imp_integrable_on_Pair1) have 1: "norm (integral (cbox (u,w) (v,z)) f - integral (cbox (u,w) (v,z)) (\<lambda>x. f (t1,t2))) \<le> e * content (cbox (u,w) (v,z)) / content ?CBOX/2" using cbp \<open>0 < e/content ?CBOX\<close> nf' apply (simp only: integral_diff [symmetric] f_int_uwvz integrable_const) apply (auto simp: integrable_diff f_int_uwvz integrable_const intro: order_trans [OF integrable_bound [of "e/content ?CBOX/2"]]) done have int_integrable: "(\<lambda>x. integral (cbox w z) (\<lambda>y. f (x, y))) integrable_on cbox u v" using assms integral_integrable_2dim continuous_on_subset uwvz_sub(2) by blast have normint_wz: "\<And>x. x \<in> cbox u v \<Longrightarrow> norm (integral (cbox w z) (\<lambda>y. f (x, y)) - integral (cbox w z) (\<lambda>y. f (t1, t2))) \<le> e * content (cbox w z) / content (cbox (a, c) (b, d))/2" using cbp \<open>0 < e/content ?CBOX\<close> nf' apply (simp only: integral_diff [symmetric] f_int_uv integrable_const) apply (auto simp: integrable_diff f_int_uv integrable_const intro: order_trans [OF integrable_bound [of "e/content ?CBOX/2"]]) done have "norm (integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x,y)) - integral (cbox w z) (\<lambda>y. f (t1,t2)))) \<le> e * content (cbox w z) / content ?CBOX/2 * content (cbox u v)" using cbp \<open>0 < e/content ?CBOX\<close> apply (intro integrable_bound [OF _ _ normint_wz]) apply (auto simp: field_split_simps integrable_diff int_integrable integrable_const) done also have "... \<le> e * content (cbox (u,w) (v,z)) / content ?CBOX/2" by (simp add: content_Pair field_split_simps) finally have 2: "norm (integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x,y))) - integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (t1,t2)))) \<le> e * content (cbox (u,w) (v,z)) / content ?CBOX/2" by (simp only: integral_diff [symmetric] int_integrable integrable_const) have norm_xx: "\<lbrakk>x' = y'; norm(x - x') \<le> e/2; norm(y - y') \<le> e/2\<rbrakk> \<Longrightarrow> norm(x - y) \<le> e" for x::'c and y x' y' e using norm_triangle_mono [of "x-y'" "e/2" "y'-y" "e/2"] field_sum_of_halves by (simp add: norm_minus_commute) have "norm (integral (cbox (u,w) (v,z)) f - integral (cbox u v) (\<lambda>x. integral (cbox w z) (\<lambda>y. f (x,y)))) \<le> e * content (cbox (u,w) (v,z)) / content ?CBOX" by (rule norm_xx [OF integral_Pair_const 1 2]) } note * = this have "norm (integral ?CBOX f - integral (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. f (x,y)))) \<le> e" if "\<forall>x\<in>?CBOX. \<forall>x'\<in>?CBOX. norm (x' - x) < k \<longrightarrow> norm (f x' - f x) < e /(2 * content (?CBOX))" "0 < k" for k proof - obtain p where ptag: "p tagged_division_of cbox (a, c) (b, d)" and fine: "(\<lambda>x. ball x k) fine p" using fine_division_exists \<open>0 < k\<close> by blast show ?thesis using that fine ptag \<open>0 < k\<close> by (auto simp: * intro: op_acbd [OF division_of_tagged_division [OF ptag]]) qed then show "norm (integral ?CBOX f - integral (cbox a b) (\<lambda>x. integral (cbox c d) (\<lambda>y. f (x,y)))) \<le> e" using compact_uniformly_continuous [OF assms compact_cbox] apply (simp add: uniformly_continuous_on_def dist_norm) apply (drule_tac x="e/2 / content?CBOX" in spec) using cbp \<open>0 < e\<close> by (auto simp: zero_less_mult_iff) qed then show ?thesis by simp qed lemma integral_swap_2dim: fixes f :: "['a::euclidean_space, 'b::euclidean_space] \<Rightarrow> 'c::banach" assumes "continuous_on (cbox (a,c) (b,d)) (\<lambda>(x,y). f x y)" shows "integral (cbox (a, c) (b, d)) (\<lambda>(x, y). f x y) = integral (cbox (c, a) (d, b)) (\<lambda>(x, y). f y x)" proof - have "((\<lambda>(x, y). f x y) has_integral integral (cbox (c, a) (d, b)) (\<lambda>(x, y). f y x)) (prod.swap ` (cbox (c, a) (d, b)))" proof (rule has_integral_twiddle [of 1 prod.swap prod.swap "\<lambda>(x,y). f y x" "integral (cbox (c, a) (d, b)) (\<lambda>(x, y). f y x)", simplified]) show "\<And>u v. content (prod.swap ` cbox u v) = content (cbox u v)" by (metis content_Pair mult.commute old.prod.exhaust swap_cbox_Pair) show "((\<lambda>(x, y). f y x) has_integral integral (cbox (c, a) (d, b)) (\<lambda>(x, y). f y x)) (cbox (c, a) (d, b))" by (simp add: assms integrable_continuous integrable_integral swap_continuous) qed (use isCont_swap in \<open>fastforce+\<close>) then show ?thesis by force qed theorem integral_swap_continuous: fixes f :: "['a::euclidean_space, 'b::euclidean_space] \<Rightarrow> 'c::banach" assumes "continuous_on (cbox (a,c) (b,d)) (\<lambda>(x,y). f x y)" shows "integral (cbox a b) (\<lambda>x. integral (cbox c d) (f x)) = integral (cbox c d) (\<lambda>y. integral (cbox a b) (\<lambda>x. f x y))" proof - have "integral (cbox a b) (\<lambda>x. integral (cbox c d) (f x)) = integral (cbox (a, c) (b, d)) (\<lambda>(x, y). f x y)" using integral_prod_continuous [OF assms] by auto also have "... = integral (cbox (c, a) (d, b)) (\<lambda>(x, y). f y x)" by (rule integral_swap_2dim [OF assms]) also have "... = integral (cbox c d) (\<lambda>y. integral (cbox a b) (\<lambda>x. f x y))" using integral_prod_continuous [OF swap_continuous] assms by auto finally show ?thesis . qed subsection \<open>Definite integrals for exponential and power function\<close> lemma has_integral_exp_minus_to_infinity: assumes a: "a > 0" shows "((\<lambda>x::real. exp (-a*x)) has_integral exp (-a*c)/a) {c..}" proof - define f where "f = (\<lambda>k x. if x \<in> {c..real k} then exp (-a*x) else 0)" { fix k :: nat assume k: "of_nat k \<ge> c" from k a have "((\<lambda>x. exp (-a*x)) has_integral (-exp (-a*real k)/a - (-exp (-a*c)/a))) {c..real k}" by (intro fundamental_theorem_of_calculus) (auto intro!: derivative_eq_intros simp: has_real_derivative_iff_has_vector_derivative [symmetric]) hence "(f k has_integral (exp (-a*c)/a - exp (-a*real k)/a)) {c..}" unfolding f_def by (subst has_integral_restrict) simp_all } note has_integral_f = this have [simp]: "f k = (\<lambda>_. 0)" if "of_nat k < c" for k using that by (auto simp: fun_eq_iff f_def) have integral_f: "integral {c..} (f k) = (if real k \<ge> c then exp (-a*c)/a - exp (-a*real k)/a else 0)" for k using integral_unique[OF has_integral_f[of k]] by simp have A: "(\<lambda>x. exp (-a*x)) integrable_on {c..} \<and> (\<lambda>k. integral {c..} (f k)) \<longlonglongrightarrow> integral {c..} (\<lambda>x. exp (-a*x))" proof (intro monotone_convergence_increasing allI ballI) fix k ::nat have "(\<lambda>x. exp (-a*x)) integrable_on {c..of_real k}" (is ?P) unfolding f_def by (auto intro!: continuous_intros integrable_continuous_real) hence "(f k) integrable_on {c..of_real k}" by (rule integrable_eq) (simp add: f_def) then show "f k integrable_on {c..}" by (rule integrable_on_superset) (auto simp: f_def) next fix x assume x: "x \<in> {c..}" have "sequentially \<le> principal {nat \<lceil>x\<rceil>..}" unfolding at_top_def by (simp add: Inf_lower) also have "{nat \<lceil>x\<rceil>..} \<subseteq> {k. x \<le> real k}" by auto also have "inf (principal \<dots>) (principal {k. \<not>x \<le> real k}) = principal ({k. x \<le> real k} \<inter> {k. \<not>x \<le> real k})" by simp also have "{k. x \<le> real k} \<inter> {k. \<not>x \<le> real k} = {}" by blast finally have "inf sequentially (principal {k. \<not>x \<le> real k}) = bot" by (simp add: inf.coboundedI1 bot_unique) with x show "(\<lambda>k. f k x) \<longlonglongrightarrow> exp (-a*x)" unfolding f_def by (intro filterlim_If) auto next have "\<bar>integral {c..} (f k)\<bar> \<le> exp (-a*c)/a" for k proof (cases "c > of_nat k") case False hence "abs (integral {c..} (f k)) = abs (exp (- (a * c)) / a - exp (- (a * real k)) / a)" by (simp add: integral_f) also have "abs (exp (- (a * c)) / a - exp (- (a * real k)) / a) = exp (- (a * c)) / a - exp (- (a * real k)) / a" using False a by (intro abs_of_nonneg) (simp_all add: field_simps) also have "\<dots> \<le> exp (- a * c) / a" using a by simp finally show ?thesis . qed (insert a, simp_all add: integral_f) thus "bounded (range(\<lambda>k. integral {c..} (f k)))" by (intro boundedI[of _ "exp (-a*c)/a"]) auto qed (auto simp: f_def) have "(\<lambda>k. exp (-a*c)/a - exp (-a * of_nat k)/a) \<longlonglongrightarrow> exp (-a*c)/a - 0/a" by (intro tendsto_intros filterlim_compose[OF exp_at_bot] filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_real_sequentially)+ (insert a, simp_all) moreover from eventually_gt_at_top[of "nat \<lceil>c\<rceil>"] have "eventually (\<lambda>k. of_nat k > c) sequentially" by eventually_elim linarith hence "eventually (\<lambda>k. exp (-a*c)/a - exp (-a * of_nat k)/a = integral {c..} (f k)) sequentially" by eventually_elim (simp add: integral_f) ultimately have "(\<lambda>k. integral {c..} (f k)) \<longlonglongrightarrow> exp (-a*c)/a - 0/a" by (rule Lim_transform_eventually) from LIMSEQ_unique[OF conjunct2[OF A] this] have "integral {c..} (\<lambda>x. exp (-a*x)) = exp (-a*c)/a" by simp with conjunct1[OF A] show ?thesis by (simp add: has_integral_integral) qed lemma integrable_on_exp_minus_to_infinity: "a > 0 \<Longrightarrow> (\<lambda>x. exp (-a*x) :: real) integrable_on {c..}" using has_integral_exp_minus_to_infinity[of a c] unfolding integrable_on_def by blast lemma has_integral_powr_from_0: assumes a: "a > (-1::real)" and c: "c \<ge> 0" shows "((\<lambda>x. x powr a) has_integral (c powr (a+1) / (a+1))) {0..c}" proof (cases "c = 0") case False define f where "f = (\<lambda>k x. if x \<in> {inverse (of_nat (Suc k))..c} then x powr a else 0)" define F where "F = (\<lambda>k. if inverse (of_nat (Suc k)) \<le> c then c powr (a+1)/(a+1) - inverse (real (Suc k)) powr (a+1)/(a+1) else 0)" { fix k :: nat have "(f k has_integral F k) {0..c}" proof (cases "inverse (of_nat (Suc k)) \<le> c") case True { fix x assume x: "x \<ge> inverse (1 + real k)" have "0 < inverse (1 + real k)" by simp also note x finally have "x > 0" . } note x = this hence "((\<lambda>x. x powr a) has_integral c powr (a + 1) / (a + 1) - inverse (real (Suc k)) powr (a + 1) / (a + 1)) {inverse (real (Suc k))..c}" using True a by (intro fundamental_theorem_of_calculus) (auto intro!: derivative_eq_intros continuous_on_powr' continuous_on_const simp: has_real_derivative_iff_has_vector_derivative [symmetric]) with True show ?thesis unfolding f_def F_def by (subst has_integral_restrict) simp_all next case False thus ?thesis unfolding f_def F_def by (subst has_integral_restrict) auto qed } note has_integral_f = this have integral_f: "integral {0..c} (f k) = F k" for k using has_integral_f[of k] by (rule integral_unique) have A: "(\<lambda>x. x powr a) integrable_on {0..c} \<and> (\<lambda>k. integral {0..c} (f k)) \<longlonglongrightarrow> integral {0..c} (\<lambda>x. x powr a)" proof (intro monotone_convergence_increasing ballI allI) fix k from has_integral_f[of k] show "f k integrable_on {0..c}" by (auto simp: integrable_on_def) next fix k :: nat and x :: real { assume x: "inverse (real (Suc k)) \<le> x" have "inverse (real (Suc (Suc k))) \<le> inverse (real (Suc k))" by (simp add: field_simps) also note x finally have "inverse (real (Suc (Suc k))) \<le> x" . } thus "f k x \<le> f (Suc k) x" by (auto simp: f_def simp del: of_nat_Suc) next fix x assume x: "x \<in> {0..c}" show "(\<lambda>k. f k x) \<longlonglongrightarrow> x powr a" proof (cases "x = 0") case False with x have "x > 0" by simp from order_tendstoD(2)[OF LIMSEQ_inverse_real_of_nat this] have "eventually (\<lambda>k. x powr a = f k x) sequentially" by eventually_elim (insert x, simp add: f_def) moreover have "(\<lambda>_. x powr a) \<longlonglongrightarrow> x powr a" by simp ultimately show ?thesis by (blast intro: Lim_transform_eventually) qed (simp_all add: f_def) next { fix k from a have "F k \<le> c powr (a + 1) / (a + 1)" by (auto simp add: F_def divide_simps) also from a have "F k \<ge> 0" by (auto simp: F_def divide_simps simp del: of_nat_Suc intro!: powr_mono2) hence "F k = abs (F k)" by simp finally have "abs (F k) \<le> c powr (a + 1) / (a + 1)" . } thus "bounded (range(\<lambda>k. integral {0..c} (f k)))" by (intro boundedI[of _ "c powr (a+1) / (a+1)"]) (auto simp: integral_f) qed from False c have "c > 0" by simp from order_tendstoD(2)[OF LIMSEQ_inverse_real_of_nat this] have "eventually (\<lambda>k. c powr (a + 1) / (a + 1) - inverse (real (Suc k)) powr (a+1) / (a+1) = integral {0..c} (f k)) sequentially" by eventually_elim (simp add: integral_f F_def) moreover have "(\<lambda>k. c powr (a + 1) / (a + 1) - inverse (real (Suc k)) powr (a + 1) / (a + 1)) \<longlonglongrightarrow> c powr (a + 1) / (a + 1) - 0 powr (a + 1) / (a + 1)" using a by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) auto hence "(\<lambda>k. c powr (a + 1) / (a + 1) - inverse (real (Suc k)) powr (a + 1) / (a + 1)) \<longlonglongrightarrow> c powr (a + 1) / (a + 1)" by simp ultimately have "(\<lambda>k. integral {0..c} (f k)) \<longlonglongrightarrow> c powr (a+1) / (a+1)" by (blast intro: Lim_transform_eventually) with A have "integral {0..c} (\<lambda>x. x powr a) = c powr (a+1) / (a+1)" by (blast intro: LIMSEQ_unique) with A show ?thesis by (simp add: has_integral_integral) qed (simp_all add: has_integral_refl) lemma integrable_on_powr_from_0: assumes a: "a > (-1::real)" and c: "c \<ge> 0" shows "(\<lambda>x. x powr a) integrable_on {0..c}" using has_integral_powr_from_0[OF assms] unfolding integrable_on_def by blast lemma has_integral_powr_to_inf: fixes a e :: real assumes "e < -1" "a > 0" shows "((\<lambda>x. x powr e) has_integral -(a powr (e + 1)) / (e + 1)) {a..}" proof - define f :: "nat \<Rightarrow> real \<Rightarrow> real" where "f = (\<lambda>n x. if x \<in> {a..n} then x powr e else 0)" define F where "F = (\<lambda>x. x powr (e + 1) / (e + 1))" have has_integral_f: "(f n has_integral (F n - F a)) {a..}" if n: "n \<ge> a" for n :: nat proof - from n assms have "((\<lambda>x. x powr e) has_integral (F n - F a)) {a..n}" by (intro fundamental_theorem_of_calculus) (auto intro!: derivative_eq_intros simp: has_real_derivative_iff_has_vector_derivative [symmetric] F_def) hence "(f n has_integral (F n - F a)) {a..n}" by (rule has_integral_eq [rotated]) (simp add: f_def) thus "(f n has_integral (F n - F a)) {a..}" by (rule has_integral_on_superset) (auto simp: f_def) qed have integral_f: "integral {a..} (f n) = (if n \<ge> a then F n - F a else 0)" for n :: nat proof (cases "n \<ge> a") case True with has_integral_f[OF this] show ?thesis by (simp add: integral_unique) next case False have "(f n has_integral 0) {a}" by (rule has_integral_refl) hence "(f n has_integral 0) {a..}" by (rule has_integral_on_superset) (insert False, simp_all add: f_def) with False show ?thesis by (simp add: integral_unique) qed have *: "(\<lambda>x. x powr e) integrable_on {a..} \<and> (\<lambda>n. integral {a..} (f n)) \<longlonglongrightarrow> integral {a..} (\<lambda>x. x powr e)" proof (intro monotone_convergence_increasing allI ballI) fix n :: nat from assms have "(\<lambda>x. x powr e) integrable_on {a..n}" by (auto intro!: integrable_continuous_real continuous_intros) hence "f n integrable_on {a..n}" by (rule integrable_eq) (auto simp: f_def) thus "f n integrable_on {a..}" by (rule integrable_on_superset) (auto simp: f_def) next fix n :: nat and x :: real show "f n x \<le> f (Suc n) x" by (auto simp: f_def) next fix x :: real assume x: "x \<in> {a..}" from filterlim_real_sequentially have "eventually (\<lambda>n. real n \<ge> x) at_top" by (simp add: filterlim_at_top) with x have "eventually (\<lambda>n. f n x = x powr e) at_top" by (auto elim!: eventually_mono simp: f_def) thus "(\<lambda>n. f n x) \<longlonglongrightarrow> x powr e" by (simp add: tendsto_eventually) next have "norm (integral {a..} (f n)) \<le> -F a" for n :: nat proof (cases "n \<ge> a") case True with assms have "a powr (e + 1) \<ge> n powr (e + 1)" by (intro powr_mono2') simp_all with assms show ?thesis by (auto simp: divide_simps F_def integral_f) qed (insert assms, simp add: integral_f F_def field_split_simps) thus "bounded (range(\<lambda>k. integral {a..} (f k)))" unfolding bounded_iff by (intro exI[of _ "-F a"]) auto qed from filterlim_real_sequentially have "eventually (\<lambda>n. real n \<ge> a) at_top" by (simp add: filterlim_at_top) hence "eventually (\<lambda>n. F n - F a = integral {a..} (f n)) at_top" by eventually_elim (simp add: integral_f) moreover have "(\<lambda>n. F n - F a) \<longlonglongrightarrow> 0 / (e + 1) - F a" unfolding F_def by (insert assms, (rule tendsto_intros filterlim_compose[OF tendsto_neg_powr] filterlim_ident filterlim_real_sequentially | simp)+) hence "(\<lambda>n. F n - F a) \<longlonglongrightarrow> -F a" by simp ultimately have "(\<lambda>n. integral {a..} (f n)) \<longlonglongrightarrow> -F a" by (blast intro: Lim_transform_eventually) from conjunct2[OF *] and this have "integral {a..} (\<lambda>x. x powr e) = -F a" by (rule LIMSEQ_unique) with conjunct1[OF *] show ?thesis by (simp add: has_integral_integral F_def) qed lemma has_integral_inverse_power_to_inf: fixes a :: real and n :: nat assumes "n > 1" "a > 0" shows "((\<lambda>x. 1 / x ^ n) has_integral 1 / (real (n - 1) * a ^ (n - 1))) {a..}" proof - from assms have "real_of_int (-int n) < -1" by simp note has_integral_powr_to_inf[OF this \<open>a > 0\<close>] also have "- (a powr (real_of_int (- int n) + 1)) / (real_of_int (- int n) + 1) = 1 / (real (n - 1) * a powr (real (n - 1)))" using assms by (simp add: field_split_simps powr_add [symmetric] of_nat_diff) also from assms have "a powr (real (n - 1)) = a ^ (n - 1)" by (intro powr_realpow) finally show ?thesis by (rule has_integral_eq [rotated]) (insert assms, simp_all add: powr_minus powr_realpow field_split_simps) qed subsubsection \<open>Adaption to ordered Euclidean spaces and the Cartesian Euclidean space\<close> lemma integral_component_eq_cart[simp]: fixes f :: "'n::euclidean_space \<Rightarrow> real^'m" assumes "f integrable_on s" shows "integral s (\<lambda>x. f x $ k) = integral s f $ k" using integral_linear[OF assms(1) bounded_linear_vec_nth,unfolded o_def] . lemma content_closed_interval: fixes a :: "'a::ordered_euclidean_space" assumes "a \<le> b" shows "content {a..b} = (\<Prod>i\<in>Basis. b\<bullet>i - a\<bullet>i)" using content_cbox[of a b] assms by (simp add: cbox_interval eucl_le[where 'a='a]) lemma integrable_const_ivl[intro]: fixes a::"'a::ordered_euclidean_space" shows "(\<lambda>x. c) integrable_on {a..b}" unfolding cbox_interval[symmetric] by (rule integrable_const) lemma integrable_on_subinterval: fixes f :: "'n::ordered_euclidean_space \<Rightarrow> 'a::banach" assumes "f integrable_on S" "{a..b} \<subseteq> S" shows "f integrable_on {a..b}" using integrable_on_subcbox[of f S a b] assms by (simp add: cbox_interval) end