| author | wenzelm |
| Fri, 05 Aug 2022 13:23:52 +0200 | |
| changeset 75760 | f8be63d2ec6f |
| parent 74362 | 0135a0c77b64 |
| child 76055 | 8d56461f85ec |
| permissions | -rw-r--r-- |
(* Title: HOL/Analysis/Nonnegative_Lebesgue_Integration.thy Author: Johannes Hölzl, TU München Author: Armin Heller, TU München *) section \<open>Lebesgue Integration for Nonnegative Functions\<close> theory Nonnegative_Lebesgue_Integration imports Measure_Space Borel_Space begin subsection\<^marker>\<open>tag unimportant\<close> \<open>Approximating functions\<close> lemma AE_upper_bound_inf_ennreal: fixes F G::"'a \<Rightarrow> ennreal" assumes "\<And>e. (e::real) > 0 \<Longrightarrow> AE x in M. F x \<le> G x + e" shows "AE x in M. F x \<le> G x" proof - have "AE x in M. \<forall>n::nat. F x \<le> G x + ennreal (1 / Suc n)" using assms by (auto simp: AE_all_countable) then show ?thesis proof (eventually_elim) fix x assume x: "\<forall>n::nat. F x \<le> G x + ennreal (1 / Suc n)" show "F x \<le> G x" proof (rule ennreal_le_epsilon) fix e :: real assume "0 < e" then obtain n where n: "1 / Suc n < e" by (blast elim: nat_approx_posE) have "F x \<le> G x + 1 / Suc n" using x by simp also have "\<dots> \<le> G x + e" using n by (intro add_mono ennreal_leI) auto finally show "F x \<le> G x + ennreal e" . qed qed qed lemma AE_upper_bound_inf: fixes F G::"'a \<Rightarrow> real" assumes "\<And>e. e > 0 \<Longrightarrow> AE x in M. F x \<le> G x + e" shows "AE x in M. F x \<le> G x" proof - have "AE x in M. F x \<le> G x + 1/real (n+1)" for n::nat by (rule assms, auto) then have "AE x in M. \<forall>n::nat \<in> UNIV. F x \<le> G x + 1/real (n+1)" by (rule AE_ball_countable', auto) moreover { fix x assume i: "\<forall>n::nat \<in> UNIV. F x \<le> G x + 1/real (n+1)" have "(\<lambda>n. G x + 1/real (n+1)) \<longlonglongrightarrow> G x + 0" by (rule tendsto_add, simp, rule LIMSEQ_ignore_initial_segment[OF lim_1_over_n, of 1]) then have "F x \<le> G x" using i LIMSEQ_le_const by fastforce } ultimately show ?thesis by auto qed lemma not_AE_zero_ennreal_E: fixes f::"'a \<Rightarrow> ennreal" assumes "\<not> (AE x in M. f x = 0)" and [measurable]: "f \<in> borel_measurable M" shows "\<exists>A\<in>sets M. \<exists>e::real>0. emeasure M A > 0 \<and> (\<forall>x \<in> A. f x \<ge> e)" proof - { assume "\<not> (\<exists>e::real>0. {x \<in> space M. f x \<ge> e} \<notin> null_sets M)" then have "0 < e \<Longrightarrow> AE x in M. f x \<le> e" for e :: real by (auto simp: not_le less_imp_le dest!: AE_not_in) then have "AE x in M. f x \<le> 0" by (intro AE_upper_bound_inf_ennreal[where G="\<lambda>_. 0"]) simp then have False using assms by auto } then obtain e::real where e: "e > 0" "{x \<in> space M. f x \<ge> e} \<notin> null_sets M" by auto define A where "A = {x \<in> space M. f x \<ge> e}" have 1 [measurable]: "A \<in> sets M" unfolding A_def by auto have 2: "emeasure M A > 0" using e(2) A_def \<open>A \<in> sets M\<close> by auto have 3: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> e" unfolding A_def by auto show ?thesis using e(1) 1 2 3 by blast qed lemma not_AE_zero_E: fixes f::"'a \<Rightarrow> real" assumes "AE x in M. f x \<ge> 0" "\<not>(AE x in M. f x = 0)" and [measurable]: "f \<in> borel_measurable M" shows "\<exists>A e. A \<in> sets M \<and> e>0 \<and> emeasure M A > 0 \<and> (\<forall>x \<in> A. f x \<ge> e)" proof - have "\<exists>e. e > 0 \<and> {x \<in> space M. f x \<ge> e} \<notin> null_sets M" proof (rule ccontr) assume *: "\<not>(\<exists>e. e > 0 \<and> {x \<in> space M. f x \<ge> e} \<notin> null_sets M)" { fix e::real assume "e > 0" then have "{x \<in> space M. f x \<ge> e} \<in> null_sets M" using * by blast then have "AE x in M. x \<notin> {x \<in> space M. f x \<ge> e}" using AE_not_in by blast then have "AE x in M. f x \<le> e" by auto } then have "AE x in M. f x \<le> 0" by (rule AE_upper_bound_inf, auto) then have "AE x in M. f x = 0" using assms(1) by auto then show False using assms(2) by auto qed then obtain e where e: "e>0" "{x \<in> space M. f x \<ge> e} \<notin> null_sets M" by auto define A where "A = {x \<in> space M. f x \<ge> e}" have 1 [measurable]: "A \<in> sets M" unfolding A_def by auto have 2: "emeasure M A > 0" using e(2) A_def \<open>A \<in> sets M\<close> by auto have 3: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> e" unfolding A_def by auto show ?thesis using e(1) 1 2 3 by blast qed subsection "Simple function" text \<open> Our simple functions are not restricted to nonnegative real numbers. Instead they are just functions with a finite range and are measurable when singleton sets are measurable. \<close> definition\<^marker>\<open>tag important\<close> "simple_function M g \<longleftrightarrow> finite (g ` space M) \<and> (\<forall>x \<in> g ` space M. g -` {x} \<inter> space M \<in> sets M)" lemma simple_functionD: assumes "simple_function M g" shows "finite (g ` space M)" and "g -` X \<inter> space M \<in> sets M" proof - show "finite (g ` space M)" using assms unfolding simple_function_def by auto have "g -` X \<inter> space M = g -` (X \<inter> g`space M) \<inter> space M" by auto also have "\<dots> = (\<Union>x\<in>X \<inter> g`space M. g-`{x} \<inter> space M)" by auto finally show "g -` X \<inter> space M \<in> sets M" using assms by (auto simp del: UN_simps simp: simple_function_def) qed lemma measurable_simple_function[measurable_dest]: "simple_function M f \<Longrightarrow> f \<in> measurable M (count_space UNIV)" unfolding simple_function_def measurable_def proof safe fix A assume "finite (f ` space M)" "\<forall>x\<in>f ` space M. f -` {x} \<inter> space M \<in> sets M" then have "(\<Union>x\<in>f ` space M. if x \<in> A then f -` {x} \<inter> space M else {}) \<in> sets M" by (intro sets.finite_UN) auto also have "(\<Union>x\<in>f ` space M. if x \<in> A then f -` {x} \<inter> space M else {}) = f -` A \<inter> space M" by (auto split: if_split_asm) finally show "f -` A \<inter> space M \<in> sets M" . qed simp lemma borel_measurable_simple_function: "simple_function M f \<Longrightarrow> f \<in> borel_measurable M" by (auto dest!: measurable_simple_function simp: measurable_def) lemma simple_function_measurable2[intro]: assumes "simple_function M f" "simple_function M g" shows "f -` A \<inter> g -` B \<inter> space M \<in> sets M" proof - have "f -` A \<inter> g -` B \<inter> space M = (f -` A \<inter> space M) \<inter> (g -` B \<inter> space M)" by auto then show ?thesis using assms[THEN simple_functionD(2)] by auto qed lemma simple_function_indicator_representation: fixes f ::"'a \<Rightarrow> ennreal" assumes f: "simple_function M f" and x: "x \<in> space M" shows "f x = (\<Sum>y \<in> f ` space M. y * indicator (f -` {y} \<inter> space M) x)" (is "?l = ?r") proof - have "?r = (\<Sum>y \<in> f ` space M. (if y = f x then y * indicator (f -` {y} \<inter> space M) x else 0))" by (auto intro!: sum.cong) also have "... = f x * indicator (f -` {f x} \<inter> space M) x" using assms by (auto dest: simple_functionD) also have "... = f x" using x by (auto simp: indicator_def) finally show ?thesis by auto qed lemma simple_function_notspace: "simple_function M (\<lambda>x. h x * indicator (- space M) x::ennreal)" (is "simple_function M ?h") proof - have "?h ` space M \<subseteq> {0}" unfolding indicator_def by auto hence [simp, intro]: "finite (?h ` space M)" by (auto intro: finite_subset) have "?h -` {0} \<inter> space M = space M" by auto thus ?thesis unfolding simple_function_def by (auto simp add: image_constant_conv) qed lemma simple_function_cong: assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t" shows "simple_function M f \<longleftrightarrow> simple_function M g" proof - have "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M" using assms by auto with assms show ?thesis by (simp add: simple_function_def cong: image_cong) qed lemma simple_function_cong_algebra: assumes "sets N = sets M" "space N = space M" shows "simple_function M f \<longleftrightarrow> simple_function N f" unfolding simple_function_def assms .. lemma simple_function_borel_measurable: fixes f :: "'a \<Rightarrow> 'x::{t2_space}" assumes "f \<in> borel_measurable M" and "finite (f ` space M)" shows "simple_function M f" using assms unfolding simple_function_def by (auto intro: borel_measurable_vimage) lemma simple_function_iff_borel_measurable: fixes f :: "'a \<Rightarrow> 'x::{t2_space}" shows "simple_function M f \<longleftrightarrow> finite (f ` space M) \<and> f \<in> borel_measurable M" by (metis borel_measurable_simple_function simple_functionD(1) simple_function_borel_measurable) lemma simple_function_eq_measurable: "simple_function M f \<longleftrightarrow> finite (f`space M) \<and> f \<in> measurable M (count_space UNIV)" using measurable_simple_function[of M f] by (fastforce simp: simple_function_def) lemma simple_function_const[intro, simp]: "simple_function M (\<lambda>x. c)" by (auto intro: finite_subset simp: simple_function_def) lemma simple_function_compose[intro, simp]: assumes "simple_function M f" shows "simple_function M (g \<circ> f)" unfolding simple_function_def proof safe show "finite ((g \<circ> f) ` space M)" using assms unfolding simple_function_def image_comp [symmetric] by auto next fix x assume "x \<in> space M" let ?G = "g -` {g (f x)} \<inter> (f`space M)" have *: "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M = (\<Union>x\<in>?G. f -` {x} \<inter> space M)" by auto show "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M \<in> sets M" using assms unfolding simple_function_def * by (rule_tac sets.finite_UN) auto qed lemma simple_function_indicator[intro, simp]: assumes "A \<in> sets M" shows "simple_function M (indicator A)" proof - have "indicator A ` space M \<subseteq> {0, 1}" (is "?S \<subseteq> _") by (auto simp: indicator_def) hence "finite ?S" by (rule finite_subset) simp moreover have "- A \<inter> space M = space M - A" by auto ultimately show ?thesis unfolding simple_function_def using assms by (auto simp: indicator_def [abs_def]) qed lemma simple_function_Pair[intro, simp]: assumes "simple_function M f" assumes "simple_function M g" shows "simple_function M (\<lambda>x. (f x, g x))" (is "simple_function M ?p") unfolding simple_function_def proof safe show "finite (?p ` space M)" using assms unfolding simple_function_def by (rule_tac finite_subset[of _ "f`space M \<times> g`space M"]) auto next fix x assume "x \<in> space M" have "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M = (f -` {f x} \<inter> space M) \<inter> (g -` {g x} \<inter> space M)" by auto with \<open>x \<in> space M\<close> show "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M \<in> sets M" using assms unfolding simple_function_def by auto qed lemma simple_function_compose1: assumes "simple_function M f" shows "simple_function M (\<lambda>x. g (f x))" using simple_function_compose[OF assms, of g] by (simp add: comp_def) lemma simple_function_compose2: assumes "simple_function M f" and "simple_function M g" shows "simple_function M (\<lambda>x. h (f x) (g x))" proof - have "simple_function M ((\<lambda>(x, y). h x y) \<circ> (\<lambda>x. (f x, g x)))" using assms by auto thus ?thesis by (simp_all add: comp_def) qed lemmas simple_function_add[intro, simp] = simple_function_compose2[where h="(+)"] and simple_function_diff[intro, simp] = simple_function_compose2[where h="(-)"] and simple_function_uminus[intro, simp] = simple_function_compose[where g="uminus"] and simple_function_mult[intro, simp] = simple_function_compose2[where h="(*)"] and simple_function_div[intro, simp] = simple_function_compose2[where h="(/)"] and simple_function_inverse[intro, simp] = simple_function_compose[where g="inverse"] and simple_function_max[intro, simp] = simple_function_compose2[where h=max] lemma simple_function_sum[intro, simp]: assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)" shows "simple_function M (\<lambda>x. \<Sum>i\<in>P. f i x)" proof cases assume "finite P" from this assms show ?thesis by induct auto qed auto lemma simple_function_ennreal[intro, simp]: fixes f g :: "'a \<Rightarrow> real" assumes sf: "simple_function M f" shows "simple_function M (\<lambda>x. ennreal (f x))" by (rule simple_function_compose1[OF sf]) lemma simple_function_real_of_nat[intro, simp]: fixes f g :: "'a \<Rightarrow> nat" assumes sf: "simple_function M f" shows "simple_function M (\<lambda>x. real (f x))" by (rule simple_function_compose1[OF sf]) lemma\<^marker>\<open>tag important\<close> borel_measurable_implies_simple_function_sequence: fixes u :: "'a \<Rightarrow> ennreal" assumes u[measurable]: "u \<in> borel_measurable M" shows "\<exists>f. incseq f \<and> (\<forall>i. (\<forall>x. f i x < top) \<and> simple_function M (f i)) \<and> u = (SUP i. f i)" proof - define f where [abs_def]: "f i x = real_of_int (floor (enn2real (min i (u x)) * 2^i)) / 2^i" for i x have [simp]: "0 \<le> f i x" for i x by (auto simp: f_def intro!: divide_nonneg_nonneg mult_nonneg_nonneg enn2real_nonneg) have *: "2^n * real_of_int x = real_of_int (2^n * x)" for n x by simp have "real_of_int \<lfloor>real i * 2 ^ i\<rfloor> = real_of_int \<lfloor>i * 2 ^ i\<rfloor>" for i by (intro arg_cong[where f=real_of_int]) simp then have [simp]: "real_of_int \<lfloor>real i * 2 ^ i\<rfloor> = i * 2 ^ i" for i unfolding floor_of_nat by simp have "incseq f" proof (intro monoI le_funI) fix m n :: nat and x assume "m \<le> n" moreover { fix d :: nat have "\<lfloor>2^d::real\<rfloor> * \<lfloor>2^m * enn2real (min (of_nat m) (u x))\<rfloor> \<le> \<lfloor>2^d * (2^m * enn2real (min (of_nat m) (u x)))\<rfloor>" by (rule le_mult_floor) (auto) also have "\<dots> \<le> \<lfloor>2^d * (2^m * enn2real (min (of_nat d + of_nat m) (u x)))\<rfloor>" by (intro floor_mono mult_mono enn2real_mono min.mono) (auto simp: min_less_iff_disj of_nat_less_top) finally have "f m x \<le> f (m + d) x" unfolding f_def by (auto simp: field_simps power_add * simp del: of_int_mult) } ultimately show "f m x \<le> f n x" by (auto simp add: le_iff_add) qed then have inc_f: "incseq (\<lambda>i. ennreal (f i x))" for x by (auto simp: incseq_def le_fun_def) then have "incseq (\<lambda>i x. ennreal (f i x))" by (auto simp: incseq_def le_fun_def) moreover have "simple_function M (f i)" for i proof (rule simple_function_borel_measurable) have "\<lfloor>enn2real (min (of_nat i) (u x)) * 2 ^ i\<rfloor> \<le> \<lfloor>int i * 2 ^ i\<rfloor>" for x by (cases "u x" rule: ennreal_cases) (auto split: split_min intro!: floor_mono) then have "f i ` space M \<subseteq> (\<lambda>n. real_of_int n / 2^i) ` {0 .. of_nat i * 2^i}" unfolding floor_of_int by (auto simp: f_def intro!: imageI) then show "finite (f i ` space M)" by (rule finite_subset) auto show "f i \<in> borel_measurable M" unfolding f_def enn2real_def by measurable qed moreover { fix x have "(SUP i. ennreal (f i x)) = u x" proof (cases "u x" rule: ennreal_cases) case top then show ?thesis by (simp add: f_def inf_min[symmetric] ennreal_of_nat_eq_real_of_nat[symmetric] ennreal_SUP_of_nat_eq_top) next case (real r) obtain n where "r \<le> of_nat n" using real_arch_simple by auto then have min_eq_r: "\<forall>\<^sub>F x in sequentially. min (real x) r = r" by (auto simp: eventually_sequentially intro!: exI[of _ n] split: split_min) have "(\<lambda>i. real_of_int \<lfloor>min (real i) r * 2^i\<rfloor> / 2^i) \<longlonglongrightarrow> r" proof (rule tendsto_sandwich) show "(\<lambda>n. r - (1/2)^n) \<longlonglongrightarrow> r" by (auto intro!: tendsto_eq_intros LIMSEQ_power_zero) show "\<forall>\<^sub>F n in sequentially. real_of_int \<lfloor>min (real n) r * 2 ^ n\<rfloor> / 2 ^ n \<le> r" using min_eq_r by eventually_elim (auto simp: field_simps) have *: "r * (2 ^ n * 2 ^ n) \<le> 2^n + 2^n * real_of_int \<lfloor>r * 2 ^ n\<rfloor>" for n using real_of_int_floor_ge_diff_one[of "r * 2^n", THEN mult_left_mono, of "2^n"] by (auto simp: field_simps) show "\<forall>\<^sub>F n in sequentially. r - (1/2)^n \<le> real_of_int \<lfloor>min (real n) r * 2 ^ n\<rfloor> / 2 ^ n" using min_eq_r by eventually_elim (insert *, auto simp: field_simps) qed auto then have "(\<lambda>i. ennreal (f i x)) \<longlonglongrightarrow> ennreal r" by (simp add: real f_def ennreal_of_nat_eq_real_of_nat min_ennreal) from LIMSEQ_unique[OF LIMSEQ_SUP[OF inc_f] this] show ?thesis by (simp add: real) qed } ultimately show ?thesis by (intro exI [of _ "\<lambda>i x. ennreal (f i x)"]) (auto simp add: image_comp) qed lemma borel_measurable_implies_simple_function_sequence': fixes u :: "'a \<Rightarrow> ennreal" assumes u: "u \<in> borel_measurable M" obtains f where "\<And>i. simple_function M (f i)" "incseq f" "\<And>i x. f i x < top" "\<And>x. (SUP i. f i x) = u x" using borel_measurable_implies_simple_function_sequence [OF u] by (metis SUP_apply) lemma\<^marker>\<open>tag important\<close> simple_function_induct [consumes 1, case_names cong set mult add, induct set: simple_function]: fixes u :: "'a \<Rightarrow> ennreal" assumes u: "simple_function M u" assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (AE x in M. f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g" assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" assumes mult: "\<And>u c. P u \<Longrightarrow> P (\<lambda>x. c * u x)" assumes add: "\<And>u v. P u \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" shows "P u" proof (rule cong) from AE_space show "AE x in M. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" proof eventually_elim fix x assume x: "x \<in> space M" from simple_function_indicator_representation[OF u x] show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" .. qed next from u have "finite (u ` space M)" unfolding simple_function_def by auto then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)" proof induct case empty show ?case using set[of "{}"] by (simp add: indicator_def[abs_def]) qed (auto intro!: add mult set simple_functionD u) next show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))" apply (subst simple_function_cong) apply (rule simple_function_indicator_representation[symmetric]) apply (auto intro: u) done qed fact lemma simple_function_induct_nn[consumes 1, case_names cong set mult add]: fixes u :: "'a \<Rightarrow> ennreal" assumes u: "simple_function M u" assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g" assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" assumes mult: "\<And>u c. simple_function M u \<Longrightarrow> P u \<Longrightarrow> P (\<lambda>x. c * u x)" assumes add: "\<And>u v. simple_function M u \<Longrightarrow> P u \<Longrightarrow> simple_function M v \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = 0 \<or> v x = 0) \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" shows "P u" proof - show ?thesis proof (rule cong) fix x assume x: "x \<in> space M" from simple_function_indicator_representation[OF u x] show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" .. next show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))" apply (subst simple_function_cong) apply (rule simple_function_indicator_representation[symmetric]) apply (auto intro: u) done next from u have "finite (u ` space M)" unfolding simple_function_def by auto then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)" proof induct case empty show ?case using set[of "{}"] by (simp add: indicator_def[abs_def]) next case (insert x S) { fix z have "(\<Sum>y\<in>S. y * indicator (u -` {y} \<inter> space M) z) = 0 \<or> x * indicator (u -` {x} \<inter> space M) z = 0" using insert by (subst sum_eq_0_iff) (auto simp: indicator_def) } note disj = this from insert show ?case by (auto intro!: add mult set simple_functionD u simple_function_sum disj) qed qed fact qed lemma\<^marker>\<open>tag important\<close> borel_measurable_induct [consumes 1, case_names cong set mult add seq, induct set: borel_measurable]: fixes u :: "'a \<Rightarrow> ennreal" assumes u: "u \<in> borel_measurable M" assumes cong: "\<And>f g. f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P g \<Longrightarrow> P f" assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" assumes mult': "\<And>u c. c < top \<Longrightarrow> u \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x < top) \<Longrightarrow> P u \<Longrightarrow> P (\<lambda>x. c * u x)" assumes add: "\<And>u v. u \<in> borel_measurable M\<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x < top) \<Longrightarrow> P u \<Longrightarrow> v \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> v x < top) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = 0 \<or> v x = 0) \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" assumes seq: "\<And>U. (\<And>i. U i \<in> borel_measurable M) \<Longrightarrow> (\<And>i x. x \<in> space M \<Longrightarrow> U i x < top) \<Longrightarrow> (\<And>i. P (U i)) \<Longrightarrow> incseq U \<Longrightarrow> u = (SUP i. U i) \<Longrightarrow> P (SUP i. U i)" shows "P u" using u proof (induct rule: borel_measurable_implies_simple_function_sequence') fix U assume U: "\<And>i. simple_function M (U i)" "incseq U" "\<And>i x. U i x < top" and sup: "\<And>x. (SUP i. U i x) = u x" have u_eq: "u = (SUP i. U i)" using u by (auto simp add: image_comp sup) have not_inf: "\<And>x i. x \<in> space M \<Longrightarrow> U i x < top" using U by (auto simp: image_iff eq_commute) from U have "\<And>i. U i \<in> borel_measurable M" by (simp add: borel_measurable_simple_function) show "P u" unfolding u_eq proof (rule seq) fix i show "P (U i)" using \<open>simple_function M (U i)\<close> not_inf[of _ i] proof (induct rule: simple_function_induct_nn) case (mult u c) show ?case proof cases assume "c = 0 \<or> space M = {} \<or> (\<forall>x\<in>space M. u x = 0)" with mult(1) show ?thesis by (intro cong[of "\<lambda>x. c * u x" "indicator {}"] set) (auto dest!: borel_measurable_simple_function) next assume "\<not> (c = 0 \<or> space M = {} \<or> (\<forall>x\<in>space M. u x = 0))" then obtain x where "space M \<noteq> {}" and x: "x \<in> space M" "u x \<noteq> 0" "c \<noteq> 0" by auto with mult(3)[of x] have "c < top" by (auto simp: ennreal_mult_less_top) then have u_fin: "x' \<in> space M \<Longrightarrow> u x' < top" for x' using mult(3)[of x'] \<open>c \<noteq> 0\<close> by (auto simp: ennreal_mult_less_top) then have "P u" by (rule mult) with u_fin \<open>c < top\<close> mult(1) show ?thesis by (intro mult') (auto dest!: borel_measurable_simple_function) qed qed (auto intro: cong intro!: set add dest!: borel_measurable_simple_function) qed fact+ qed lemma simple_function_If_set: assumes sf: "simple_function M f" "simple_function M g" and A: "A \<inter> space M \<in> sets M" shows "simple_function M (\<lambda>x. if x \<in> A then f x else g x)" (is "simple_function M ?IF") proof - define F where "F x = f -` {x} \<inter> space M" for x define G where "G x = g -` {x} \<inter> space M" for x show ?thesis unfolding simple_function_def proof safe have "?IF ` space M \<subseteq> f ` space M \<union> g ` space M" by auto from finite_subset[OF this] assms show "finite (?IF ` space M)" unfolding simple_function_def by auto next fix x assume "x \<in> space M" then have *: "?IF -` {?IF x} \<inter> space M = (if x \<in> A then ((F (f x) \<inter> (A \<inter> space M)) \<union> (G (f x) - (G (f x) \<inter> (A \<inter> space M)))) else ((F (g x) \<inter> (A \<inter> space M)) \<union> (G (g x) - (G (g x) \<inter> (A \<inter> space M)))))" using sets.sets_into_space[OF A] by (auto split: if_split_asm simp: G_def F_def) have [intro]: "\<And>x. F x \<in> sets M" "\<And>x. G x \<in> sets M" unfolding F_def G_def using sf[THEN simple_functionD(2)] by auto show "?IF -` {?IF x} \<inter> space M \<in> sets M" unfolding * using A by auto qed qed lemma simple_function_If: assumes sf: "simple_function M f" "simple_function M g" and P: "{x\<in>space M. P x} \<in> sets M" shows "simple_function M (\<lambda>x. if P x then f x else g x)" proof - have "{x\<in>space M. P x} = {x. P x} \<inter> space M" by auto with simple_function_If_set[OF sf, of "{x. P x}"] P show ?thesis by simp qed lemma simple_function_subalgebra: assumes "simple_function N f" and N_subalgebra: "sets N \<subseteq> sets M" "space N = space M" shows "simple_function M f" using assms unfolding simple_function_def by auto lemma simple_function_comp: assumes T: "T \<in> measurable M M'" and f: "simple_function M' f" shows "simple_function M (\<lambda>x. f (T x))" proof (intro simple_function_def[THEN iffD2] conjI ballI) have "(\<lambda>x. f (T x)) ` space M \<subseteq> f ` space M'" using T unfolding measurable_def by auto then show "finite ((\<lambda>x. f (T x)) ` space M)" using f unfolding simple_function_def by (auto intro: finite_subset) fix i assume i: "i \<in> (\<lambda>x. f (T x)) ` space M" then have "i \<in> f ` space M'" using T unfolding measurable_def by auto then have "f -` {i} \<inter> space M' \<in> sets M'" using f unfolding simple_function_def by auto then have "T -` (f -` {i} \<inter> space M') \<inter> space M \<in> sets M" using T unfolding measurable_def by auto also have "T -` (f -` {i} \<inter> space M') \<inter> space M = (\<lambda>x. f (T x)) -` {i} \<inter> space M" using T unfolding measurable_def by auto finally show "(\<lambda>x. f (T x)) -` {i} \<inter> space M \<in> sets M" . qed subsection "Simple integral" definition\<^marker>\<open>tag important\<close> simple_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> ennreal" ("integral\<^sup>S") where "integral\<^sup>S M f = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M))" syntax "_simple_integral" :: "pttrn \<Rightarrow> ennreal \<Rightarrow> 'a measure \<Rightarrow> ennreal" ("\<integral>\<^sup>S _. _ \<partial>_" [60,61] 110) translations "\<integral>\<^sup>S x. f \<partial>M" == "CONST simple_integral M (%x. f)" lemma simple_integral_cong: assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t" shows "integral\<^sup>S M f = integral\<^sup>S M g" proof - have "f ` space M = g ` space M" "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M" using assms by (auto intro!: image_eqI) thus ?thesis unfolding simple_integral_def by simp qed lemma simple_integral_const[simp]: "(\<integral>\<^sup>Sx. c \<partial>M) = c * (emeasure M) (space M)" proof (cases "space M = {}") case True thus ?thesis unfolding simple_integral_def by simp next case False hence "(\<lambda>x. c) ` space M = {c}" by auto thus ?thesis unfolding simple_integral_def by simp qed lemma simple_function_partition: assumes f: "simple_function M f" and g: "simple_function M g" assumes sub: "\<And>x y. x \<in> space M \<Longrightarrow> y \<in> space M \<Longrightarrow> g x = g y \<Longrightarrow> f x = f y" assumes v: "\<And>x. x \<in> space M \<Longrightarrow> f x = v (g x)" shows "integral\<^sup>S M f = (\<Sum>y\<in>g ` space M. v y * emeasure M {x\<in>space M. g x = y})" (is "_ = ?r") proof - from f g have [simp]: "finite (f`space M)" "finite (g`space M)" by (auto simp: simple_function_def) from f g have [measurable]: "f \<in> measurable M (count_space UNIV)" "g \<in> measurable M (count_space UNIV)" by (auto intro: measurable_simple_function) { fix y assume "y \<in> space M" then have "f ` space M \<inter> {i. \<exists>x\<in>space M. i = f x \<and> g y = g x} = {v (g y)}" by (auto cong: sub simp: v[symmetric]) } note eq = this have "integral\<^sup>S M f = (\<Sum>y\<in>f`space M. y * (\<Sum>z\<in>g`space M. if \<exists>x\<in>space M. y = f x \<and> z = g x then emeasure M {x\<in>space M. g x = z} else 0))" unfolding simple_integral_def proof (safe intro!: sum.cong ennreal_mult_left_cong) fix y assume y: "y \<in> space M" "f y \<noteq> 0" have [simp]: "g ` space M \<inter> {z. \<exists>x\<in>space M. f y = f x \<and> z = g x} = {z. \<exists>x\<in>space M. f y = f x \<and> z = g x}" by auto have eq:"(\<Union>i\<in>{z. \<exists>x\<in>space M. f y = f x \<and> z = g x}. {x \<in> space M. g x = i}) = f -` {f y} \<inter> space M" by (auto simp: eq_commute cong: sub rev_conj_cong) have "finite (g`space M)" by simp then have "finite {z. \<exists>x\<in>space M. f y = f x \<and> z = g x}" by (rule rev_finite_subset) auto then show "emeasure M (f -` {f y} \<inter> space M) = (\<Sum>z\<in>g ` space M. if \<exists>x\<in>space M. f y = f x \<and> z = g x then emeasure M {x \<in> space M. g x = z} else 0)" apply (simp add: sum.If_cases) apply (subst sum_emeasure) apply (auto simp: disjoint_family_on_def eq) done qed also have "\<dots> = (\<Sum>y\<in>f`space M. (\<Sum>z\<in>g`space M. if \<exists>x\<in>space M. y = f x \<and> z = g x then y * emeasure M {x\<in>space M. g x = z} else 0))" by (auto intro!: sum.cong simp: sum_distrib_left) also have "\<dots> = ?r" by (subst sum.swap) (auto intro!: sum.cong simp: sum.If_cases scaleR_sum_right[symmetric] eq) finally show "integral\<^sup>S M f = ?r" . qed lemma simple_integral_add[simp]: assumes f: "simple_function M f" and "\<And>x. 0 \<le> f x" and g: "simple_function M g" and "\<And>x. 0 \<le> g x" shows "(\<integral>\<^sup>Sx. f x + g x \<partial>M) = integral\<^sup>S M f + integral\<^sup>S M g" proof - have "(\<integral>\<^sup>Sx. f x + g x \<partial>M) = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. (fst y + snd y) * emeasure M {x\<in>space M. (f x, g x) = y})" by (intro simple_function_partition) (auto intro: f g) also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * emeasure M {x\<in>space M. (f x, g x) = y}) + (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * emeasure M {x\<in>space M. (f x, g x) = y})" using assms(2,4) by (auto intro!: sum.cong distrib_right simp: sum.distrib[symmetric]) also have "(\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * emeasure M {x\<in>space M. (f x, g x) = y}) = (\<integral>\<^sup>Sx. f x \<partial>M)" by (intro simple_function_partition[symmetric]) (auto intro: f g) also have "(\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * emeasure M {x\<in>space M. (f x, g x) = y}) = (\<integral>\<^sup>Sx. g x \<partial>M)" by (intro simple_function_partition[symmetric]) (auto intro: f g) finally show ?thesis . qed lemma simple_integral_sum[simp]: assumes "\<And>i x. i \<in> P \<Longrightarrow> 0 \<le> f i x" assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)" shows "(\<integral>\<^sup>Sx. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^sup>S M (f i))" proof cases assume "finite P" from this assms show ?thesis by induct (auto) qed auto lemma simple_integral_mult[simp]: assumes f: "simple_function M f" shows "(\<integral>\<^sup>Sx. c * f x \<partial>M) = c * integral\<^sup>S M f" proof - have "(\<integral>\<^sup>Sx. c * f x \<partial>M) = (\<Sum>y\<in>f ` space M. (c * y) * emeasure M {x\<in>space M. f x = y})" using f by (intro simple_function_partition) auto also have "\<dots> = c * integral\<^sup>S M f" using f unfolding simple_integral_def by (subst sum_distrib_left) (auto simp: mult.assoc Int_def conj_commute) finally show ?thesis . qed lemma simple_integral_mono_AE: assumes f[measurable]: "simple_function M f" and g[measurable]: "simple_function M g" and mono: "AE x in M. f x \<le> g x" shows "integral\<^sup>S M f \<le> integral\<^sup>S M g" proof - let ?\<mu> = "\<lambda>P. emeasure M {x\<in>space M. P x}" have "integral\<^sup>S M f = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * ?\<mu> (\<lambda>x. (f x, g x) = y))" using f g by (intro simple_function_partition) auto also have "\<dots> \<le> (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * ?\<mu> (\<lambda>x. (f x, g x) = y))" proof (clarsimp intro!: sum_mono) fix x assume "x \<in> space M" let ?M = "?\<mu> (\<lambda>y. f y = f x \<and> g y = g x)" show "f x * ?M \<le> g x * ?M" proof cases assume "?M \<noteq> 0" then have "0 < ?M" by (simp add: less_le) also have "\<dots> \<le> ?\<mu> (\<lambda>y. f x \<le> g x)" using mono by (intro emeasure_mono_AE) auto finally have "\<not> \<not> f x \<le> g x" by (intro notI) auto then show ?thesis by (intro mult_right_mono) auto qed simp qed also have "\<dots> = integral\<^sup>S M g" using f g by (intro simple_function_partition[symmetric]) auto finally show ?thesis . qed lemma simple_integral_mono: assumes "simple_function M f" and "simple_function M g" and mono: "\<And> x. x \<in> space M \<Longrightarrow> f x \<le> g x" shows "integral\<^sup>S M f \<le> integral\<^sup>S M g" using assms by (intro simple_integral_mono_AE) auto lemma simple_integral_cong_AE: assumes "simple_function M f" and "simple_function M g" and "AE x in M. f x = g x" shows "integral\<^sup>S M f = integral\<^sup>S M g" using assms by (auto simp: eq_iff intro!: simple_integral_mono_AE) lemma simple_integral_cong': assumes sf: "simple_function M f" "simple_function M g" and mea: "(emeasure M) {x\<in>space M. f x \<noteq> g x} = 0" shows "integral\<^sup>S M f = integral\<^sup>S M g" proof (intro simple_integral_cong_AE sf AE_I) show "(emeasure M) {x\<in>space M. f x \<noteq> g x} = 0" by fact show "{x \<in> space M. f x \<noteq> g x} \<in> sets M" using sf[THEN borel_measurable_simple_function] by auto qed simp lemma simple_integral_indicator: assumes A: "A \<in> sets M" assumes f: "simple_function M f" shows "(\<integral>\<^sup>Sx. f x * indicator A x \<partial>M) = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M \<inter> A))" proof - have eq: "(\<lambda>x. (f x, indicator A x)) ` space M \<inter> {x. snd x = 1} = (\<lambda>x. (f x, 1::ennreal))`A" using A[THEN sets.sets_into_space] by (auto simp: indicator_def image_iff split: if_split_asm) have eq2: "\<And>x. f x \<notin> f ` A \<Longrightarrow> f -` {f x} \<inter> space M \<inter> A = {}" by (auto simp: image_iff) have "(\<integral>\<^sup>Sx. f x * indicator A x \<partial>M) = (\<Sum>y\<in>(\<lambda>x. (f x, indicator A x))`space M. (fst y * snd y) * emeasure M {x\<in>space M. (f x, indicator A x) = y})" using assms by (intro simple_function_partition) auto also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, indicator A x::ennreal))`space M. if snd y = 1 then fst y * emeasure M (f -` {fst y} \<inter> space M \<inter> A) else 0)" by (auto simp: indicator_def split: if_split_asm intro!: arg_cong2[where f="(*)"] arg_cong2[where f=emeasure] sum.cong) also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, 1::ennreal))`A. fst y * emeasure M (f -` {fst y} \<inter> space M \<inter> A))" using assms by (subst sum.If_cases) (auto intro!: simple_functionD(1) simp: eq) also have "\<dots> = (\<Sum>y\<in>fst`(\<lambda>x. (f x, 1::ennreal))`A. y * emeasure M (f -` {y} \<inter> space M \<inter> A))" by (subst sum.reindex [of fst]) (auto simp: inj_on_def) also have "\<dots> = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M \<inter> A))" using A[THEN sets.sets_into_space] by (intro sum.mono_neutral_cong_left simple_functionD f) (auto simp: image_comp comp_def eq2) finally show ?thesis . qed lemma simple_integral_indicator_only[simp]: assumes "A \<in> sets M" shows "integral\<^sup>S M (indicator A) = emeasure M A" using simple_integral_indicator[OF assms, of "\<lambda>x. 1"] sets.sets_into_space[OF assms] by (simp_all add: image_constant_conv Int_absorb1 split: if_split_asm) lemma simple_integral_null_set: assumes "simple_function M u" "\<And>x. 0 \<le> u x" and "N \<in> null_sets M" shows "(\<integral>\<^sup>Sx. u x * indicator N x \<partial>M) = 0" proof - have "AE x in M. indicator N x = (0 :: ennreal)" using \<open>N \<in> null_sets M\<close> by (auto simp: indicator_def intro!: AE_I[of _ _ N]) then have "(\<integral>\<^sup>Sx. u x * indicator N x \<partial>M) = (\<integral>\<^sup>Sx. 0 \<partial>M)" using assms apply (intro simple_integral_cong_AE) by auto then show ?thesis by simp qed lemma simple_integral_cong_AE_mult_indicator: assumes sf: "simple_function M f" and eq: "AE x in M. x \<in> S" and "S \<in> sets M" shows "integral\<^sup>S M f = (\<integral>\<^sup>Sx. f x * indicator S x \<partial>M)" using assms by (intro simple_integral_cong_AE) auto lemma simple_integral_cmult_indicator: assumes A: "A \<in> sets M" shows "(\<integral>\<^sup>Sx. c * indicator A x \<partial>M) = c * emeasure M A" using simple_integral_mult[OF simple_function_indicator[OF A]] unfolding simple_integral_indicator_only[OF A] by simp lemma simple_integral_nonneg: assumes f: "simple_function M f" and ae: "AE x in M. 0 \<le> f x" shows "0 \<le> integral\<^sup>S M f" proof - have "integral\<^sup>S M (\<lambda>x. 0) \<le> integral\<^sup>S M f" using simple_integral_mono_AE[OF _ f ae] by auto then show ?thesis by simp qed subsection \<open>Integral on nonnegative functions\<close> definition\<^marker>\<open>tag important\<close> nn_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> ennreal" ("integral\<^sup>N") where "integral\<^sup>N M f = (SUP g \<in> {g. simple_function M g \<and> g \<le> f}. integral\<^sup>S M g)" syntax "_nn_integral" :: "pttrn \<Rightarrow> ennreal \<Rightarrow> 'a measure \<Rightarrow> ennreal" ("\<integral>\<^sup>+((2 _./ _)/ \<partial>_)" [60,61] 110) translations "\<integral>\<^sup>+x. f \<partial>M" == "CONST nn_integral M (\<lambda>x. f)" lemma nn_integral_def_finite: "integral\<^sup>N M f = (SUP g \<in> {g. simple_function M g \<and> g \<le> f \<and> (\<forall>x. g x < top)}. integral\<^sup>S M g)" (is "_ = Sup (?A ` ?f)") unfolding nn_integral_def proof (safe intro!: antisym SUP_least) fix g assume g[measurable]: "simple_function M g" "g \<le> f" show "integral\<^sup>S M g \<le> Sup (?A ` ?f)" proof cases assume ae: "AE x in M. g x \<noteq> top" let ?G = "{x \<in> space M. g x \<noteq> top}" have "integral\<^sup>S M g = integral\<^sup>S M (\<lambda>x. g x * indicator ?G x)" proof (rule simple_integral_cong_AE) show "AE x in M. g x = g x * indicator ?G x" using ae AE_space by eventually_elim auto qed (insert g, auto) also have "\<dots> \<le> Sup (?A ` ?f)" using g by (intro SUP_upper) (auto simp: le_fun_def less_top split: split_indicator) finally show ?thesis . next assume nAE: "\<not> (AE x in M. g x \<noteq> top)" then have "emeasure M {x\<in>space M. g x = top} \<noteq> 0" (is "emeasure M ?G \<noteq> 0") by (subst (asm) AE_iff_measurable[OF _ refl]) auto then have "top = (SUP n. (\<integral>\<^sup>Sx. of_nat n * indicator ?G x \<partial>M))" by (simp add: ennreal_SUP_of_nat_eq_top ennreal_top_eq_mult_iff SUP_mult_right_ennreal[symmetric]) also have "\<dots> \<le> Sup (?A ` ?f)" using g by (safe intro!: SUP_least SUP_upper) (auto simp: le_fun_def of_nat_less_top top_unique[symmetric] split: split_indicator intro: order_trans[of _ "g x" "f x" for x, OF order_trans[of _ top]]) finally show ?thesis by (simp add: top_unique del: SUP_eq_top_iff Sup_eq_top_iff) qed qed (auto intro: SUP_upper) lemma nn_integral_mono_AE: assumes ae: "AE x in M. u x \<le> v x" shows "integral\<^sup>N M u \<le> integral\<^sup>N M v" unfolding nn_integral_def proof (safe intro!: SUP_mono) fix n assume n: "simple_function M n" "n \<le> u" from ae[THEN AE_E] obtain N where N: "{x \<in> space M. \<not> u x \<le> v x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M" by auto then have ae_N: "AE x in M. x \<notin> N" by (auto intro: AE_not_in) let ?n = "\<lambda>x. n x * indicator (space M - N) x" have "AE x in M. n x \<le> ?n x" "simple_function M ?n" using n N ae_N by auto moreover { fix x have "?n x \<le> v x" proof cases assume x: "x \<in> space M - N" with N have "u x \<le> v x" by auto with n(2)[THEN le_funD, of x] x show ?thesis by (auto simp: max_def split: if_split_asm) qed simp } then have "?n \<le> v" by (auto simp: le_funI) moreover have "integral\<^sup>S M n \<le> integral\<^sup>S M ?n" using ae_N N n by (auto intro!: simple_integral_mono_AE) ultimately show "\<exists>m\<in>{g. simple_function M g \<and> g \<le> v}. integral\<^sup>S M n \<le> integral\<^sup>S M m" by force qed lemma nn_integral_mono: "(\<And>x. x \<in> space M \<Longrightarrow> u x \<le> v x) \<Longrightarrow> integral\<^sup>N M u \<le> integral\<^sup>N M v" by (auto intro: nn_integral_mono_AE) lemma mono_nn_integral: "mono F \<Longrightarrow> mono (\<lambda>x. integral\<^sup>N M (F x))" by (auto simp add: mono_def le_fun_def intro!: nn_integral_mono) lemma nn_integral_cong_AE: "AE x in M. u x = v x \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" by (auto simp: eq_iff intro!: nn_integral_mono_AE) lemma nn_integral_cong: "(\<And>x. x \<in> space M \<Longrightarrow> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" by (auto intro: nn_integral_cong_AE) lemma nn_integral_cong_simp: "(\<And>x. x \<in> space M =simp=> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" by (auto intro: nn_integral_cong simp: simp_implies_def) lemma incseq_nn_integral: assumes "incseq f" shows "incseq (\<lambda>i. integral\<^sup>N M (f i))" proof - have "\<And>i x. f i x \<le> f (Suc i) x" using assms by (auto dest!: incseq_SucD simp: le_fun_def) then show ?thesis by (auto intro!: incseq_SucI nn_integral_mono) qed lemma nn_integral_eq_simple_integral: assumes f: "simple_function M f" shows "integral\<^sup>N M f = integral\<^sup>S M f" proof - let ?f = "\<lambda>x. f x * indicator (space M) x" have f': "simple_function M ?f" using f by auto have "integral\<^sup>N M ?f \<le> integral\<^sup>S M ?f" using f' by (force intro!: SUP_least simple_integral_mono simp: le_fun_def nn_integral_def) moreover have "integral\<^sup>S M ?f \<le> integral\<^sup>N M ?f" unfolding nn_integral_def using f' by (auto intro!: SUP_upper) ultimately show ?thesis by (simp cong: nn_integral_cong simple_integral_cong) qed text \<open>Beppo-Levi monotone convergence theorem\<close> lemma nn_integral_monotone_convergence_SUP: assumes f: "incseq f" and [measurable]: "\<And>i. f i \<in> borel_measurable M" shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>N M (f i))" proof (rule antisym) show "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) \<le> (SUP i. (\<integral>\<^sup>+ x. f i x \<partial>M))" unfolding nn_integral_def_finite[of _ "\<lambda>x. SUP i. f i x"] proof (safe intro!: SUP_least) fix u assume sf_u[simp]: "simple_function M u" and u: "u \<le> (\<lambda>x. SUP i. f i x)" and u_range: "\<forall>x. u x < top" note sf_u[THEN borel_measurable_simple_function, measurable] show "integral\<^sup>S M u \<le> (SUP j. \<integral>\<^sup>+x. f j x \<partial>M)" proof (rule ennreal_approx_unit) fix a :: ennreal assume "a < 1" let ?au = "\<lambda>x. a * u x" let ?B = "\<lambda>c i. {x\<in>space M. ?au x = c \<and> c \<le> f i x}" have "integral\<^sup>S M ?au = (\<Sum>c\<in>?au`space M. c * (SUP i. emeasure M (?B c i)))" unfolding simple_integral_def proof (intro sum.cong ennreal_mult_left_cong refl) fix c assume "c \<in> ?au ` space M" "c \<noteq> 0" { fix x' assume x': "x' \<in> space M" "?au x' = c" with \<open>c \<noteq> 0\<close> u_range have "?au x' < 1 * u x'" by (intro ennreal_mult_strict_right_mono \<open>a < 1\<close>) (auto simp: less_le) also have "\<dots> \<le> (SUP i. f i x')" using u by (auto simp: le_fun_def) finally have "\<exists>i. ?au x' \<le> f i x'" by (auto simp: less_SUP_iff intro: less_imp_le) } then have *: "?au -` {c} \<inter> space M = (\<Union>i. ?B c i)" by auto show "emeasure M (?au -` {c} \<inter> space M) = (SUP i. emeasure M (?B c i))" unfolding * using f by (intro SUP_emeasure_incseq[symmetric]) (auto simp: incseq_def le_fun_def intro: order_trans) qed also have "\<dots> = (SUP i. \<Sum>c\<in>?au`space M. c * emeasure M (?B c i))" unfolding SUP_mult_left_ennreal using f by (intro ennreal_SUP_sum[symmetric]) (auto intro!: mult_mono emeasure_mono simp: incseq_def le_fun_def intro: order_trans) also have "\<dots> \<le> (SUP i. integral\<^sup>N M (f i))" proof (intro SUP_subset_mono order_refl) fix i have "(\<Sum>c\<in>?au`space M. c * emeasure M (?B c i)) = (\<integral>\<^sup>Sx. (a * u x) * indicator {x\<in>space M. a * u x \<le> f i x} x \<partial>M)" by (subst simple_integral_indicator) (auto intro!: sum.cong ennreal_mult_left_cong arg_cong2[where f=emeasure]) also have "\<dots> = (\<integral>\<^sup>+x. (a * u x) * indicator {x\<in>space M. a * u x \<le> f i x} x \<partial>M)" by (rule nn_integral_eq_simple_integral[symmetric]) simp also have "\<dots> \<le> (\<integral>\<^sup>+x. f i x \<partial>M)" by (intro nn_integral_mono) (auto split: split_indicator) finally show "(\<Sum>c\<in>?au`space M. c * emeasure M (?B c i)) \<le> (\<integral>\<^sup>+x. f i x \<partial>M)" . qed finally show "a * integral\<^sup>S M u \<le> (SUP i. integral\<^sup>N M (f i))" by simp qed qed qed (auto intro!: SUP_least SUP_upper nn_integral_mono) lemma sup_continuous_nn_integral[order_continuous_intros]: assumes f: "\<And>y. sup_continuous (f y)" assumes [measurable]: "\<And>x. (\<lambda>y. f y x) \<in> borel_measurable M" shows "sup_continuous (\<lambda>x. (\<integral>\<^sup>+y. f y x \<partial>M))" unfolding sup_continuous_def proof safe fix C :: "nat \<Rightarrow> 'b" assume C: "incseq C" with sup_continuous_mono[OF f] show "(\<integral>\<^sup>+ y. f y (Sup (C ` UNIV)) \<partial>M) = (SUP i. \<integral>\<^sup>+ y. f y (C i) \<partial>M)" unfolding sup_continuousD[OF f C] by (subst nn_integral_monotone_convergence_SUP) (auto simp: mono_def le_fun_def) qed theorem nn_integral_monotone_convergence_SUP_AE: assumes f: "\<And>i. AE x in M. f i x \<le> f (Suc i) x" "\<And>i. f i \<in> borel_measurable M" shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>N M (f i))" proof - from f have "AE x in M. \<forall>i. f i x \<le> f (Suc i) x" by (simp add: AE_all_countable) from this[THEN AE_E] obtain N where N: "{x \<in> space M. \<not> (\<forall>i. f i x \<le> f (Suc i) x)} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M" by auto let ?f = "\<lambda>i x. if x \<in> space M - N then f i x else 0" have f_eq: "AE x in M. \<forall>i. ?f i x = f i x" using N by (auto intro!: AE_I[of _ _ N]) then have "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (\<integral>\<^sup>+ x. (SUP i. ?f i x) \<partial>M)" by (auto intro!: nn_integral_cong_AE) also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. ?f i x \<partial>M))" proof (rule nn_integral_monotone_convergence_SUP) show "incseq ?f" using N(1) by (force intro!: incseq_SucI le_funI) { fix i show "(\<lambda>x. if x \<in> space M - N then f i x else 0) \<in> borel_measurable M" using f N(3) by (intro measurable_If_set) auto } qed also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. f i x \<partial>M))" using f_eq by (force intro!: arg_cong[where f = "\<lambda>f. Sup (range f)"] nn_integral_cong_AE ext) finally show ?thesis . qed lemma nn_integral_monotone_convergence_simple: "incseq f \<Longrightarrow> (\<And>i. simple_function M (f i)) \<Longrightarrow> (SUP i. \<integral>\<^sup>S x. f i x \<partial>M) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)" using nn_integral_monotone_convergence_SUP[of f M] by (simp add: nn_integral_eq_simple_integral[symmetric] borel_measurable_simple_function) lemma SUP_simple_integral_sequences: assumes f: "incseq f" "\<And>i. simple_function M (f i)" and g: "incseq g" "\<And>i. simple_function M (g i)" and eq: "AE x in M. (SUP i. f i x) = (SUP i. g i x)" shows "(SUP i. integral\<^sup>S M (f i)) = (SUP i. integral\<^sup>S M (g i))" (is "Sup (?F ` _) = Sup (?G ` _)") proof - have "(SUP i. integral\<^sup>S M (f i)) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)" using f by (rule nn_integral_monotone_convergence_simple) also have "\<dots> = (\<integral>\<^sup>+x. (SUP i. g i x) \<partial>M)" unfolding eq[THEN nn_integral_cong_AE] .. also have "\<dots> = (SUP i. ?G i)" using g by (rule nn_integral_monotone_convergence_simple[symmetric]) finally show ?thesis by simp qed lemma nn_integral_const[simp]: "(\<integral>\<^sup>+ x. c \<partial>M) = c * emeasure M (space M)" by (subst nn_integral_eq_simple_integral) auto lemma nn_integral_linear: assumes f: "f \<in> borel_measurable M" and g: "g \<in> borel_measurable M" shows "(\<integral>\<^sup>+ x. a * f x + g x \<partial>M) = a * integral\<^sup>N M f + integral\<^sup>N M g" (is "integral\<^sup>N M ?L = _") proof - obtain u where "\<And>i. simple_function M (u i)" "incseq u" "\<And>i x. u i x < top" "\<And>x. (SUP i. u i x) = f x" using borel_measurable_implies_simple_function_sequence' f(1) by auto note u = nn_integral_monotone_convergence_simple[OF this(2,1)] this obtain v where "\<And>i. simple_function M (v i)" "incseq v" "\<And>i x. v i x < top" "\<And>x. (SUP i. v i x) = g x" using borel_measurable_implies_simple_function_sequence' g(1) by auto note v = nn_integral_monotone_convergence_simple[OF this(2,1)] this let ?L' = "\<lambda>i x. a * u i x + v i x" have "?L \<in> borel_measurable M" using assms by auto from borel_measurable_implies_simple_function_sequence'[OF this] obtain l where "\<And>i. simple_function M (l i)" "incseq l" "\<And>i x. l i x < top" "\<And>x. (SUP i. l i x) = a * f x + g x" by auto note l = nn_integral_monotone_convergence_simple[OF this(2,1)] this have inc: "incseq (\<lambda>i. a * integral\<^sup>S M (u i))" "incseq (\<lambda>i. integral\<^sup>S M (v i))" using u v by (auto simp: incseq_Suc_iff le_fun_def intro!: add_mono mult_left_mono simple_integral_mono) have l': "(SUP i. integral\<^sup>S M (l i)) = (SUP i. integral\<^sup>S M (?L' i))" proof (rule SUP_simple_integral_sequences[OF l(3,2)]) show "incseq ?L'" "\<And>i. simple_function M (?L' i)" using u v unfolding incseq_Suc_iff le_fun_def by (auto intro!: add_mono mult_left_mono) { fix x have "(SUP i. a * u i x + v i x) = a * (SUP i. u i x) + (SUP i. v i x)" using u(3) v(3) u(4)[of _ x] v(4)[of _ x] unfolding SUP_mult_left_ennreal by (auto intro!: ennreal_SUP_add simp: incseq_Suc_iff le_fun_def add_mono mult_left_mono) } then show "AE x in M. (SUP i. l i x) = (SUP i. ?L' i x)" unfolding l(5) using u(5) v(5) by (intro AE_I2) auto qed also have "\<dots> = (SUP i. a * integral\<^sup>S M (u i) + integral\<^sup>S M (v i))" using u(2) v(2) by auto finally show ?thesis unfolding l(5)[symmetric] l(1)[symmetric] by (simp add: ennreal_SUP_add[OF inc] v u SUP_mult_left_ennreal[symmetric]) qed lemma nn_integral_cmult: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. c * f x \<partial>M) = c * integral\<^sup>N M f" using nn_integral_linear[of f M "\<lambda>x. 0" c] by simp lemma nn_integral_multc: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x * c \<partial>M) = integral\<^sup>N M f * c" unfolding mult.commute[of _ c] nn_integral_cmult by simp lemma nn_integral_divide: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x / c \<partial>M) = (\<integral>\<^sup>+ x. f x \<partial>M) / c" unfolding divide_ennreal_def by (rule nn_integral_multc) lemma nn_integral_indicator[simp]: "A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x. indicator A x\<partial>M) = (emeasure M) A" by (subst nn_integral_eq_simple_integral) (auto simp: simple_integral_indicator) lemma nn_integral_cmult_indicator: "A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x. c * indicator A x \<partial>M) = c * emeasure M A" by (subst nn_integral_eq_simple_integral) (auto) lemma nn_integral_indicator': assumes [measurable]: "A \<inter> space M \<in> sets M" shows "(\<integral>\<^sup>+ x. indicator A x \<partial>M) = emeasure M (A \<inter> space M)" proof - have "(\<integral>\<^sup>+ x. indicator A x \<partial>M) = (\<integral>\<^sup>+ x. indicator (A \<inter> space M) x \<partial>M)" by (intro nn_integral_cong) (simp split: split_indicator) also have "\<dots> = emeasure M (A \<inter> space M)" by simp finally show ?thesis . qed lemma nn_integral_indicator_singleton[simp]: assumes [measurable]: "{y} \<in> sets M" shows "(\<integral>\<^sup>+x. f x * indicator {y} x \<partial>M) = f y * emeasure M {y}" proof - have "(\<integral>\<^sup>+x. f x * indicator {y} x \<partial>M) = (\<integral>\<^sup>+x. f y * indicator {y} x \<partial>M)" by (auto intro!: nn_integral_cong split: split_indicator) then show ?thesis by (simp add: nn_integral_cmult) qed lemma nn_integral_set_ennreal: "(\<integral>\<^sup>+x. ennreal (f x) * indicator A x \<partial>M) = (\<integral>\<^sup>+x. ennreal (f x * indicator A x) \<partial>M)" by (rule nn_integral_cong) (simp split: split_indicator) lemma nn_integral_indicator_singleton'[simp]: assumes [measurable]: "{y} \<in> sets M" shows "(\<integral>\<^sup>+x. ennreal (f x * indicator {y} x) \<partial>M) = f y * emeasure M {y}" by (subst nn_integral_set_ennreal[symmetric]) (simp) lemma nn_integral_add: "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x + g x \<partial>M) = integral\<^sup>N M f + integral\<^sup>N M g" using nn_integral_linear[of f M g 1] by simp lemma nn_integral_sum: "(\<And>i. i \<in> P \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<integral>\<^sup>+ x. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^sup>N M (f i))" by (induction P rule: infinite_finite_induct) (auto simp: nn_integral_add) theorem nn_integral_suminf: assumes f: "\<And>i. f i \<in> borel_measurable M" shows "(\<integral>\<^sup>+ x. (\<Sum>i. f i x) \<partial>M) = (\<Sum>i. integral\<^sup>N M (f i))" proof - have all_pos: "AE x in M. \<forall>i. 0 \<le> f i x" using assms by (auto simp: AE_all_countable) have "(\<Sum>i. integral\<^sup>N M (f i)) = (SUP n. \<Sum>i<n. integral\<^sup>N M (f i))" by (rule suminf_eq_SUP) also have "\<dots> = (SUP n. \<integral>\<^sup>+x. (\<Sum>i<n. f i x) \<partial>M)" unfolding nn_integral_sum[OF f] .. also have "\<dots> = \<integral>\<^sup>+x. (SUP n. \<Sum>i<n. f i x) \<partial>M" using f all_pos by (intro nn_integral_monotone_convergence_SUP_AE[symmetric]) (elim AE_mp, auto simp: sum_nonneg simp del: sum.lessThan_Suc intro!: AE_I2 sum_mono2) also have "\<dots> = \<integral>\<^sup>+x. (\<Sum>i. f i x) \<partial>M" using all_pos by (intro nn_integral_cong_AE) (auto simp: suminf_eq_SUP) finally show ?thesis by simp qed lemma nn_integral_bound_simple_function: assumes bnd: "\<And>x. x \<in> space M \<Longrightarrow> f x < \<infinity>" assumes f[measurable]: "simple_function M f" assumes supp: "emeasure M {x\<in>space M. f x \<noteq> 0} < \<infinity>" shows "nn_integral M f < \<infinity>" proof cases assume "space M = {}" then have "nn_integral M f = (\<integral>\<^sup>+x. 0 \<partial>M)" by (intro nn_integral_cong) auto then show ?thesis by simp next assume "space M \<noteq> {}" with simple_functionD(1)[OF f] bnd have bnd: "0 \<le> Max (f`space M) \<and> Max (f`space M) < \<infinity>" by (subst Max_less_iff) (auto simp: Max_ge_iff) have "nn_integral M f \<le> (\<integral>\<^sup>+x. Max (f`space M) * indicator {x\<in>space M. f x \<noteq> 0} x \<partial>M)" proof (rule nn_integral_mono) fix x assume "x \<in> space M" with f show "f x \<le> Max (f ` space M) * indicator {x \<in> space M. f x \<noteq> 0} x" by (auto split: split_indicator intro!: Max_ge simple_functionD) qed also have "\<dots> < \<infinity>" using bnd supp by (subst nn_integral_cmult) (auto simp: ennreal_mult_less_top) finally show ?thesis . qed theorem nn_integral_Markov_inequality: assumes u: "(\<lambda>x. u x * indicator A x) \<in> borel_measurable M" and "A \<in> sets M" shows "(emeasure M) ({x\<in>A. 1 \<le> c * u x}) \<le> c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)" (is "(emeasure M) ?A \<le> _ * ?PI") proof - define u' where "u' = (\<lambda>x. u x * indicator A x)" have [measurable]: "u' \<in> borel_measurable M" using u unfolding u'_def . have "{x\<in>space M. c * u' x \<ge> 1} \<in> sets M" by measurable also have "{x\<in>space M. c * u' x \<ge> 1} = ?A" using sets.sets_into_space[OF \<open>A \<in> sets M\<close>] by (auto simp: u'_def indicator_def) finally have "(emeasure M) ?A = (\<integral>\<^sup>+ x. indicator ?A x \<partial>M)" using nn_integral_indicator by simp also have "\<dots> \<le> (\<integral>\<^sup>+ x. c * (u x * indicator A x) \<partial>M)" using u by (auto intro!: nn_integral_mono_AE simp: indicator_def) also have "\<dots> = c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)" using assms by (auto intro!: nn_integral_cmult) finally show ?thesis . qed lemma Chernoff_ineq_nn_integral_ge: assumes s: "s > 0" and [measurable]: "A \<in> sets M" assumes [measurable]: "(\<lambda>x. f x * indicator A x) \<in> borel_measurable M" shows "emeasure M {x\<in>A. f x \<ge> a} \<le> ennreal (exp (-s * a)) * nn_integral M (\<lambda>x. ennreal (exp (s * f x)) * indicator A x)" proof - define f' where "f' = (\<lambda>x. f x * indicator A x)" have [measurable]: "f' \<in> borel_measurable M" using assms(3) unfolding f'_def by assumption have "(\<lambda>x. ennreal (exp (s * f' x)) * indicator A x) \<in> borel_measurable M" by simp also have "(\<lambda>x. ennreal (exp (s * f' x)) * indicator A x) = (\<lambda>x. ennreal (exp (s * f x)) * indicator A x)" by (auto simp: f'_def indicator_def fun_eq_iff) finally have meas: "\<dots> \<in> borel_measurable M" . have "{x\<in>A. f x \<ge> a} = {x\<in>A. ennreal (exp (-s * a)) * ennreal (exp (s * f x)) \<ge> 1}" using s by (auto simp: exp_minus field_simps simp flip: ennreal_mult) also have "emeasure M \<dots> \<le> ennreal (exp (-s * a)) * (\<integral>\<^sup>+x. ennreal (exp (s * f x)) * indicator A x \<partial>M)" by (intro order.trans[OF nn_integral_Markov_inequality] meas) auto finally show ?thesis . qed lemma Chernoff_ineq_nn_integral_le: assumes s: "s > 0" and [measurable]: "A \<in> sets M" assumes [measurable]: "f \<in> borel_measurable M" shows "emeasure M {x\<in>A. f x \<le> a} \<le> ennreal (exp (s * a)) * nn_integral M (\<lambda>x. ennreal (exp (-s * f x)) * indicator A x)" using Chernoff_ineq_nn_integral_ge[of s A M "\<lambda>x. -f x" "-a"] assms by simp lemma nn_integral_noteq_infinite: assumes g: "g \<in> borel_measurable M" and "integral\<^sup>N M g \<noteq> \<infinity>" shows "AE x in M. g x \<noteq> \<infinity>" proof (rule ccontr) assume c: "\<not> (AE x in M. g x \<noteq> \<infinity>)" have "(emeasure M) {x\<in>space M. g x = \<infinity>} \<noteq> 0" using c g by (auto simp add: AE_iff_null) then have "0 < (emeasure M) {x\<in>space M. g x = \<infinity>}" by (auto simp: zero_less_iff_neq_zero) then have "\<infinity> = \<infinity> * (emeasure M) {x\<in>space M. g x = \<infinity>}" by (auto simp: ennreal_top_eq_mult_iff) also have "\<dots> \<le> (\<integral>\<^sup>+x. \<infinity> * indicator {x\<in>space M. g x = \<infinity>} x \<partial>M)" using g by (subst nn_integral_cmult_indicator) auto also have "\<dots> \<le> integral\<^sup>N M g" using assms by (auto intro!: nn_integral_mono_AE simp: indicator_def) finally show False using \<open>integral\<^sup>N M g \<noteq> \<infinity>\<close> by (auto simp: top_unique) qed lemma nn_integral_PInf: assumes f: "f \<in> borel_measurable M" and not_Inf: "integral\<^sup>N M f \<noteq> \<infinity>" shows "emeasure M (f -` {\<infinity>} \<inter> space M) = 0" proof - have "\<infinity> * emeasure M (f -` {\<infinity>} \<inter> space M) = (\<integral>\<^sup>+ x. \<infinity> * indicator (f -` {\<infinity>} \<inter> space M) x \<partial>M)" using f by (subst nn_integral_cmult_indicator) (auto simp: measurable_sets) also have "\<dots> \<le> integral\<^sup>N M f" by (auto intro!: nn_integral_mono simp: indicator_def) finally have "\<infinity> * (emeasure M) (f -` {\<infinity>} \<inter> space M) \<le> integral\<^sup>N M f" by simp then show ?thesis using assms by (auto simp: ennreal_top_mult top_unique split: if_split_asm) qed lemma simple_integral_PInf: "simple_function M f \<Longrightarrow> integral\<^sup>S M f \<noteq> \<infinity> \<Longrightarrow> emeasure M (f -` {\<infinity>} \<inter> space M) = 0" by (rule nn_integral_PInf) (auto simp: nn_integral_eq_simple_integral borel_measurable_simple_function) lemma nn_integral_PInf_AE: assumes "f \<in> borel_measurable M" "integral\<^sup>N M f \<noteq> \<infinity>" shows "AE x in M. f x \<noteq> \<infinity>" proof (rule AE_I) show "(emeasure M) (f -` {\<infinity>} \<inter> space M) = 0" by (rule nn_integral_PInf[OF assms]) show "f -` {\<infinity>} \<inter> space M \<in> sets M" using assms by (auto intro: borel_measurable_vimage) qed auto lemma nn_integral_diff: assumes f: "f \<in> borel_measurable M" and g: "g \<in> borel_measurable M" and fin: "integral\<^sup>N M g \<noteq> \<infinity>" and mono: "AE x in M. g x \<le> f x" shows "(\<integral>\<^sup>+ x. f x - g x \<partial>M) = integral\<^sup>N M f - integral\<^sup>N M g" proof - have diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M" using assms by auto have "AE x in M. f x = f x - g x + g x" using diff_add_cancel_ennreal mono nn_integral_noteq_infinite[OF g fin] assms by auto then have **: "integral\<^sup>N M f = (\<integral>\<^sup>+x. f x - g x \<partial>M) + integral\<^sup>N M g" unfolding nn_integral_add[OF diff g, symmetric] by (rule nn_integral_cong_AE) show ?thesis unfolding ** using fin by (cases rule: ennreal2_cases[of "\<integral>\<^sup>+ x. f x - g x \<partial>M" "integral\<^sup>N M g"]) auto qed lemma nn_integral_mult_bounded_inf: assumes f: "f \<in> borel_measurable M" "(\<integral>\<^sup>+x. f x \<partial>M) < \<infinity>" and c: "c \<noteq> \<infinity>" and ae: "AE x in M. g x \<le> c * f x" shows "(\<integral>\<^sup>+x. g x \<partial>M) < \<infinity>" proof - have "(\<integral>\<^sup>+x. g x \<partial>M) \<le> (\<integral>\<^sup>+x. c * f x \<partial>M)" by (intro nn_integral_mono_AE ae) also have "(\<integral>\<^sup>+x. c * f x \<partial>M) < \<infinity>" using c f by (subst nn_integral_cmult) (auto simp: ennreal_mult_less_top top_unique not_less) finally show ?thesis . qed text \<open>Fatou's lemma: convergence theorem on limes inferior\<close> lemma nn_integral_monotone_convergence_INF_AE': assumes f: "\<And>i. AE x in M. f (Suc i) x \<le> f i x" and [measurable]: "\<And>i. f i \<in> borel_measurable M" and *: "(\<integral>\<^sup>+ x. f 0 x \<partial>M) < \<infinity>" shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" proof (rule ennreal_minus_cancel) have "integral\<^sup>N M (f 0) - (\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (\<integral>\<^sup>+x. f 0 x - (INF i. f i x) \<partial>M)" proof (rule nn_integral_diff[symmetric]) have "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) \<le> (\<integral>\<^sup>+ x. f 0 x \<partial>M)" by (intro nn_integral_mono INF_lower) simp with * show "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) \<noteq> \<infinity>" by simp qed (auto intro: INF_lower) also have "\<dots> = (\<integral>\<^sup>+x. (SUP i. f 0 x - f i x) \<partial>M)" by (simp add: ennreal_INF_const_minus) also have "\<dots> = (SUP i. (\<integral>\<^sup>+x. f 0 x - f i x \<partial>M))" proof (intro nn_integral_monotone_convergence_SUP_AE) show "AE x in M. f 0 x - f i x \<le> f 0 x - f (Suc i) x" for i using f[of i] by eventually_elim (auto simp: ennreal_mono_minus) qed simp also have "\<dots> = (SUP i. nn_integral M (f 0) - (\<integral>\<^sup>+x. f i x \<partial>M))" proof (subst nn_integral_diff[symmetric]) fix i have dec: "AE x in M. \<forall>i. f (Suc i) x \<le> f i x" unfolding AE_all_countable using f by auto then show "AE x in M. f i x \<le> f 0 x" using dec by eventually_elim (auto intro: lift_Suc_antimono_le[of "\<lambda>i. f i x" 0 i for x]) then have "(\<integral>\<^sup>+ x. f i x \<partial>M) \<le> (\<integral>\<^sup>+ x. f 0 x \<partial>M)" by (rule nn_integral_mono_AE) with * show "(\<integral>\<^sup>+ x. f i x \<partial>M) \<noteq> \<infinity>" by simp qed (insert f, auto simp: decseq_def le_fun_def) finally show "integral\<^sup>N M (f 0) - (\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = integral\<^sup>N M (f 0) - (INF i. \<integral>\<^sup>+ x. f i x \<partial>M)" by (simp add: ennreal_INF_const_minus) qed (insert *, auto intro!: nn_integral_mono intro: INF_lower) theorem nn_integral_monotone_convergence_INF_AE: fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" assumes f: "\<And>i. AE x in M. f (Suc i) x \<le> f i x" and [measurable]: "\<And>i. f i \<in> borel_measurable M" and fin: "(\<integral>\<^sup>+ x. f i x \<partial>M) < \<infinity>" shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" proof - { fix f :: "nat \<Rightarrow> ennreal" and j assume "decseq f" then have "(INF i. f i) = (INF i. f (i + j))" apply (intro INF_eq) apply (rule_tac x="i" in bexI) apply (auto simp: decseq_def le_fun_def) done } note INF_shift = this have mono: "AE x in M. \<forall>i. f (Suc i) x \<le> f i x" using f by (auto simp: AE_all_countable) then have "AE x in M. (INF i. f i x) = (INF n. f (n + i) x)" by eventually_elim (auto intro!: decseq_SucI INF_shift) then have "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (\<integral>\<^sup>+ x. (INF n. f (n + i) x) \<partial>M)" by (rule nn_integral_cong_AE) also have "\<dots> = (INF n. (\<integral>\<^sup>+ x. f (n + i) x \<partial>M))" by (rule nn_integral_monotone_convergence_INF_AE') (insert assms, auto) also have "\<dots> = (INF n. (\<integral>\<^sup>+ x. f n x \<partial>M))" by (intro INF_shift[symmetric] decseq_SucI nn_integral_mono_AE f) finally show ?thesis . qed lemma nn_integral_monotone_convergence_INF_decseq: assumes f: "decseq f" and *: "\<And>i. f i \<in> borel_measurable M" "(\<integral>\<^sup>+ x. f i x \<partial>M) < \<infinity>" shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" using nn_integral_monotone_convergence_INF_AE[of f M i, OF _ *] f by (auto simp: decseq_Suc_iff le_fun_def) theorem nn_integral_liminf: fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" assumes u: "\<And>i. u i \<in> borel_measurable M" shows "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" proof - have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) = (SUP n. \<integral>\<^sup>+ x. (INF i\<in>{n..}. u i x) \<partial>M)" unfolding liminf_SUP_INF using u by (intro nn_integral_monotone_convergence_SUP_AE) (auto intro!: AE_I2 intro: INF_greatest INF_superset_mono) also have "\<dots> \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" by (auto simp: liminf_SUP_INF intro!: SUP_mono INF_greatest nn_integral_mono INF_lower) finally show ?thesis . qed theorem nn_integral_limsup: fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" assumes [measurable]: "\<And>i. u i \<in> borel_measurable M" "w \<in> borel_measurable M" assumes bounds: "\<And>i. AE x in M. u i x \<le> w x" and w: "(\<integral>\<^sup>+x. w x \<partial>M) < \<infinity>" shows "limsup (\<lambda>n. integral\<^sup>N M (u n)) \<le> (\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M)" proof - have bnd: "AE x in M. \<forall>i. u i x \<le> w x" using bounds by (auto simp: AE_all_countable) then have "(\<integral>\<^sup>+ x. (SUP n. u n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. w x \<partial>M)" by (auto intro!: nn_integral_mono_AE elim: eventually_mono intro: SUP_least) then have "(\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M) = (INF n. \<integral>\<^sup>+ x. (SUP i\<in>{n..}. u i x) \<partial>M)" unfolding limsup_INF_SUP using bnd w by (intro nn_integral_monotone_convergence_INF_AE') (auto intro!: AE_I2 intro: SUP_least SUP_subset_mono) also have "\<dots> \<ge> limsup (\<lambda>n. integral\<^sup>N M (u n))" by (auto simp: limsup_INF_SUP intro!: INF_mono SUP_least exI nn_integral_mono SUP_upper) finally (xtrans) show ?thesis . qed lemma nn_integral_LIMSEQ: assumes f: "incseq f" "\<And>i. f i \<in> borel_measurable M" and u: "\<And>x. (\<lambda>i. f i x) \<longlonglongrightarrow> u x" shows "(\<lambda>n. integral\<^sup>N M (f n)) \<longlonglongrightarrow> integral\<^sup>N M u" proof - have "(\<lambda>n. integral\<^sup>N M (f n)) \<longlonglongrightarrow> (SUP n. integral\<^sup>N M (f n))" using f by (intro LIMSEQ_SUP[of "\<lambda>n. integral\<^sup>N M (f n)"] incseq_nn_integral) also have "(SUP n. integral\<^sup>N M (f n)) = integral\<^sup>N M (\<lambda>x. SUP n. f n x)" using f by (intro nn_integral_monotone_convergence_SUP[symmetric]) also have "integral\<^sup>N M (\<lambda>x. SUP n. f n x) = integral\<^sup>N M (\<lambda>x. u x)" using f by (subst LIMSEQ_SUP[THEN LIMSEQ_unique, OF _ u]) (auto simp: incseq_def le_fun_def) finally show ?thesis . qed theorem nn_integral_dominated_convergence: assumes [measurable]: "\<And>i. u i \<in> borel_measurable M" "u' \<in> borel_measurable M" "w \<in> borel_measurable M" and bound: "\<And>j. AE x in M. u j x \<le> w x" and w: "(\<integral>\<^sup>+x. w x \<partial>M) < \<infinity>" and u': "AE x in M. (\<lambda>i. u i x) \<longlonglongrightarrow> u' x" shows "(\<lambda>i. (\<integral>\<^sup>+x. u i x \<partial>M)) \<longlonglongrightarrow> (\<integral>\<^sup>+x. u' x \<partial>M)" proof - have "limsup (\<lambda>n. integral\<^sup>N M (u n)) \<le> (\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M)" by (intro nn_integral_limsup[OF _ _ bound w]) auto moreover have "(\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+ x. u' x \<partial>M)" using u' by (intro nn_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup sequentially_bot) moreover have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+ x. u' x \<partial>M)" using u' by (intro nn_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup sequentially_bot) moreover have "(\<integral>\<^sup>+x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" by (intro nn_integral_liminf) auto moreover have "liminf (\<lambda>n. integral\<^sup>N M (u n)) \<le> limsup (\<lambda>n. integral\<^sup>N M (u n))" by (intro Liminf_le_Limsup sequentially_bot) ultimately show ?thesis by (intro Liminf_eq_Limsup) auto qed lemma inf_continuous_nn_integral[order_continuous_intros]: assumes f: "\<And>y. inf_continuous (f y)" assumes [measurable]: "\<And>x. (\<lambda>y. f y x) \<in> borel_measurable M" assumes bnd: "\<And>x. (\<integral>\<^sup>+ y. f y x \<partial>M) \<noteq> \<infinity>" shows "inf_continuous (\<lambda>x. (\<integral>\<^sup>+y. f y x \<partial>M))" unfolding inf_continuous_def proof safe fix C :: "nat \<Rightarrow> 'b" assume C: "decseq C" then show "(\<integral>\<^sup>+ y. f y (Inf (C ` UNIV)) \<partial>M) = (INF i. \<integral>\<^sup>+ y. f y (C i) \<partial>M)" using inf_continuous_mono[OF f] bnd by (auto simp add: inf_continuousD[OF f C] fun_eq_iff antimono_def mono_def le_fun_def less_top intro!: nn_integral_monotone_convergence_INF_decseq) qed lemma nn_integral_null_set: assumes "N \<in> null_sets M" shows "(\<integral>\<^sup>+ x. u x * indicator N x \<partial>M) = 0" proof - have "(\<integral>\<^sup>+ x. u x * indicator N x \<partial>M) = (\<integral>\<^sup>+ x. 0 \<partial>M)" proof (intro nn_integral_cong_AE AE_I) show "{x \<in> space M. u x * indicator N x \<noteq> 0} \<subseteq> N" by (auto simp: indicator_def) show "(emeasure M) N = 0" "N \<in> sets M" using assms by auto qed then show ?thesis by simp qed lemma nn_integral_0_iff: assumes u [measurable]: "u \<in> borel_measurable M" shows "integral\<^sup>N M u = 0 \<longleftrightarrow> emeasure M {x\<in>space M. u x \<noteq> 0} = 0" (is "_ \<longleftrightarrow> (emeasure M) ?A = 0") proof - have u_eq: "(\<integral>\<^sup>+ x. u x * indicator ?A x \<partial>M) = integral\<^sup>N M u" by (auto intro!: nn_integral_cong simp: indicator_def) show ?thesis proof assume "(emeasure M) ?A = 0" with nn_integral_null_set[of ?A M u] u show "integral\<^sup>N M u = 0" by (simp add: u_eq null_sets_def) next assume *: "integral\<^sup>N M u = 0" let ?M = "\<lambda>n. {x \<in> space M. 1 \<le> real (n::nat) * u x}" have "0 = (SUP n. (emeasure M) (?M n \<inter> ?A))" proof - { fix n :: nat have "emeasure M {x \<in> ?A. 1 \<le> of_nat n * u x} \<le> of_nat n * \<integral>\<^sup>+ x. u x * indicator ?A x \<partial>M" by (intro nn_integral_Markov_inequality) auto also have "{x \<in> ?A. 1 \<le> of_nat n * u x} = (?M n \<inter> ?A)" by (auto simp: ennreal_of_nat_eq_real_of_nat u_eq * ) finally have "emeasure M (?M n \<inter> ?A) \<le> 0" by (simp add: ennreal_of_nat_eq_real_of_nat u_eq * ) moreover have "0 \<le> (emeasure M) (?M n \<inter> ?A)" using u by auto ultimately have "(emeasure M) (?M n \<inter> ?A) = 0" by auto } thus ?thesis by simp qed also have "\<dots> = (emeasure M) (\<Union>n. ?M n \<inter> ?A)" proof (safe intro!: SUP_emeasure_incseq) fix n show "?M n \<inter> ?A \<in> sets M" using u by (auto intro!: sets.Int) next show "incseq (\<lambda>n. {x \<in> space M. 1 \<le> real n * u x} \<inter> {x \<in> space M. u x \<noteq> 0})" proof (safe intro!: incseq_SucI) fix n :: nat and x assume *: "1 \<le> real n * u x" also have "real n * u x \<le> real (Suc n) * u x" by (auto intro!: mult_right_mono) finally show "1 \<le> real (Suc n) * u x" by auto qed qed also have "\<dots> = (emeasure M) {x\<in>space M. 0 < u x}" proof (safe intro!: arg_cong[where f="(emeasure M)"]) fix x assume "0 < u x" and [simp, intro]: "x \<in> space M" show "x \<in> (\<Union>n. ?M n \<inter> ?A)" proof (cases "u x" rule: ennreal_cases) case (real r) with \<open>0 < u x\<close> have "0 < r" by auto obtain j :: nat where "1 / r \<le> real j" using real_arch_simple .. hence "1 / r * r \<le> real j * r" unfolding mult_le_cancel_right using \<open>0 < r\<close> by auto hence "1 \<le> real j * r" using real \<open>0 < r\<close> by auto thus ?thesis using \<open>0 < r\<close> real by (auto simp: ennreal_of_nat_eq_real_of_nat ennreal_1[symmetric] ennreal_mult[symmetric] simp del: ennreal_1) qed (insert \<open>0 < u x\<close>, auto simp: ennreal_mult_top) qed (auto simp: zero_less_iff_neq_zero) finally show "emeasure M ?A = 0" by (simp add: zero_less_iff_neq_zero) qed qed lemma nn_integral_0_iff_AE: assumes u: "u \<in> borel_measurable M" shows "integral\<^sup>N M u = 0 \<longleftrightarrow> (AE x in M. u x = 0)" proof - have sets: "{x\<in>space M. u x \<noteq> 0} \<in> sets M" using u by auto show "integral\<^sup>N M u = 0 \<longleftrightarrow> (AE x in M. u x = 0)" using nn_integral_0_iff[of u] AE_iff_null[OF sets] u by auto qed lemma AE_iff_nn_integral: "{x\<in>space M. P x} \<in> sets M \<Longrightarrow> (AE x in M. P x) \<longleftrightarrow> integral\<^sup>N M (indicator {x. \<not> P x}) = 0" by (subst nn_integral_0_iff_AE) (auto simp: indicator_def[abs_def]) lemma nn_integral_less: assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" assumes f: "(\<integral>\<^sup>+x. f x \<partial>M) \<noteq> \<infinity>" assumes ord: "AE x in M. f x \<le> g x" "\<not> (AE x in M. g x \<le> f x)" shows "(\<integral>\<^sup>+x. f x \<partial>M) < (\<integral>\<^sup>+x. g x \<partial>M)" proof - have "0 < (\<integral>\<^sup>+x. g x - f x \<partial>M)" proof (intro order_le_neq_trans notI) assume "0 = (\<integral>\<^sup>+x. g x - f x \<partial>M)" then have "AE x in M. g x - f x = 0" using nn_integral_0_iff_AE[of "\<lambda>x. g x - f x" M] by simp with ord(1) have "AE x in M. g x \<le> f x" by eventually_elim (auto simp: ennreal_minus_eq_0) with ord show False by simp qed simp also have "\<dots> = (\<integral>\<^sup>+x. g x \<partial>M) - (\<integral>\<^sup>+x. f x \<partial>M)" using f by (subst nn_integral_diff) (auto simp: ord) finally show ?thesis using f by (auto dest!: ennreal_minus_pos_iff[rotated] simp: less_top) qed lemma nn_integral_subalgebra: assumes f: "f \<in> borel_measurable N" and N: "sets N \<subseteq> sets M" "space N = space M" "\<And>A. A \<in> sets N \<Longrightarrow> emeasure N A = emeasure M A" shows "integral\<^sup>N N f = integral\<^sup>N M f" proof - have [simp]: "\<And>f :: 'a \<Rightarrow> ennreal. f \<in> borel_measurable N \<Longrightarrow> f \<in> borel_measurable M" using N by (auto simp: measurable_def) have [simp]: "\<And>P. (AE x in N. P x) \<Longrightarrow> (AE x in M. P x)" using N by (auto simp add: eventually_ae_filter null_sets_def subset_eq) have [simp]: "\<And>A. A \<in> sets N \<Longrightarrow> A \<in> sets M" using N by auto from f show ?thesis apply induct apply (simp_all add: nn_integral_add nn_integral_cmult nn_integral_monotone_convergence_SUP N image_comp) apply (auto intro!: nn_integral_cong cong: nn_integral_cong simp: N(2)[symmetric]) done qed lemma nn_integral_nat_function: fixes f :: "'a \<Rightarrow> nat" assumes "f \<in> measurable M (count_space UNIV)" shows "(\<integral>\<^sup>+x. of_nat (f x) \<partial>M) = (\<Sum>t. emeasure M {x\<in>space M. t < f x})" proof - define F where "F i = {x\<in>space M. i < f x}" for i with assms have [measurable]: "\<And>i. F i \<in> sets M" by auto { fix x assume "x \<in> space M" have "(\<lambda>i. if i < f x then 1 else 0) sums (of_nat (f x)::real)" using sums_If_finite[of "\<lambda>i. i < f x" "\<lambda>_. 1::real"] by simp then have "(\<lambda>i. ennreal (if i < f x then 1 else 0)) sums of_nat(f x)" unfolding ennreal_of_nat_eq_real_of_nat by (subst sums_ennreal) auto moreover have "\<And>i. ennreal (if i < f x then 1 else 0) = indicator (F i) x" using \<open>x \<in> space M\<close> by (simp add: one_ennreal_def F_def) ultimately have "of_nat (f x) = (\<Sum>i. indicator (F i) x :: ennreal)" by (simp add: sums_iff) } then have "(\<integral>\<^sup>+x. of_nat (f x) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)" by (simp cong: nn_integral_cong) also have "\<dots> = (\<Sum>i. emeasure M (F i))" by (simp add: nn_integral_suminf) finally show ?thesis by (simp add: F_def) qed theorem nn_integral_lfp: assumes sets[simp]: "\<And>s. sets (M s) = sets N" assumes f: "sup_continuous f" assumes g: "sup_continuous g" assumes meas: "\<And>F. F \<in> borel_measurable N \<Longrightarrow> f F \<in> borel_measurable N" assumes step: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> integral\<^sup>N (M s) (f F) = g (\<lambda>s. integral\<^sup>N (M s) F) s" shows "(\<integral>\<^sup>+\<omega>. lfp f \<omega> \<partial>M s) = lfp g s" proof (subst lfp_transfer_bounded[where \<alpha>="\<lambda>F s. \<integral>\<^sup>+x. F x \<partial>M s" and g=g and f=f and P="\<lambda>f. f \<in> borel_measurable N", symmetric]) fix C :: "nat \<Rightarrow> 'b \<Rightarrow> ennreal" assume "incseq C" "\<And>i. C i \<in> borel_measurable N" then show "(\<lambda>s. \<integral>\<^sup>+x. (SUP i. C i) x \<partial>M s) = (SUP i. (\<lambda>s. \<integral>\<^sup>+x. C i x \<partial>M s))" unfolding SUP_apply[abs_def] by (subst nn_integral_monotone_convergence_SUP) (auto simp: mono_def fun_eq_iff intro!: arg_cong2[where f=emeasure] cong: measurable_cong_sets) qed (auto simp add: step le_fun_def SUP_apply[abs_def] bot_fun_def bot_ennreal intro!: meas f g) theorem nn_integral_gfp: assumes sets[simp]: "\<And>s. sets (M s) = sets N" assumes f: "inf_continuous f" and g: "inf_continuous g" assumes meas: "\<And>F. F \<in> borel_measurable N \<Longrightarrow> f F \<in> borel_measurable N" assumes bound: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> (\<integral>\<^sup>+x. f F x \<partial>M s) < \<infinity>" assumes non_zero: "\<And>s. emeasure (M s) (space (M s)) \<noteq> 0" assumes step: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> integral\<^sup>N (M s) (f F) = g (\<lambda>s. integral\<^sup>N (M s) F) s" shows "(\<integral>\<^sup>+\<omega>. gfp f \<omega> \<partial>M s) = gfp g s" proof (subst gfp_transfer_bounded[where \<alpha>="\<lambda>F s. \<integral>\<^sup>+x. F x \<partial>M s" and g=g and f=f and P="\<lambda>F. F \<in> borel_measurable N \<and> (\<forall>s. (\<integral>\<^sup>+x. F x \<partial>M s) < \<infinity>)", symmetric]) fix C :: "nat \<Rightarrow> 'b \<Rightarrow> ennreal" assume "decseq C" "\<And>i. C i \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (C i) < \<infinity>)" then show "(\<lambda>s. \<integral>\<^sup>+x. (INF i. C i) x \<partial>M s) = (INF i. (\<lambda>s. \<integral>\<^sup>+x. C i x \<partial>M s))" unfolding INF_apply[abs_def] by (subst nn_integral_monotone_convergence_INF_decseq) (auto simp: mono_def fun_eq_iff intro!: arg_cong2[where f=emeasure] cong: measurable_cong_sets) next show "\<And>x. g x \<le> (\<lambda>s. integral\<^sup>N (M s) (f top))" by (subst step) (auto simp add: top_fun_def less_le non_zero le_fun_def ennreal_top_mult cong del: if_weak_cong intro!: monoD[OF inf_continuous_mono[OF g], THEN le_funD]) next fix C assume "\<And>i::nat. C i \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (C i) < \<infinity>)" "decseq C" with bound show "Inf (C ` UNIV) \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (Inf (C ` UNIV)) < \<infinity>)" unfolding INF_apply[abs_def] by (subst nn_integral_monotone_convergence_INF_decseq) (auto simp: INF_less_iff cong: measurable_cong_sets intro!: borel_measurable_INF) next show "\<And>x. x \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) x < \<infinity>) \<Longrightarrow> (\<lambda>s. integral\<^sup>N (M s) (f x)) = g (\<lambda>s. integral\<^sup>N (M s) x)" by (subst step) auto qed (insert bound, auto simp add: le_fun_def INF_apply[abs_def] top_fun_def intro!: meas f g) text \<open>Cauchy--Schwarz inequality for \<^const>\<open>nn_integral\<close>\<close> lemma sum_of_squares_ge_ennreal: fixes a b :: ennreal shows "2 * a * b \<le> a\<^sup>2 + b\<^sup>2" proof (cases a; cases b) fix x y assume xy: "x \<ge> 0" "y \<ge> 0" and [simp]: "a = ennreal x" "b = ennreal y" have "0 \<le> (x - y)\<^sup>2" by simp also have "\<dots> = x\<^sup>2 + y\<^sup>2 - 2 * x * y" by (simp add: algebra_simps power2_eq_square) finally have "2 * x * y \<le> x\<^sup>2 + y\<^sup>2" by simp hence "ennreal (2 * x * y) \<le> ennreal (x\<^sup>2 + y\<^sup>2)" by (intro ennreal_leI) thus ?thesis using xy by (simp add: ennreal_mult ennreal_power) qed auto lemma Cauchy_Schwarz_nn_integral: assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" shows "(\<integral>\<^sup>+x. f x * g x \<partial>M)\<^sup>2 \<le> (\<integral>\<^sup>+x. f x ^ 2 \<partial>M) * (\<integral>\<^sup>+x. g x ^ 2 \<partial>M)" proof (cases "(\<integral>\<^sup>+x. f x * g x \<partial>M) = 0") case False define F where "F = nn_integral M (\<lambda>x. f x ^ 2)" define G where "G = nn_integral M (\<lambda>x. g x ^ 2)" from False have "\<not>(AE x in M. f x = 0 \<or> g x = 0)" by (auto simp: nn_integral_0_iff_AE) hence "\<not>(AE x in M. f x = 0)" and "\<not>(AE x in M. g x = 0)" by (auto intro: AE_disjI1 AE_disjI2) hence nz: "F \<noteq> 0" "G \<noteq> 0" by (auto simp: nn_integral_0_iff_AE F_def G_def) show ?thesis proof (cases "F = \<infinity> \<or> G = \<infinity>") case True thus ?thesis using nz by (auto simp: F_def G_def) next case False define F' where "F' = ennreal (sqrt (enn2real F))" define G' where "G' = ennreal (sqrt (enn2real G))" from False have fin: "F < top" "G < top" by (simp_all add: top.not_eq_extremum) have F'_sqr: "F'\<^sup>2 = F" using False by (cases F) (auto simp: F'_def ennreal_power) have G'_sqr: "G'\<^sup>2 = G" using False by (cases G) (auto simp: G'_def ennreal_power) have nz': "F' \<noteq> 0" "G' \<noteq> 0" and fin': "F' \<noteq> \<infinity>" "G' \<noteq> \<infinity>" using F'_sqr G'_sqr nz fin by auto from fin' have fin'': "F' < top" "G' < top" by (auto simp: top.not_eq_extremum) have "2 * (F' / F') * (G' / G') * (\<integral>\<^sup>+x. f x * g x \<partial>M) = F' * G' * (\<integral>\<^sup>+x. 2 * (f x / F') * (g x / G') \<partial>M)" using nz' fin'' by (simp add: divide_ennreal_def algebra_simps ennreal_inverse_mult flip: nn_integral_cmult) also have "F'/ F' = 1" using nz' fin'' by simp also have "G'/ G' = 1" using nz' fin'' by simp also have "2 * 1 * 1 = (2 :: ennreal)" by simp also have "F' * G' * (\<integral>\<^sup>+ x. 2 * (f x / F') * (g x / G') \<partial>M) \<le> F' * G' * (\<integral>\<^sup>+x. (f x / F')\<^sup>2 + (g x / G')\<^sup>2 \<partial>M)" by (intro mult_left_mono nn_integral_mono sum_of_squares_ge_ennreal) auto also have "\<dots> = F' * G' * (F / F'\<^sup>2 + G / G'\<^sup>2)" using nz by (auto simp: nn_integral_add algebra_simps nn_integral_divide F_def G_def) also have "F / F'\<^sup>2 = 1" using nz F'_sqr fin by simp also have "G / G'\<^sup>2 = 1" using nz G'_sqr fin by simp also have "F' * G' * (1 + 1) = 2 * (F' * G')" by (simp add: mult_ac) finally have "(\<integral>\<^sup>+x. f x * g x \<partial>M) \<le> F' * G'" by (subst (asm) ennreal_mult_le_mult_iff) auto hence "(\<integral>\<^sup>+x. f x * g x \<partial>M)\<^sup>2 \<le> (F' * G')\<^sup>2" by (intro power_mono_ennreal) also have "\<dots> = F * G" by (simp add: algebra_simps F'_sqr G'_sqr) finally show ?thesis by (simp add: F_def G_def) qed qed auto (* TODO: rename? *) subsection \<open>Integral under concrete measures\<close> lemma nn_integral_mono_measure: assumes "sets M = sets N" "M \<le> N" shows "nn_integral M f \<le> nn_integral N f" unfolding nn_integral_def proof (intro SUP_subset_mono) note \<open>sets M = sets N\<close>[simp] \<open>sets M = sets N\<close>[THEN sets_eq_imp_space_eq, simp] show "{g. simple_function M g \<and> g \<le> f} \<subseteq> {g. simple_function N g \<and> g \<le> f}" by (simp add: simple_function_def) show "integral\<^sup>S M x \<le> integral\<^sup>S N x" for x using le_measureD3[OF \<open>M \<le> N\<close>] by (auto simp add: simple_integral_def intro!: sum_mono mult_mono) qed lemma nn_integral_empty: assumes "space M = {}" shows "nn_integral M f = 0" proof - have "(\<integral>\<^sup>+ x. f x \<partial>M) = (\<integral>\<^sup>+ x. 0 \<partial>M)" by(rule nn_integral_cong)(simp add: assms) thus ?thesis by simp qed lemma nn_integral_bot[simp]: "nn_integral bot f = 0" by (simp add: nn_integral_empty) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Distributions\<close> lemma nn_integral_distr: assumes T: "T \<in> measurable M M'" and f: "f \<in> borel_measurable (distr M M' T)" shows "integral\<^sup>N (distr M M' T) f = (\<integral>\<^sup>+ x. f (T x) \<partial>M)" using f proof induct case (cong f g) with T show ?case apply (subst nn_integral_cong[of _ f g]) apply simp apply (subst nn_integral_cong[of _ "\<lambda>x. f (T x)" "\<lambda>x. g (T x)"]) apply (simp add: measurable_def Pi_iff) apply simp done next case (set A) then have eq: "\<And>x. x \<in> space M \<Longrightarrow> indicator A (T x) = indicator (T -` A \<inter> space M) x" by (auto simp: indicator_def) from set T show ?case by (subst nn_integral_cong[OF eq]) (auto simp add: emeasure_distr intro!: nn_integral_indicator[symmetric] measurable_sets) qed (simp_all add: measurable_compose[OF T] T nn_integral_cmult nn_integral_add nn_integral_monotone_convergence_SUP le_fun_def incseq_def image_comp) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Counting space\<close> lemma simple_function_count_space[simp]: "simple_function (count_space A) f \<longleftrightarrow> finite (f ` A)" unfolding simple_function_def by simp lemma nn_integral_count_space: assumes A: "finite {a\<in>A. 0 < f a}" shows "integral\<^sup>N (count_space A) f = (\<Sum>a|a\<in>A \<and> 0 < f a. f a)" proof - have *: "(\<integral>\<^sup>+x. max 0 (f x) \<partial>count_space A) = (\<integral>\<^sup>+ x. (\<Sum>a|a\<in>A \<and> 0 < f a. f a * indicator {a} x) \<partial>count_space A)" by (auto intro!: nn_integral_cong simp add: indicator_def of_bool_def if_distrib sum.If_cases[OF A] max_def le_less) also have "\<dots> = (\<Sum>a|a\<in>A \<and> 0 < f a. \<integral>\<^sup>+ x. f a * indicator {a} x \<partial>count_space A)" by (subst nn_integral_sum) (simp_all add: AE_count_space less_imp_le) also have "\<dots> = (\<Sum>a|a\<in>A \<and> 0 < f a. f a)" by (auto intro!: sum.cong simp: one_ennreal_def[symmetric] max_def) finally show ?thesis by (simp add: max.absorb2) qed lemma nn_integral_count_space_finite: "finite A \<Longrightarrow> (\<integral>\<^sup>+x. f x \<partial>count_space A) = (\<Sum>a\<in>A. f a)" by (auto intro!: sum.mono_neutral_left simp: nn_integral_count_space less_le) lemma nn_integral_count_space': assumes "finite A" "\<And>x. x \<in> B \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = 0" "A \<subseteq> B" shows "(\<integral>\<^sup>+x. f x \<partial>count_space B) = (\<Sum>x\<in>A. f x)" proof - have "(\<integral>\<^sup>+x. f x \<partial>count_space B) = (\<Sum>a | a \<in> B \<and> 0 < f a. f a)" using assms(2,3) by (intro nn_integral_count_space finite_subset[OF _ \<open>finite A\<close>]) (auto simp: less_le) also have "\<dots> = (\<Sum>a\<in>A. f a)" using assms by (intro sum.mono_neutral_cong_left) (auto simp: less_le) finally show ?thesis . qed lemma nn_integral_bij_count_space: assumes g: "bij_betw g A B" shows "(\<integral>\<^sup>+x. f (g x) \<partial>count_space A) = (\<integral>\<^sup>+x. f x \<partial>count_space B)" using g[THEN bij_betw_imp_funcset] by (subst distr_bij_count_space[OF g, symmetric]) (auto intro!: nn_integral_distr[symmetric]) lemma nn_integral_indicator_finite: fixes f :: "'a \<Rightarrow> ennreal" assumes f: "finite A" and [measurable]: "\<And>a. a \<in> A \<Longrightarrow> {a} \<in> sets M" shows "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = (\<Sum>x\<in>A. f x * emeasure M {x})" proof - from f have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>a\<in>A. f a * indicator {a} x) \<partial>M)" by (intro nn_integral_cong) (auto simp: indicator_def if_distrib[where f="\<lambda>a. x * a" for x] sum.If_cases) also have "\<dots> = (\<Sum>a\<in>A. f a * emeasure M {a})" by (subst nn_integral_sum) auto finally show ?thesis . qed lemma nn_integral_count_space_nat: fixes f :: "nat \<Rightarrow> ennreal" shows "(\<integral>\<^sup>+i. f i \<partial>count_space UNIV) = (\<Sum>i. f i)" proof - have "(\<integral>\<^sup>+i. f i \<partial>count_space UNIV) = (\<integral>\<^sup>+i. (\<Sum>j. f j * indicator {j} i) \<partial>count_space UNIV)" proof (intro nn_integral_cong) fix i have "f i = (\<Sum>j\<in>{i}. f j * indicator {j} i)" by simp also have "\<dots> = (\<Sum>j. f j * indicator {j} i)" by (rule suminf_finite[symmetric]) auto finally show "f i = (\<Sum>j. f j * indicator {j} i)" . qed also have "\<dots> = (\<Sum>j. (\<integral>\<^sup>+i. f j * indicator {j} i \<partial>count_space UNIV))" by (rule nn_integral_suminf) auto finally show ?thesis by simp qed lemma nn_integral_enat_function: assumes f: "f \<in> measurable M (count_space UNIV)" shows "(\<integral>\<^sup>+ x. ennreal_of_enat (f x) \<partial>M) = (\<Sum>t. emeasure M {x \<in> space M. t < f x})" proof - define F where "F i = {x\<in>space M. i < f x}" for i :: nat with assms have [measurable]: "\<And>i. F i \<in> sets M" by auto { fix x assume "x \<in> space M" have "(\<lambda>i::nat. if i < f x then 1 else 0) sums ennreal_of_enat (f x)" using sums_If_finite[of "\<lambda>r. r < f x" "\<lambda>_. 1 :: ennreal"] by (cases "f x") (simp_all add: sums_def of_nat_tendsto_top_ennreal) also have "(\<lambda>i. (if i < f x then 1 else 0)) = (\<lambda>i. indicator (F i) x)" using \<open>x \<in> space M\<close> by (simp add: one_ennreal_def F_def fun_eq_iff) finally have "ennreal_of_enat (f x) = (\<Sum>i. indicator (F i) x)" by (simp add: sums_iff) } then have "(\<integral>\<^sup>+x. ennreal_of_enat (f x) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)" by (simp cong: nn_integral_cong) also have "\<dots> = (\<Sum>i. emeasure M (F i))" by (simp add: nn_integral_suminf) finally show ?thesis by (simp add: F_def) qed lemma nn_integral_count_space_nn_integral: fixes f :: "'i \<Rightarrow> 'a \<Rightarrow> ennreal" assumes "countable I" and [measurable]: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M" shows "(\<integral>\<^sup>+x. \<integral>\<^sup>+i. f i x \<partial>count_space I \<partial>M) = (\<integral>\<^sup>+i. \<integral>\<^sup>+x. f i x \<partial>M \<partial>count_space I)" proof cases assume "finite I" then show ?thesis by (simp add: nn_integral_count_space_finite nn_integral_sum) next assume "infinite I" then have [simp]: "I \<noteq> {}" by auto note * = bij_betw_from_nat_into[OF \<open>countable I\<close> \<open>infinite I\<close>] have **: "\<And>f. (\<And>i. 0 \<le> f i) \<Longrightarrow> (\<integral>\<^sup>+i. f i \<partial>count_space I) = (\<Sum>n. f (from_nat_into I n))" by (simp add: nn_integral_bij_count_space[symmetric, OF *] nn_integral_count_space_nat) show ?thesis by (simp add: ** nn_integral_suminf from_nat_into) qed lemma of_bool_Bex_eq_nn_integral: assumes unique: "\<And>x y. x \<in> X \<Longrightarrow> y \<in> X \<Longrightarrow> P x \<Longrightarrow> P y \<Longrightarrow> x = y" shows "of_bool (\<exists>y\<in>X. P y) = (\<integral>\<^sup>+y. of_bool (P y) \<partial>count_space X)" proof cases assume "\<exists>y\<in>X. P y" then obtain y where "P y" "y \<in> X" by auto then show ?thesis by (subst nn_integral_count_space'[where A="{y}"]) (auto dest: unique) qed (auto cong: nn_integral_cong_simp) lemma emeasure_UN_countable: assumes sets[measurable]: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> sets M" and I[simp]: "countable I" assumes disj: "disjoint_family_on X I" shows "emeasure M (\<Union>(X ` I)) = (\<integral>\<^sup>+i. emeasure M (X i) \<partial>count_space I)" proof - have eq: "\<And>x. indicator (\<Union>(X ` I)) x = \<integral>\<^sup>+ i. indicator (X i) x \<partial>count_space I" proof cases fix x assume x: "x \<in> \<Union>(X ` I)" then obtain j where j: "x \<in> X j" "j \<in> I" by auto with disj have "\<And>i. i \<in> I \<Longrightarrow> indicator (X i) x = (indicator {j} i::ennreal)" by (auto simp: disjoint_family_on_def split: split_indicator) with x j show "?thesis x" by (simp cong: nn_integral_cong_simp) qed (auto simp: nn_integral_0_iff_AE) note sets.countable_UN'[unfolded subset_eq, measurable] have "emeasure M (\<Union>(X ` I)) = (\<integral>\<^sup>+x. indicator (\<Union>(X ` I)) x \<partial>M)" by simp also have "\<dots> = (\<integral>\<^sup>+i. \<integral>\<^sup>+x. indicator (X i) x \<partial>M \<partial>count_space I)" by (simp add: eq nn_integral_count_space_nn_integral) finally show ?thesis by (simp cong: nn_integral_cong_simp) qed lemma emeasure_countable_singleton: assumes sets: "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M" and X: "countable X" shows "emeasure M X = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space X)" proof - have "emeasure M (\<Union>i\<in>X. {i}) = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space X)" using assms by (intro emeasure_UN_countable) (auto simp: disjoint_family_on_def) also have "(\<Union>i\<in>X. {i}) = X" by auto finally show ?thesis . qed lemma measure_eqI_countable: assumes [simp]: "sets M = Pow A" "sets N = Pow A" and A: "countable A" assumes eq: "\<And>a. a \<in> A \<Longrightarrow> emeasure M {a} = emeasure N {a}" shows "M = N" proof (rule measure_eqI) fix X assume "X \<in> sets M" then have X: "X \<subseteq> A" by auto moreover from A X have "countable X" by (auto dest: countable_subset) ultimately have "emeasure M X = (\<integral>\<^sup>+a. emeasure M {a} \<partial>count_space X)" "emeasure N X = (\<integral>\<^sup>+a. emeasure N {a} \<partial>count_space X)" by (auto intro!: emeasure_countable_singleton) moreover have "(\<integral>\<^sup>+a. emeasure M {a} \<partial>count_space X) = (\<integral>\<^sup>+a. emeasure N {a} \<partial>count_space X)" using X by (intro nn_integral_cong eq) auto ultimately show "emeasure M X = emeasure N X" by simp qed simp lemma measure_eqI_countable_AE: assumes [simp]: "sets M = UNIV" "sets N = UNIV" assumes ae: "AE x in M. x \<in> \<Omega>" "AE x in N. x \<in> \<Omega>" and [simp]: "countable \<Omega>" assumes eq: "\<And>x. x \<in> \<Omega> \<Longrightarrow> emeasure M {x} = emeasure N {x}" shows "M = N" proof (rule measure_eqI) fix A have "emeasure N A = emeasure N {x\<in>\<Omega>. x \<in> A}" using ae by (intro emeasure_eq_AE) auto also have "\<dots> = (\<integral>\<^sup>+x. emeasure N {x} \<partial>count_space {x\<in>\<Omega>. x \<in> A})" by (intro emeasure_countable_singleton) auto also have "\<dots> = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space {x\<in>\<Omega>. x \<in> A})" by (intro nn_integral_cong eq[symmetric]) auto also have "\<dots> = emeasure M {x\<in>\<Omega>. x \<in> A}" by (intro emeasure_countable_singleton[symmetric]) auto also have "\<dots> = emeasure M A" using ae by (intro emeasure_eq_AE) auto finally show "emeasure M A = emeasure N A" .. qed simp lemma nn_integral_monotone_convergence_SUP_nat: fixes f :: "'a \<Rightarrow> nat \<Rightarrow> ennreal" assumes chain: "Complete_Partial_Order.chain (\<le>) (f ` Y)" and nonempty: "Y \<noteq> {}" shows "(\<integral>\<^sup>+ x. (SUP i\<in>Y. f i x) \<partial>count_space UNIV) = (SUP i\<in>Y. (\<integral>\<^sup>+ x. f i x \<partial>count_space UNIV))" (is "?lhs = ?rhs" is "integral\<^sup>N ?M _ = _") proof (rule order_class.order.antisym) show "?rhs \<le> ?lhs" by (auto intro!: SUP_least SUP_upper nn_integral_mono) next have "\<exists>g. incseq g \<and> range g \<subseteq> (\<lambda>i. f i x) ` Y \<and> (SUP i\<in>Y. f i x) = (SUP i. g i)" for x by (rule ennreal_Sup_countable_SUP) (simp add: nonempty) then obtain g where incseq: "\<And>x. incseq (g x)" and range: "\<And>x. range (g x) \<subseteq> (\<lambda>i. f i x) ` Y" and sup: "\<And>x. (SUP i\<in>Y. f i x) = (SUP i. g x i)" by moura from incseq have incseq': "incseq (\<lambda>i x. g x i)" by(blast intro: incseq_SucI le_funI dest: incseq_SucD) have "?lhs = \<integral>\<^sup>+ x. (SUP i. g x i) \<partial>?M" by(simp add: sup) also have "\<dots> = (SUP i. \<integral>\<^sup>+ x. g x i \<partial>?M)" using incseq' by(rule nn_integral_monotone_convergence_SUP) simp also have "\<dots> \<le> (SUP i\<in>Y. \<integral>\<^sup>+ x. f i x \<partial>?M)" proof(rule SUP_least) fix n have "\<And>x. \<exists>i. g x n = f i x \<and> i \<in> Y" using range by blast then obtain I where I: "\<And>x. g x n = f (I x) x" "\<And>x. I x \<in> Y" by moura have "(\<integral>\<^sup>+ x. g x n \<partial>count_space UNIV) = (\<Sum>x. g x n)" by(rule nn_integral_count_space_nat) also have "\<dots> = (SUP m. \<Sum>x<m. g x n)" by(rule suminf_eq_SUP) also have "\<dots> \<le> (SUP i\<in>Y. \<integral>\<^sup>+ x. f i x \<partial>?M)" proof(rule SUP_mono) fix m show "\<exists>m'\<in>Y. (\<Sum>x<m. g x n) \<le> (\<integral>\<^sup>+ x. f m' x \<partial>?M)" proof(cases "m > 0") case False thus ?thesis using nonempty by auto next case True let ?Y = "I ` {..<m}" have "f ` ?Y \<subseteq> f ` Y" using I by auto with chain have chain': "Complete_Partial_Order.chain (\<le>) (f ` ?Y)" by(rule chain_subset) hence "Sup (f ` ?Y) \<in> f ` ?Y" by(rule ccpo_class.in_chain_finite)(auto simp add: True lessThan_empty_iff) then obtain m' where "m' < m" and m': "(SUP i\<in>?Y. f i) = f (I m')" by auto have "I m' \<in> Y" using I by blast have "(\<Sum>x<m. g x n) \<le> (\<Sum>x<m. f (I m') x)" proof(rule sum_mono) fix x assume "x \<in> {..<m}" hence "x < m" by simp have "g x n = f (I x) x" by(simp add: I) also have "\<dots> \<le> (SUP i\<in>?Y. f i) x" unfolding Sup_fun_def image_image using \<open>x \<in> {..<m}\<close> by (rule Sup_upper [OF imageI]) also have "\<dots> = f (I m') x" unfolding m' by simp finally show "g x n \<le> f (I m') x" . qed also have "\<dots> \<le> (SUP m. (\<Sum>x<m. f (I m') x))" by(rule SUP_upper) simp also have "\<dots> = (\<Sum>x. f (I m') x)" by(rule suminf_eq_SUP[symmetric]) also have "\<dots> = (\<integral>\<^sup>+ x. f (I m') x \<partial>?M)" by(rule nn_integral_count_space_nat[symmetric]) finally show ?thesis using \<open>I m' \<in> Y\<close> by blast qed qed finally show "(\<integral>\<^sup>+ x. g x n \<partial>count_space UNIV) \<le> \<dots>" . qed finally show "?lhs \<le> ?rhs" . qed lemma power_series_tendsto_at_left: assumes nonneg: "\<And>i. 0 \<le> f i" and summable: "\<And>z. 0 \<le> z \<Longrightarrow> z < 1 \<Longrightarrow> summable (\<lambda>n. f n * z^n)" shows "((\<lambda>z. ennreal (\<Sum>n. f n * z^n)) \<longlongrightarrow> (\<Sum>n. ennreal (f n))) (at_left (1::real))" proof (intro tendsto_at_left_sequentially) show "0 < (1::real)" by simp fix S :: "nat \<Rightarrow> real" assume S: "\<And>n. S n < 1" "\<And>n. 0 < S n" "S \<longlonglongrightarrow> 1" "incseq S" then have S_nonneg: "\<And>i. 0 \<le> S i" by (auto intro: less_imp_le) have "(\<lambda>i. (\<integral>\<^sup>+n. f n * S i^n \<partial>count_space UNIV)) \<longlonglongrightarrow> (\<integral>\<^sup>+n. ennreal (f n) \<partial>count_space UNIV)" proof (rule nn_integral_LIMSEQ) show "incseq (\<lambda>i n. ennreal (f n * S i^n))" using S by (auto intro!: mult_mono power_mono nonneg ennreal_leI simp: incseq_def le_fun_def less_imp_le) fix n have "(\<lambda>i. ennreal (f n * S i^n)) \<longlonglongrightarrow> ennreal (f n * 1^n)" by (intro tendsto_intros tendsto_ennrealI S) then show "(\<lambda>i. ennreal (f n * S i^n)) \<longlonglongrightarrow> ennreal (f n)" by simp qed (auto simp: S_nonneg intro!: mult_nonneg_nonneg nonneg) also have "(\<lambda>i. (\<integral>\<^sup>+n. f n * S i^n \<partial>count_space UNIV)) = (\<lambda>i. \<Sum>n. f n * S i^n)" by (subst nn_integral_count_space_nat) (intro ext suminf_ennreal2 mult_nonneg_nonneg nonneg S_nonneg zero_le_power summable S)+ also have "(\<integral>\<^sup>+n. ennreal (f n) \<partial>count_space UNIV) = (\<Sum>n. ennreal (f n))" by (simp add: nn_integral_count_space_nat nonneg) finally show "(\<lambda>n. ennreal (\<Sum>na. f na * S n ^ na)) \<longlonglongrightarrow> (\<Sum>n. ennreal (f n))" . qed subsubsection \<open>Measures with Restricted Space\<close> lemma simple_function_restrict_space_ennreal: fixes f :: "'a \<Rightarrow> ennreal" assumes "\<Omega> \<inter> space M \<in> sets M" shows "simple_function (restrict_space M \<Omega>) f \<longleftrightarrow> simple_function M (\<lambda>x. f x * indicator \<Omega> x)" proof - { assume "finite (f ` space (restrict_space M \<Omega>))" then have "finite (f ` space (restrict_space M \<Omega>) \<union> {0})" by simp then have "finite ((\<lambda>x. f x * indicator \<Omega> x) ` space M)" by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } moreover { assume "finite ((\<lambda>x. f x * indicator \<Omega> x) ` space M)" then have "finite (f ` space (restrict_space M \<Omega>))" by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } ultimately show ?thesis unfolding simple_function_iff_borel_measurable borel_measurable_restrict_space_iff_ennreal[OF assms] by auto qed lemma simple_function_restrict_space: fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" assumes "\<Omega> \<inter> space M \<in> sets M" shows "simple_function (restrict_space M \<Omega>) f \<longleftrightarrow> simple_function M (\<lambda>x. indicator \<Omega> x *\<^sub>R f x)" proof - { assume "finite (f ` space (restrict_space M \<Omega>))" then have "finite (f ` space (restrict_space M \<Omega>) \<union> {0})" by simp then have "finite ((\<lambda>x. indicator \<Omega> x *\<^sub>R f x) ` space M)" by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } moreover { assume "finite ((\<lambda>x. indicator \<Omega> x *\<^sub>R f x) ` space M)" then have "finite (f ` space (restrict_space M \<Omega>))" by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } ultimately show ?thesis unfolding simple_function_iff_borel_measurable borel_measurable_restrict_space_iff[OF assms] by auto qed lemma simple_integral_restrict_space: assumes \<Omega>: "\<Omega> \<inter> space M \<in> sets M" "simple_function (restrict_space M \<Omega>) f" shows "simple_integral (restrict_space M \<Omega>) f = simple_integral M (\<lambda>x. f x * indicator \<Omega> x)" using simple_function_restrict_space_ennreal[THEN iffD1, OF \<Omega>, THEN simple_functionD(1)] by (auto simp add: space_restrict_space emeasure_restrict_space[OF \<Omega>(1)] le_infI2 simple_integral_def split: split_indicator split_indicator_asm intro!: sum.mono_neutral_cong_left ennreal_mult_left_cong arg_cong2[where f=emeasure]) lemma nn_integral_restrict_space: assumes \<Omega>[simp]: "\<Omega> \<inter> space M \<in> sets M" shows "nn_integral (restrict_space M \<Omega>) f = nn_integral M (\<lambda>x. f x * indicator \<Omega> x)" proof - let ?R = "restrict_space M \<Omega>" and ?X = "\<lambda>M f. {s. simple_function M s \<and> s \<le> f \<and> (\<forall>x. s x < top)}" have "integral\<^sup>S ?R ` ?X ?R f = integral\<^sup>S M ` ?X M (\<lambda>x. f x * indicator \<Omega> x)" proof (safe intro!: image_eqI) fix s assume s: "simple_function ?R s" "s \<le> f" "\<forall>x. s x < top" from s show "integral\<^sup>S (restrict_space M \<Omega>) s = integral\<^sup>S M (\<lambda>x. s x * indicator \<Omega> x)" by (intro simple_integral_restrict_space) auto from s show "simple_function M (\<lambda>x. s x * indicator \<Omega> x)" by (simp add: simple_function_restrict_space_ennreal) from s show "(\<lambda>x. s x * indicator \<Omega> x) \<le> (\<lambda>x. f x * indicator \<Omega> x)" "\<And>x. s x * indicator \<Omega> x < top" by (auto split: split_indicator simp: le_fun_def image_subset_iff) next fix s assume s: "simple_function M s" "s \<le> (\<lambda>x. f x * indicator \<Omega> x)" "\<forall>x. s x < top" then have "simple_function M (\<lambda>x. s x * indicator (\<Omega> \<inter> space M) x)" (is ?s') by (intro simple_function_mult simple_function_indicator) auto also have "?s' \<longleftrightarrow> simple_function M (\<lambda>x. s x * indicator \<Omega> x)" by (rule simple_function_cong) (auto split: split_indicator) finally show sf: "simple_function (restrict_space M \<Omega>) s" by (simp add: simple_function_restrict_space_ennreal) from s have s_eq: "s = (\<lambda>x. s x * indicator \<Omega> x)" by (auto simp add: fun_eq_iff le_fun_def image_subset_iff split: split_indicator split_indicator_asm intro: antisym) show "integral\<^sup>S M s = integral\<^sup>S (restrict_space M \<Omega>) s" by (subst s_eq) (rule simple_integral_restrict_space[symmetric, OF \<Omega> sf]) show "\<And>x. s x < top" using s by (auto simp: image_subset_iff) from s show "s \<le> f" by (subst s_eq) (auto simp: image_subset_iff le_fun_def split: split_indicator split_indicator_asm) qed then show ?thesis unfolding nn_integral_def_finite by (simp cong del: SUP_cong_simp) qed lemma nn_integral_count_space_indicator: assumes "NO_MATCH (UNIV::'a set) (X::'a set)" shows "(\<integral>\<^sup>+x. f x \<partial>count_space X) = (\<integral>\<^sup>+x. f x * indicator X x \<partial>count_space UNIV)" by (simp add: nn_integral_restrict_space[symmetric] restrict_count_space) lemma nn_integral_count_space_eq: "(\<And>x. x \<in> A - B \<Longrightarrow> f x = 0) \<Longrightarrow> (\<And>x. x \<in> B - A \<Longrightarrow> f x = 0) \<Longrightarrow> (\<integral>\<^sup>+x. f x \<partial>count_space A) = (\<integral>\<^sup>+x. f x \<partial>count_space B)" by (auto simp: nn_integral_count_space_indicator intro!: nn_integral_cong split: split_indicator) lemma nn_integral_ge_point: assumes "x \<in> A" shows "p x \<le> \<integral>\<^sup>+ x. p x \<partial>count_space A" proof - from assms have "p x \<le> \<integral>\<^sup>+ x. p x \<partial>count_space {x}" by(auto simp add: nn_integral_count_space_finite max_def) also have "\<dots> = \<integral>\<^sup>+ x'. p x' * indicator {x} x' \<partial>count_space A" using assms by(auto simp add: nn_integral_count_space_indicator indicator_def intro!: nn_integral_cong) also have "\<dots> \<le> \<integral>\<^sup>+ x. p x \<partial>count_space A" by(rule nn_integral_mono)(simp add: indicator_def) finally show ?thesis . qed subsubsection \<open>Measure spaces with an associated density\<close> definition\<^marker>\<open>tag important\<close> density :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where "density M f = measure_of (space M) (sets M) (\<lambda>A. \<integral>\<^sup>+ x. f x * indicator A x \<partial>M)" lemma shows sets_density[simp, measurable_cong]: "sets (density M f) = sets M" and space_density[simp]: "space (density M f) = space M" by (auto simp: density_def) (* FIXME: add conversion to simplify space, sets and measurable *) lemma space_density_imp[measurable_dest]: "\<And>x M f. x \<in> space (density M f) \<Longrightarrow> x \<in> space M" by auto lemma shows measurable_density_eq1[simp]: "g \<in> measurable (density Mg f) Mg' \<longleftrightarrow> g \<in> measurable Mg Mg'" and measurable_density_eq2[simp]: "h \<in> measurable Mh (density Mh' f) \<longleftrightarrow> h \<in> measurable Mh Mh'" and simple_function_density_eq[simp]: "simple_function (density Mu f) u \<longleftrightarrow> simple_function Mu u" unfolding measurable_def simple_function_def by simp_all lemma density_cong: "f \<in> borel_measurable M \<Longrightarrow> f' \<in> borel_measurable M \<Longrightarrow> (AE x in M. f x = f' x) \<Longrightarrow> density M f = density M f'" unfolding density_def by (auto intro!: measure_of_eq nn_integral_cong_AE sets.space_closed) lemma emeasure_density: assumes f[measurable]: "f \<in> borel_measurable M" and A[measurable]: "A \<in> sets M" shows "emeasure (density M f) A = (\<integral>\<^sup>+ x. f x * indicator A x \<partial>M)" (is "_ = ?\<mu> A") unfolding density_def proof (rule emeasure_measure_of_sigma) show "sigma_algebra (space M) (sets M)" .. show "positive (sets M) ?\<mu>" using f by (auto simp: positive_def) show "countably_additive (sets M) ?\<mu>" proof (intro countably_additiveI) fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> sets M" then have "\<And>i. A i \<in> sets M" by auto then have *: "\<And>i. (\<lambda>x. f x * indicator (A i) x) \<in> borel_measurable M" by auto assume disj: "disjoint_family A" then have "(\<Sum>n. ?\<mu> (A n)) = (\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (A n) x) \<partial>M)" using f * by (subst nn_integral_suminf) auto also have "(\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (A n) x) \<partial>M) = (\<integral>\<^sup>+ x. f x * (\<Sum>n. indicator (A n) x) \<partial>M)" using f by (auto intro!: ennreal_suminf_cmult nn_integral_cong_AE) also have "\<dots> = (\<integral>\<^sup>+ x. f x * indicator (\<Union>n. A n) x \<partial>M)" unfolding suminf_indicator[OF disj] .. finally show "(\<Sum>i. \<integral>\<^sup>+ x. f x * indicator (A i) x \<partial>M) = \<integral>\<^sup>+ x. f x * indicator (\<Union>i. A i) x \<partial>M" . qed qed fact lemma null_sets_density_iff: assumes f: "f \<in> borel_measurable M" shows "A \<in> null_sets (density M f) \<longleftrightarrow> A \<in> sets M \<and> (AE x in M. x \<in> A \<longrightarrow> f x = 0)" proof - { assume "A \<in> sets M" have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = 0 \<longleftrightarrow> emeasure M {x \<in> space M. f x * indicator A x \<noteq> 0} = 0" using f \<open>A \<in> sets M\<close> by (intro nn_integral_0_iff) auto also have "\<dots> \<longleftrightarrow> (AE x in M. f x * indicator A x = 0)" using f \<open>A \<in> sets M\<close> by (intro AE_iff_measurable[OF _ refl, symmetric]) auto also have "(AE x in M. f x * indicator A x = 0) \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)" by (auto simp add: indicator_def max_def split: if_split_asm) finally have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = 0 \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)" . } with f show ?thesis by (simp add: null_sets_def emeasure_density cong: conj_cong) qed lemma AE_density: assumes f: "f \<in> borel_measurable M" shows "(AE x in density M f. P x) \<longleftrightarrow> (AE x in M. 0 < f x \<longrightarrow> P x)" proof assume "AE x in density M f. P x" with f obtain N where "{x \<in> space M. \<not> P x} \<subseteq> N" "N \<in> sets M" and ae: "AE x in M. x \<in> N \<longrightarrow> f x = 0" by (auto simp: eventually_ae_filter null_sets_density_iff) then have "AE x in M. x \<notin> N \<longrightarrow> P x" by auto with ae show "AE x in M. 0 < f x \<longrightarrow> P x" by (rule eventually_elim2) auto next fix N assume ae: "AE x in M. 0 < f x \<longrightarrow> P x" then obtain N where "{x \<in> space M. \<not> (0 < f x \<longrightarrow> P x)} \<subseteq> N" "N \<in> null_sets M" by (auto simp: eventually_ae_filter) then have *: "{x \<in> space (density M f). \<not> P x} \<subseteq> N \<union> {x\<in>space M. f x = 0}" "N \<union> {x\<in>space M. f x = 0} \<in> sets M" and ae2: "AE x in M. x \<notin> N" using f by (auto simp: subset_eq zero_less_iff_neq_zero intro!: AE_not_in) show "AE x in density M f. P x" using ae2 unfolding eventually_ae_filter[of _ "density M f"] Bex_def null_sets_density_iff[OF f] by (intro exI[of _ "N \<union> {x\<in>space M. f x = 0}"] conjI *) (auto elim: eventually_elim2) qed lemma\<^marker>\<open>tag important\<close> nn_integral_density: assumes f: "f \<in> borel_measurable M" assumes g: "g \<in> borel_measurable M" shows "integral\<^sup>N (density M f) g = (\<integral>\<^sup>+ x. f x * g x \<partial>M)" using g proof induct case (cong u v) then show ?case apply (subst nn_integral_cong[OF cong(3)]) apply (simp_all cong: nn_integral_cong) done next case (set A) then show ?case by (simp add: emeasure_density f) next case (mult u c) moreover have "\<And>x. f x * (c * u x) = c * (f x * u x)" by (simp add: field_simps) ultimately show ?case using f by (simp add: nn_integral_cmult) next case (add u v) then have "\<And>x. f x * (v x + u x) = f x * v x + f x * u x" by (simp add: distrib_left) with add f show ?case by (auto simp add: nn_integral_add intro!: nn_integral_add[symmetric]) next case (seq U) have eq: "AE x in M. f x * (SUP i. U i x) = (SUP i. f x * U i x)" by eventually_elim (simp add: SUP_mult_left_ennreal seq) from seq f show ?case apply (simp add: nn_integral_monotone_convergence_SUP image_comp) apply (subst nn_integral_cong_AE[OF eq]) apply (subst nn_integral_monotone_convergence_SUP_AE) apply (auto simp: incseq_def le_fun_def intro!: mult_left_mono) done qed lemma density_distr: assumes [measurable]: "f \<in> borel_measurable N" "X \<in> measurable M N" shows "density (distr M N X) f = distr (density M (\<lambda>x. f (X x))) N X" by (intro measure_eqI) (auto simp add: emeasure_density nn_integral_distr emeasure_distr split: split_indicator intro!: nn_integral_cong) lemma emeasure_restricted: assumes S: "S \<in> sets M" and X: "X \<in> sets M" shows "emeasure (density M (indicator S)) X = emeasure M (S \<inter> X)" proof - have "emeasure (density M (indicator S)) X = (\<integral>\<^sup>+x. indicator S x * indicator X x \<partial>M)" using S X by (simp add: emeasure_density) also have "\<dots> = (\<integral>\<^sup>+x. indicator (S \<inter> X) x \<partial>M)" by (auto intro!: nn_integral_cong simp: indicator_def) also have "\<dots> = emeasure M (S \<inter> X)" using S X by (simp add: sets.Int) finally show ?thesis . qed lemma measure_restricted: "S \<in> sets M \<Longrightarrow> X \<in> sets M \<Longrightarrow> measure (density M (indicator S)) X = measure M (S \<inter> X)" by (simp add: emeasure_restricted measure_def) lemma (in finite_measure) finite_measure_restricted: "S \<in> sets M \<Longrightarrow> finite_measure (density M (indicator S))" by standard (simp add: emeasure_restricted) lemma emeasure_density_const: "A \<in> sets M \<Longrightarrow> emeasure (density M (\<lambda>_. c)) A = c * emeasure M A" by (auto simp: nn_integral_cmult_indicator emeasure_density) lemma measure_density_const: "A \<in> sets M \<Longrightarrow> c \<noteq> \<infinity> \<Longrightarrow> measure (density M (\<lambda>_. c)) A = enn2real c * measure M A" by (auto simp: emeasure_density_const measure_def enn2real_mult) lemma density_density_eq: "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> density (density M f) g = density M (\<lambda>x. f x * g x)" by (auto intro!: measure_eqI simp: emeasure_density nn_integral_density ac_simps) lemma distr_density_distr: assumes T: "T \<in> measurable M M'" and T': "T' \<in> measurable M' M" and inv: "\<forall>x\<in>space M. T' (T x) = x" assumes f: "f \<in> borel_measurable M'" shows "distr (density (distr M M' T) f) M T' = density M (f \<circ> T)" (is "?R = ?L") proof (rule measure_eqI) fix A assume A: "A \<in> sets ?R" { fix x assume "x \<in> space M" with sets.sets_into_space[OF A] have "indicator (T' -` A \<inter> space M') (T x) = (indicator A x :: ennreal)" using T inv by (auto simp: indicator_def measurable_space) } with A T T' f show "emeasure ?R A = emeasure ?L A" by (simp add: measurable_comp emeasure_density emeasure_distr nn_integral_distr measurable_sets cong: nn_integral_cong) qed simp lemma density_density_divide: fixes f g :: "'a \<Rightarrow> real" assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" shows "density (density M f) (\<lambda>x. g x / f x) = density M g" proof - have "density M g = density M (\<lambda>x. ennreal (f x) * ennreal (g x / f x))" using f g ac by (auto intro!: density_cong measurable_If simp: ennreal_mult[symmetric]) then show ?thesis using f g by (subst density_density_eq) auto qed lemma density_1: "density M (\<lambda>_. 1) = M" by (intro measure_eqI) (auto simp: emeasure_density) lemma emeasure_density_add: assumes X: "X \<in> sets M" assumes Mf[measurable]: "f \<in> borel_measurable M" assumes Mg[measurable]: "g \<in> borel_measurable M" shows "emeasure (density M f) X + emeasure (density M g) X = emeasure (density M (\<lambda>x. f x + g x)) X" using assms apply (subst (1 2 3) emeasure_density, simp_all) [] apply (subst nn_integral_add[symmetric], simp_all) [] apply (intro nn_integral_cong, simp split: split_indicator) done subsubsection \<open>Point measure\<close> definition\<^marker>\<open>tag important\<close> point_measure :: "'a set \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where "point_measure A f = density (count_space A) f" lemma shows space_point_measure: "space (point_measure A f) = A" and sets_point_measure: "sets (point_measure A f) = Pow A" by (auto simp: point_measure_def) lemma sets_point_measure_count_space[measurable_cong]: "sets (point_measure A f) = sets (count_space A)" by (simp add: sets_point_measure) lemma measurable_point_measure_eq1[simp]: "g \<in> measurable (point_measure A f) M \<longleftrightarrow> g \<in> A \<rightarrow> space M" unfolding point_measure_def by simp lemma measurable_point_measure_eq2_finite[simp]: "finite A \<Longrightarrow> g \<in> measurable M (point_measure A f) \<longleftrightarrow> (g \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. g -` {a} \<inter> space M \<in> sets M))" unfolding point_measure_def by (simp add: measurable_count_space_eq2) lemma simple_function_point_measure[simp]: "simple_function (point_measure A f) g \<longleftrightarrow> finite (g ` A)" by (simp add: point_measure_def) lemma emeasure_point_measure: assumes A: "finite {a\<in>X. 0 < f a}" "X \<subseteq> A" shows "emeasure (point_measure A f) X = (\<Sum>a|a\<in>X \<and> 0 < f a. f a)" proof - have "{a. (a \<in> X \<longrightarrow> a \<in> A \<and> 0 < f a) \<and> a \<in> X} = {a\<in>X. 0 < f a}" using \<open>X \<subseteq> A\<close> by auto with A show ?thesis by (simp add: emeasure_density nn_integral_count_space point_measure_def indicator_def of_bool_def) qed lemma emeasure_point_measure_finite: "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> emeasure (point_measure A f) X = (\<Sum>a\<in>X. f a)" by (subst emeasure_point_measure) (auto dest: finite_subset intro!: sum.mono_neutral_left simp: less_le) lemma emeasure_point_measure_finite2: "X \<subseteq> A \<Longrightarrow> finite X \<Longrightarrow> emeasure (point_measure A f) X = (\<Sum>a\<in>X. f a)" by (subst emeasure_point_measure) (auto dest: finite_subset intro!: sum.mono_neutral_left simp: less_le) lemma null_sets_point_measure_iff: "X \<in> null_sets (point_measure A f) \<longleftrightarrow> X \<subseteq> A \<and> (\<forall>x\<in>X. f x = 0)" by (auto simp: AE_count_space null_sets_density_iff point_measure_def) lemma AE_point_measure: "(AE x in point_measure A f. P x) \<longleftrightarrow> (\<forall>x\<in>A. 0 < f x \<longrightarrow> P x)" unfolding point_measure_def by (subst AE_density) (auto simp: AE_density AE_count_space point_measure_def) lemma nn_integral_point_measure: "finite {a\<in>A. 0 < f a \<and> 0 < g a} \<Longrightarrow> integral\<^sup>N (point_measure A f) g = (\<Sum>a|a\<in>A \<and> 0 < f a \<and> 0 < g a. f a * g a)" unfolding point_measure_def by (subst nn_integral_density) (simp_all add: nn_integral_density nn_integral_count_space ennreal_zero_less_mult_iff) lemma nn_integral_point_measure_finite: "finite A \<Longrightarrow> integral\<^sup>N (point_measure A f) g = (\<Sum>a\<in>A. f a * g a)" by (subst nn_integral_point_measure) (auto intro!: sum.mono_neutral_left simp: less_le) subsubsection \<open>Uniform measure\<close> definition\<^marker>\<open>tag important\<close> "uniform_measure M A = density M (\<lambda>x. indicator A x / emeasure M A)" lemma shows sets_uniform_measure[simp, measurable_cong]: "sets (uniform_measure M A) = sets M" and space_uniform_measure[simp]: "space (uniform_measure M A) = space M" by (auto simp: uniform_measure_def) lemma emeasure_uniform_measure[simp]: assumes A: "A \<in> sets M" and B: "B \<in> sets M" shows "emeasure (uniform_measure M A) B = emeasure M (A \<inter> B) / emeasure M A" proof - from A B have "emeasure (uniform_measure M A) B = (\<integral>\<^sup>+x. (1 / emeasure M A) * indicator (A \<inter> B) x \<partial>M)" by (auto simp add: uniform_measure_def emeasure_density divide_ennreal_def split: split_indicator intro!: nn_integral_cong) also have "\<dots> = emeasure M (A \<inter> B) / emeasure M A" using A B by (subst nn_integral_cmult_indicator) (simp_all add: sets.Int divide_ennreal_def mult.commute) finally show ?thesis . qed lemma measure_uniform_measure[simp]: assumes A: "emeasure M A \<noteq> 0" "emeasure M A \<noteq> \<infinity>" and B: "B \<in> sets M" shows "measure (uniform_measure M A) B = measure M (A \<inter> B) / measure M A" using emeasure_uniform_measure[OF emeasure_neq_0_sets[OF A(1)] B] A by (cases "emeasure M A" "emeasure M (A \<inter> B)" rule: ennreal2_cases) (simp_all add: measure_def divide_ennreal top_ennreal.rep_eq top_ereal_def ennreal_top_divide) lemma AE_uniform_measureI: "A \<in> sets M \<Longrightarrow> (AE x in M. x \<in> A \<longrightarrow> P x) \<Longrightarrow> (AE x in uniform_measure M A. P x)" unfolding uniform_measure_def by (auto simp: AE_density divide_ennreal_def) lemma emeasure_uniform_measure_1: "emeasure M S \<noteq> 0 \<Longrightarrow> emeasure M S \<noteq> \<infinity> \<Longrightarrow> emeasure (uniform_measure M S) S = 1" by (subst emeasure_uniform_measure) (simp_all add: emeasure_neq_0_sets emeasure_eq_ennreal_measure divide_ennreal zero_less_iff_neq_zero[symmetric]) lemma nn_integral_uniform_measure: assumes f[measurable]: "f \<in> borel_measurable M" and S[measurable]: "S \<in> sets M" shows "(\<integral>\<^sup>+x. f x \<partial>uniform_measure M S) = (\<integral>\<^sup>+x. f x * indicator S x \<partial>M) / emeasure M S" proof - { assume "emeasure M S = \<infinity>" then have ?thesis by (simp add: uniform_measure_def nn_integral_density f) } moreover { assume [simp]: "emeasure M S = 0" then have ae: "AE x in M. x \<notin> S" using sets.sets_into_space[OF S] by (subst AE_iff_measurable[OF _ refl]) (simp_all add: subset_eq cong: rev_conj_cong) from ae have "(\<integral>\<^sup>+ x. indicator S x / 0 * f x \<partial>M) = 0" by (subst nn_integral_0_iff_AE) auto moreover from ae have "(\<integral>\<^sup>+ x. f x * indicator S x \<partial>M) = 0" by (subst nn_integral_0_iff_AE) auto ultimately have ?thesis by (simp add: uniform_measure_def nn_integral_density f) } moreover have "emeasure M S \<noteq> 0 \<Longrightarrow> emeasure M S \<noteq> \<infinity> \<Longrightarrow> ?thesis" unfolding uniform_measure_def by (subst nn_integral_density) (auto simp: ennreal_times_divide f nn_integral_divide[symmetric] mult.commute) ultimately show ?thesis by blast qed lemma AE_uniform_measure: assumes "emeasure M A \<noteq> 0" "emeasure M A < \<infinity>" shows "(AE x in uniform_measure M A. P x) \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> P x)" proof - have "A \<in> sets M" using \<open>emeasure M A \<noteq> 0\<close> by (metis emeasure_notin_sets) moreover have "\<And>x. 0 < indicator A x / emeasure M A \<longleftrightarrow> x \<in> A" using assms by (cases "emeasure M A") (auto split: split_indicator simp: ennreal_zero_less_divide) ultimately show ?thesis unfolding uniform_measure_def by (simp add: AE_density) qed subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Null measure\<close> lemma null_measure_eq_density: "null_measure M = density M (\<lambda>_. 0)" by (intro measure_eqI) (simp_all add: emeasure_density) lemma nn_integral_null_measure[simp]: "(\<integral>\<^sup>+x. f x \<partial>null_measure M) = 0" by (auto simp add: nn_integral_def simple_integral_def SUP_constant bot_ennreal_def le_fun_def intro!: exI[of _ "\<lambda>x. 0"]) lemma density_null_measure[simp]: "density (null_measure M) f = null_measure M" proof (intro measure_eqI) fix A show "emeasure (density (null_measure M) f) A = emeasure (null_measure M) A" by (simp add: density_def) (simp only: null_measure_def[symmetric] emeasure_null_measure) qed simp subsubsection \<open>Uniform count measure\<close> definition\<^marker>\<open>tag important\<close> "uniform_count_measure A = point_measure A (\<lambda>x. 1 / card A)" lemma shows space_uniform_count_measure: "space (uniform_count_measure A) = A" and sets_uniform_count_measure: "sets (uniform_count_measure A) = Pow A" unfolding uniform_count_measure_def by (auto simp: space_point_measure sets_point_measure) lemma sets_uniform_count_measure_count_space[measurable_cong]: "sets (uniform_count_measure A) = sets (count_space A)" by (simp add: sets_uniform_count_measure) lemma emeasure_uniform_count_measure: "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> emeasure (uniform_count_measure A) X = card X / card A" by (simp add: emeasure_point_measure_finite uniform_count_measure_def divide_inverse ennreal_mult ennreal_of_nat_eq_real_of_nat) lemma measure_uniform_count_measure: "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> measure (uniform_count_measure A) X = card X / card A" by (simp add: emeasure_point_measure_finite uniform_count_measure_def measure_def enn2real_mult) lemma space_uniform_count_measure_empty_iff [simp]: "space (uniform_count_measure X) = {} \<longleftrightarrow> X = {}" by(simp add: space_uniform_count_measure) lemma sets_uniform_count_measure_eq_UNIV [simp]: "sets (uniform_count_measure UNIV) = UNIV \<longleftrightarrow> True" "UNIV = sets (uniform_count_measure UNIV) \<longleftrightarrow> True" by(simp_all add: sets_uniform_count_measure) subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Scaled measure\<close> lemma nn_integral_scale_measure: assumes f: "f \<in> borel_measurable M" shows "nn_integral (scale_measure r M) f = r * nn_integral M f" using f proof induction case (cong f g) thus ?case by(simp add: cong.hyps space_scale_measure cong: nn_integral_cong_simp) next case (mult f c) thus ?case by(simp add: nn_integral_cmult max_def mult.assoc mult.left_commute) next case (add f g) thus ?case by(simp add: nn_integral_add distrib_left) next case (seq U) thus ?case by(simp add: nn_integral_monotone_convergence_SUP SUP_mult_left_ennreal image_comp) qed simp end