theory ZF_Specific
imports Main
begin
chapter {* Isabelle/ZF \label{ch:zf} *}
section {* Type checking *}
text {*
The ZF logic is essentially untyped, so the concept of ``type
checking'' is performed as logical reasoning about set-membership
statements. A special method assists users in this task; a version
of this is already declared as a ``solver'' in the standard
Simplifier setup.
\begin{matharray}{rcl}
@{command_def (ZF) "print_tcset"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
@{method_def (ZF) typecheck} & : & @{text method} \\
@{attribute_def (ZF) TC} & : & @{text attribute} \\
\end{matharray}
\begin{rail}
'TC' (() | 'add' | 'del')
;
\end{rail}
\begin{description}
\item @{command (ZF) "print_tcset"} prints the collection of
typechecking rules of the current context.
\item @{method (ZF) typecheck} attempts to solve any pending
type-checking problems in subgoals.
\item @{attribute (ZF) TC} adds or deletes type-checking rules from
the context.
\end{description}
*}
section {* (Co)Inductive sets and datatypes *}
subsection {* Set definitions *}
text {*
In ZF everything is a set. The generic inductive package also
provides a specific view for ``datatype'' specifications.
Coinductive definitions are available in both cases, too.
\begin{matharray}{rcl}
@{command_def (ZF) "inductive"} & : & @{text "theory \<rightarrow> theory"} \\
@{command_def (ZF) "coinductive"} & : & @{text "theory \<rightarrow> theory"} \\
@{command_def (ZF) "datatype"} & : & @{text "theory \<rightarrow> theory"} \\
@{command_def (ZF) "codatatype"} & : & @{text "theory \<rightarrow> theory"} \\
\end{matharray}
\begin{rail}
('inductive' | 'coinductive') domains intros hints
;
domains: 'domains' (term + '+') ('<=' | subseteq) term
;
intros: 'intros' (thmdecl? prop +)
;
hints: monos? condefs? typeintros? typeelims?
;
monos: ('monos' thmrefs)?
;
condefs: ('con\_defs' thmrefs)?
;
typeintros: ('type\_intros' thmrefs)?
;
typeelims: ('type\_elims' thmrefs)?
;
\end{rail}
In the following syntax specification @{text "monos"}, @{text
typeintros}, and @{text typeelims} are the same as above.
\begin{rail}
('datatype' | 'codatatype') domain? (dtspec + 'and') hints
;
domain: ('<=' | subseteq) term
;
dtspec: term '=' (con + '|')
;
con: name ('(' (term ',' +) ')')?
;
hints: monos? typeintros? typeelims?
;
\end{rail}
See \cite{isabelle-ZF} for further information on inductive
definitions in ZF, but note that this covers the old-style theory
format.
*}
subsection {* Primitive recursive functions *}
text {*
\begin{matharray}{rcl}
@{command_def (ZF) "primrec"} & : & @{text "theory \<rightarrow> theory"} \\
\end{matharray}
\begin{rail}
'primrec' (thmdecl? prop +)
;
\end{rail}
*}
subsection {* Cases and induction: emulating tactic scripts *}
text {*
The following important tactical tools of Isabelle/ZF have been
ported to Isar. These should not be used in proper proof texts.
\begin{matharray}{rcl}
@{method_def (ZF) case_tac}@{text "\<^sup>*"} & : & @{text method} \\
@{method_def (ZF) induct_tac}@{text "\<^sup>*"} & : & @{text method} \\
@{method_def (ZF) ind_cases}@{text "\<^sup>*"} & : & @{text method} \\
@{command_def (ZF) "inductive_cases"} & : & @{text "theory \<rightarrow> theory"} \\
\end{matharray}
\begin{rail}
('case\_tac' | 'induct\_tac') goalspec? name
;
indcases (prop +)
;
inductivecases (thmdecl? (prop +) + 'and')
;
\end{rail}
*}
end