src/HOLCF/Cprod.thy
author wenzelm
Fri, 21 May 2010 18:10:19 +0200
changeset 37043 f8e24980af05
parent 36452 d37c6eed8117
child 39974 b525988432e9
permissions -rw-r--r--
more robust Position.setmp_thread_data, independently of Output.debugging (essentially reverts f9ec18f7c0f6, which was motivated by clean exception_trace, but without transaction positions the Isabelle_Process protocol breaks down);

(*  Title:      HOLCF/Cprod.thy
    Author:     Franz Regensburger
*)

header {* The cpo of cartesian products *}

theory Cprod
imports Bifinite
begin

default_sort cpo

subsection {* Continuous case function for unit type *}

definition
  unit_when :: "'a \<rightarrow> unit \<rightarrow> 'a" where
  "unit_when = (\<Lambda> a _. a)"

translations
  "\<Lambda>(). t" == "CONST unit_when\<cdot>t"

lemma unit_when [simp]: "unit_when\<cdot>a\<cdot>u = a"
by (simp add: unit_when_def)

subsection {* Continuous version of split function *}

definition
  csplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a * 'b) \<rightarrow> 'c" where
  "csplit = (\<Lambda> f p. f\<cdot>(fst p)\<cdot>(snd p))"

translations
  "\<Lambda>(CONST Pair x y). t" == "CONST csplit\<cdot>(\<Lambda> x y. t)"


subsection {* Convert all lemmas to the continuous versions *}

lemma csplit1 [simp]: "csplit\<cdot>f\<cdot>\<bottom> = f\<cdot>\<bottom>\<cdot>\<bottom>"
by (simp add: csplit_def)

lemma csplit_Pair [simp]: "csplit\<cdot>f\<cdot>(x, y) = f\<cdot>x\<cdot>y"
by (simp add: csplit_def)

end