(* Title: HOL/Divides.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1999 University of Cambridge
*)
section \<open>The division operators div and mod\<close>
theory Divides
imports Parity
begin
subsection \<open>Abstract division in commutative semirings.\<close>
class div = dvd + divide +
fixes mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70)
class semiring_div = semidom + div +
assumes mod_div_equality: "a div b * b + a mod b = a"
and div_by_0 [simp]: "a div 0 = 0"
and div_0 [simp]: "0 div a = 0"
and div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
begin
subclass algebraic_semidom
proof
fix b a
assume "b \<noteq> 0"
then show "a * b div b = a"
using div_mult_self1 [of b 0 a] by (simp add: ac_simps)
qed simp
lemma div_by_1:
"a div 1 = a"
by (fact divide_1)
lemma div_mult_self1_is_id:
"b \<noteq> 0 \<Longrightarrow> b * a div b = a"
by (fact nonzero_mult_divide_cancel_left)
lemma div_mult_self2_is_id:
"b \<noteq> 0 \<Longrightarrow> a * b div b = a"
by (fact nonzero_mult_divide_cancel_right)
text \<open>@{const divide} and @{const mod}\<close>
lemma mod_div_equality2: "b * (a div b) + a mod b = a"
unfolding mult.commute [of b]
by (rule mod_div_equality)
lemma mod_div_equality': "a mod b + a div b * b = a"
using mod_div_equality [of a b]
by (simp only: ac_simps)
lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c"
by (simp add: mod_div_equality)
lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c"
by (simp add: mod_div_equality2)
lemma mod_by_0 [simp]: "a mod 0 = a"
using mod_div_equality [of a zero] by simp
lemma mod_0 [simp]: "0 mod a = 0"
using mod_div_equality [of zero a] div_0 by simp
lemma div_mult_self2 [simp]:
assumes "b \<noteq> 0"
shows "(a + b * c) div b = c + a div b"
using assms div_mult_self1 [of b a c] by (simp add: mult.commute)
lemma div_mult_self3 [simp]:
assumes "b \<noteq> 0"
shows "(c * b + a) div b = c + a div b"
using assms by (simp add: add.commute)
lemma div_mult_self4 [simp]:
assumes "b \<noteq> 0"
shows "(b * c + a) div b = c + a div b"
using assms by (simp add: add.commute)
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
proof (cases "b = 0")
case True then show ?thesis by simp
next
case False
have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
by (simp add: mod_div_equality)
also from False div_mult_self1 [of b a c] have
"\<dots> = (c + a div b) * b + (a + c * b) mod b"
by (simp add: algebra_simps)
finally have "a = a div b * b + (a + c * b) mod b"
by (simp add: add.commute [of a] add.assoc distrib_right)
then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
by (simp add: mod_div_equality)
then show ?thesis by simp
qed
lemma mod_mult_self2 [simp]:
"(a + b * c) mod b = a mod b"
by (simp add: mult.commute [of b])
lemma mod_mult_self3 [simp]:
"(c * b + a) mod b = a mod b"
by (simp add: add.commute)
lemma mod_mult_self4 [simp]:
"(b * c + a) mod b = a mod b"
by (simp add: add.commute)
lemma mod_mult_self1_is_0 [simp]:
"b * a mod b = 0"
using mod_mult_self2 [of 0 b a] by simp
lemma mod_mult_self2_is_0 [simp]:
"a * b mod b = 0"
using mod_mult_self1 [of 0 a b] by simp
lemma mod_by_1 [simp]:
"a mod 1 = 0"
proof -
from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp
then have "a + a mod 1 = a + 0" by simp
then show ?thesis by (rule add_left_imp_eq)
qed
lemma mod_self [simp]:
"a mod a = 0"
using mod_mult_self2_is_0 [of 1] by simp
lemma div_add_self1 [simp]:
assumes "b \<noteq> 0"
shows "(b + a) div b = a div b + 1"
using assms div_mult_self1 [of b a 1] by (simp add: add.commute)
lemma div_add_self2 [simp]:
assumes "b \<noteq> 0"
shows "(a + b) div b = a div b + 1"
using assms div_add_self1 [of b a] by (simp add: add.commute)
lemma mod_add_self1 [simp]:
"(b + a) mod b = a mod b"
using mod_mult_self1 [of a 1 b] by (simp add: add.commute)
lemma mod_add_self2 [simp]:
"(a + b) mod b = a mod b"
using mod_mult_self1 [of a 1 b] by simp
lemma mod_div_decomp:
fixes a b
obtains q r where "q = a div b" and "r = a mod b"
and "a = q * b + r"
proof -
from mod_div_equality have "a = a div b * b + a mod b" by simp
moreover have "a div b = a div b" ..
moreover have "a mod b = a mod b" ..
note that ultimately show thesis by blast
qed
lemma dvd_imp_mod_0 [simp]:
assumes "a dvd b"
shows "b mod a = 0"
proof -
from assms obtain c where "b = a * c" ..
then have "b mod a = a * c mod a" by simp
then show "b mod a = 0" by simp
qed
lemma mod_eq_0_iff_dvd:
"a mod b = 0 \<longleftrightarrow> b dvd a"
proof
assume "b dvd a"
then show "a mod b = 0" by simp
next
assume "a mod b = 0"
with mod_div_equality [of a b] have "a div b * b = a" by simp
then have "a = b * (a div b)" by (simp add: ac_simps)
then show "b dvd a" ..
qed
lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]:
"a dvd b \<longleftrightarrow> b mod a = 0"
by (simp add: mod_eq_0_iff_dvd)
lemma mod_div_trivial [simp]:
"a mod b div b = 0"
proof (cases "b = 0")
assume "b = 0"
thus ?thesis by simp
next
assume "b \<noteq> 0"
hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
by (rule div_mult_self1 [symmetric])
also have "\<dots> = a div b"
by (simp only: mod_div_equality')
also have "\<dots> = a div b + 0"
by simp
finally show ?thesis
by (rule add_left_imp_eq)
qed
lemma mod_mod_trivial [simp]:
"a mod b mod b = a mod b"
proof -
have "a mod b mod b = (a mod b + a div b * b) mod b"
by (simp only: mod_mult_self1)
also have "\<dots> = a mod b"
by (simp only: mod_div_equality')
finally show ?thesis .
qed
lemma dvd_mod_imp_dvd:
assumes "k dvd m mod n" and "k dvd n"
shows "k dvd m"
proof -
from assms have "k dvd (m div n) * n + m mod n"
by (simp only: dvd_add dvd_mult)
then show ?thesis by (simp add: mod_div_equality)
qed
text \<open>Addition respects modular equivalence.\<close>
lemma mod_add_left_eq: \<comment> \<open>FIXME reorient\<close>
"(a + b) mod c = (a mod c + b) mod c"
proof -
have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a mod c + b + a div c * c) mod c"
by (simp only: ac_simps)
also have "\<dots> = (a mod c + b) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_add_right_eq: \<comment> \<open>FIXME reorient\<close>
"(a + b) mod c = (a + b mod c) mod c"
proof -
have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a + b mod c + b div c * c) mod c"
by (simp only: ac_simps)
also have "\<dots> = (a + b mod c) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_add_eq: \<comment> \<open>FIXME reorient\<close>
"(a + b) mod c = (a mod c + b mod c) mod c"
by (rule trans [OF mod_add_left_eq mod_add_right_eq])
lemma mod_add_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a + b) mod c = (a' + b') mod c"
proof -
have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
unfolding assms ..
thus ?thesis
by (simp only: mod_add_eq [symmetric])
qed
text \<open>Multiplication respects modular equivalence.\<close>
lemma mod_mult_left_eq: \<comment> \<open>FIXME reorient\<close>
"(a * b) mod c = ((a mod c) * b) mod c"
proof -
have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
by (simp only: algebra_simps)
also have "\<dots> = (a mod c * b) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_mult_right_eq: \<comment> \<open>FIXME reorient\<close>
"(a * b) mod c = (a * (b mod c)) mod c"
proof -
have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c"
by (simp only: mod_div_equality)
also have "\<dots> = (a * (b mod c) + a * (b div c) * c) mod c"
by (simp only: algebra_simps)
also have "\<dots> = (a * (b mod c)) mod c"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_mult_eq: \<comment> \<open>FIXME reorient\<close>
"(a * b) mod c = ((a mod c) * (b mod c)) mod c"
by (rule trans [OF mod_mult_left_eq mod_mult_right_eq])
lemma mod_mult_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a * b) mod c = (a' * b') mod c"
proof -
have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
unfolding assms ..
thus ?thesis
by (simp only: mod_mult_eq [symmetric])
qed
text \<open>Exponentiation respects modular equivalence.\<close>
lemma power_mod: "(a mod b) ^ n mod b = a ^ n mod b"
apply (induct n, simp_all)
apply (rule mod_mult_right_eq [THEN trans])
apply (simp (no_asm_simp))
apply (rule mod_mult_eq [symmetric])
done
lemma mod_mod_cancel:
assumes "c dvd b"
shows "a mod b mod c = a mod c"
proof -
from \<open>c dvd b\<close> obtain k where "b = c * k"
by (rule dvdE)
have "a mod b mod c = a mod (c * k) mod c"
by (simp only: \<open>b = c * k\<close>)
also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
by (simp only: mod_mult_self1)
also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
by (simp only: ac_simps)
also have "\<dots> = a mod c"
by (simp only: mod_div_equality)
finally show ?thesis .
qed
lemma div_mult_mult2 [simp]:
"c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
by (drule div_mult_mult1) (simp add: mult.commute)
lemma div_mult_mult1_if [simp]:
"(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
by simp_all
lemma mod_mult_mult1:
"(c * a) mod (c * b) = c * (a mod b)"
proof (cases "c = 0")
case True then show ?thesis by simp
next
case False
from mod_div_equality
have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
= c * a + c * (a mod b)" by (simp add: algebra_simps)
with mod_div_equality show ?thesis by simp
qed
lemma mod_mult_mult2:
"(a * c) mod (b * c) = (a mod b) * c"
using mod_mult_mult1 [of c a b] by (simp add: mult.commute)
lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)"
by (fact mod_mult_mult2 [symmetric])
lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)"
by (fact mod_mult_mult1 [symmetric])
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
unfolding dvd_def by (auto simp add: mod_mult_mult1)
lemma dvd_mod_iff: "k dvd n \<Longrightarrow> k dvd (m mod n) \<longleftrightarrow> k dvd m"
by (blast intro: dvd_mod_imp_dvd dvd_mod)
end
class ring_div = comm_ring_1 + semiring_div
begin
subclass idom_divide ..
text \<open>Negation respects modular equivalence.\<close>
lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b"
proof -
have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
by (simp only: mod_div_equality)
also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
by (simp add: ac_simps)
also have "\<dots> = (- (a mod b)) mod b"
by (rule mod_mult_self1)
finally show ?thesis .
qed
lemma mod_minus_cong:
assumes "a mod b = a' mod b"
shows "(- a) mod b = (- a') mod b"
proof -
have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
unfolding assms ..
thus ?thesis
by (simp only: mod_minus_eq [symmetric])
qed
text \<open>Subtraction respects modular equivalence.\<close>
lemma mod_diff_left_eq:
"(a - b) mod c = (a mod c - b) mod c"
using mod_add_cong [of a c "a mod c" "- b" "- b"] by simp
lemma mod_diff_right_eq:
"(a - b) mod c = (a - b mod c) mod c"
using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp
lemma mod_diff_eq:
"(a - b) mod c = (a mod c - b mod c) mod c"
using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp
lemma mod_diff_cong:
assumes "a mod c = a' mod c"
assumes "b mod c = b' mod c"
shows "(a - b) mod c = (a' - b') mod c"
using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"] by simp
lemma dvd_neg_div: "y dvd x \<Longrightarrow> -x div y = - (x div y)"
apply (case_tac "y = 0") apply simp
apply (auto simp add: dvd_def)
apply (subgoal_tac "-(y * k) = y * - k")
apply (simp only:)
apply (erule div_mult_self1_is_id)
apply simp
done
lemma dvd_div_neg: "y dvd x \<Longrightarrow> x div -y = - (x div y)"
apply (case_tac "y = 0") apply simp
apply (auto simp add: dvd_def)
apply (subgoal_tac "y * k = -y * -k")
apply (erule ssubst, rule div_mult_self1_is_id)
apply simp
apply simp
done
lemma div_diff [simp]:
"z dvd x \<Longrightarrow> z dvd y \<Longrightarrow> (x - y) div z = x div z - y div z"
using div_add [of _ _ "- y"] by (simp add: dvd_neg_div)
lemma div_minus_minus [simp]: "(-a) div (-b) = a div b"
using div_mult_mult1 [of "- 1" a b]
unfolding neg_equal_0_iff_equal by simp
lemma mod_minus_minus [simp]: "(-a) mod (-b) = - (a mod b)"
using mod_mult_mult1 [of "- 1" a b] by simp
lemma div_minus_right: "a div (-b) = (-a) div b"
using div_minus_minus [of "-a" b] by simp
lemma mod_minus_right: "a mod (-b) = - ((-a) mod b)"
using mod_minus_minus [of "-a" b] by simp
lemma div_minus1_right [simp]: "a div (-1) = -a"
using div_minus_right [of a 1] by simp
lemma mod_minus1_right [simp]: "a mod (-1) = 0"
using mod_minus_right [of a 1] by simp
lemma minus_mod_self2 [simp]:
"(a - b) mod b = a mod b"
by (simp add: mod_diff_right_eq)
lemma minus_mod_self1 [simp]:
"(b - a) mod b = - a mod b"
using mod_add_self2 [of "- a" b] by simp
end
subsubsection \<open>Parity and division\<close>
class semiring_div_parity = semiring_div + comm_semiring_1_cancel + numeral +
assumes parity: "a mod 2 = 0 \<or> a mod 2 = 1"
assumes one_mod_two_eq_one [simp]: "1 mod 2 = 1"
assumes zero_not_eq_two: "0 \<noteq> 2"
begin
lemma parity_cases [case_names even odd]:
assumes "a mod 2 = 0 \<Longrightarrow> P"
assumes "a mod 2 = 1 \<Longrightarrow> P"
shows P
using assms parity by blast
lemma one_div_two_eq_zero [simp]:
"1 div 2 = 0"
proof (cases "2 = 0")
case True then show ?thesis by simp
next
case False
from mod_div_equality have "1 div 2 * 2 + 1 mod 2 = 1" .
with one_mod_two_eq_one have "1 div 2 * 2 + 1 = 1" by simp
then have "1 div 2 * 2 = 0" by (simp add: ac_simps add_left_imp_eq del: mult_eq_0_iff)
then have "1 div 2 = 0 \<or> 2 = 0" by simp
with False show ?thesis by auto
qed
lemma not_mod_2_eq_0_eq_1 [simp]:
"a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1"
by (cases a rule: parity_cases) simp_all
lemma not_mod_2_eq_1_eq_0 [simp]:
"a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0"
by (cases a rule: parity_cases) simp_all
subclass semiring_parity
proof (unfold_locales, unfold dvd_eq_mod_eq_0 not_mod_2_eq_0_eq_1)
show "1 mod 2 = 1"
by (fact one_mod_two_eq_one)
next
fix a b
assume "a mod 2 = 1"
moreover assume "b mod 2 = 1"
ultimately show "(a + b) mod 2 = 0"
using mod_add_eq [of a b 2] by simp
next
fix a b
assume "(a * b) mod 2 = 0"
then have "(a mod 2) * (b mod 2) = 0"
by (cases "a mod 2 = 0") (simp_all add: mod_mult_eq [of a b 2])
then show "a mod 2 = 0 \<or> b mod 2 = 0"
by (rule divisors_zero)
next
fix a
assume "a mod 2 = 1"
then have "a = a div 2 * 2 + 1" using mod_div_equality [of a 2] by simp
then show "\<exists>b. a = b + 1" ..
qed
lemma even_iff_mod_2_eq_zero:
"even a \<longleftrightarrow> a mod 2 = 0"
by (fact dvd_eq_mod_eq_0)
lemma even_succ_div_two [simp]:
"even a \<Longrightarrow> (a + 1) div 2 = a div 2"
by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero)
lemma odd_succ_div_two [simp]:
"odd a \<Longrightarrow> (a + 1) div 2 = a div 2 + 1"
by (auto elim!: oddE simp add: zero_not_eq_two [symmetric] add.assoc)
lemma even_two_times_div_two:
"even a \<Longrightarrow> 2 * (a div 2) = a"
by (fact dvd_mult_div_cancel)
lemma odd_two_times_div_two_succ [simp]:
"odd a \<Longrightarrow> 2 * (a div 2) + 1 = a"
using mod_div_equality2 [of 2 a] by (simp add: even_iff_mod_2_eq_zero)
end
subsection \<open>Generic numeral division with a pragmatic type class\<close>
text \<open>
The following type class contains everything necessary to formulate
a division algorithm in ring structures with numerals, restricted
to its positive segments. This is its primary motiviation, and it
could surely be formulated using a more fine-grained, more algebraic
and less technical class hierarchy.
\<close>
class semiring_numeral_div = semiring_div + comm_semiring_1_cancel + linordered_semidom +
assumes div_less: "0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a div b = 0"
and mod_less: " 0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a mod b = a"
and div_positive: "0 < b \<Longrightarrow> b \<le> a \<Longrightarrow> a div b > 0"
and mod_less_eq_dividend: "0 \<le> a \<Longrightarrow> a mod b \<le> a"
and pos_mod_bound: "0 < b \<Longrightarrow> a mod b < b"
and pos_mod_sign: "0 < b \<Longrightarrow> 0 \<le> a mod b"
and mod_mult2_eq: "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b"
and div_mult2_eq: "0 \<le> c \<Longrightarrow> a div (b * c) = a div b div c"
assumes discrete: "a < b \<longleftrightarrow> a + 1 \<le> b"
fixes divmod :: "num \<Rightarrow> num \<Rightarrow> 'a \<times> 'a"
and divmod_step :: "num \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<times> 'a"
assumes divmod_def: "divmod m n = (numeral m div numeral n, numeral m mod numeral n)"
and divmod_step_def: "divmod_step l qr = (let (q, r) = qr
in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
else (2 * q, r))"
\<comment> \<open>These are conceptually definitions but force generated code
to be monomorphic wrt. particular instances of this class which
yields a significant speedup.\<close>
begin
lemma mult_div_cancel:
"b * (a div b) = a - a mod b"
proof -
have "b * (a div b) + a mod b = a"
using mod_div_equality [of a b] by (simp add: ac_simps)
then have "b * (a div b) + a mod b - a mod b = a - a mod b"
by simp
then show ?thesis
by simp
qed
subclass semiring_div_parity
proof
fix a
show "a mod 2 = 0 \<or> a mod 2 = 1"
proof (rule ccontr)
assume "\<not> (a mod 2 = 0 \<or> a mod 2 = 1)"
then have "a mod 2 \<noteq> 0" and "a mod 2 \<noteq> 1" by simp_all
have "0 < 2" by simp
with pos_mod_bound pos_mod_sign have "0 \<le> a mod 2" "a mod 2 < 2" by simp_all
with \<open>a mod 2 \<noteq> 0\<close> have "0 < a mod 2" by simp
with discrete have "1 \<le> a mod 2" by simp
with \<open>a mod 2 \<noteq> 1\<close> have "1 < a mod 2" by simp
with discrete have "2 \<le> a mod 2" by simp
with \<open>a mod 2 < 2\<close> show False by simp
qed
next
show "1 mod 2 = 1"
by (rule mod_less) simp_all
next
show "0 \<noteq> 2"
by simp
qed
lemma divmod_digit_1:
assumes "0 \<le> a" "0 < b" and "b \<le> a mod (2 * b)"
shows "2 * (a div (2 * b)) + 1 = a div b" (is "?P")
and "a mod (2 * b) - b = a mod b" (is "?Q")
proof -
from assms mod_less_eq_dividend [of a "2 * b"] have "b \<le> a"
by (auto intro: trans)
with \<open>0 < b\<close> have "0 < a div b" by (auto intro: div_positive)
then have [simp]: "1 \<le> a div b" by (simp add: discrete)
with \<open>0 < b\<close> have mod_less: "a mod b < b" by (simp add: pos_mod_bound)
define w where "w = a div b mod 2"
with parity have w_exhaust: "w = 0 \<or> w = 1" by auto
have mod_w: "a mod (2 * b) = a mod b + b * w"
by (simp add: w_def mod_mult2_eq ac_simps)
from assms w_exhaust have "w = 1"
by (auto simp add: mod_w) (insert mod_less, auto)
with mod_w have mod: "a mod (2 * b) = a mod b + b" by simp
have "2 * (a div (2 * b)) = a div b - w"
by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps)
with \<open>w = 1\<close> have div: "2 * (a div (2 * b)) = a div b - 1" by simp
then show ?P and ?Q
by (simp_all add: div mod add_implies_diff [symmetric])
qed
lemma divmod_digit_0:
assumes "0 < b" and "a mod (2 * b) < b"
shows "2 * (a div (2 * b)) = a div b" (is "?P")
and "a mod (2 * b) = a mod b" (is "?Q")
proof -
define w where "w = a div b mod 2"
with parity have w_exhaust: "w = 0 \<or> w = 1" by auto
have mod_w: "a mod (2 * b) = a mod b + b * w"
by (simp add: w_def mod_mult2_eq ac_simps)
moreover have "b \<le> a mod b + b"
proof -
from \<open>0 < b\<close> pos_mod_sign have "0 \<le> a mod b" by blast
then have "0 + b \<le> a mod b + b" by (rule add_right_mono)
then show ?thesis by simp
qed
moreover note assms w_exhaust
ultimately have "w = 0" by auto
with mod_w have mod: "a mod (2 * b) = a mod b" by simp
have "2 * (a div (2 * b)) = a div b - w"
by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps)
with \<open>w = 0\<close> have div: "2 * (a div (2 * b)) = a div b" by simp
then show ?P and ?Q
by (simp_all add: div mod)
qed
lemma fst_divmod:
"fst (divmod m n) = numeral m div numeral n"
by (simp add: divmod_def)
lemma snd_divmod:
"snd (divmod m n) = numeral m mod numeral n"
by (simp add: divmod_def)
text \<open>
This is a formulation of one step (referring to one digit position)
in school-method division: compare the dividend at the current
digit position with the remainder from previous division steps
and evaluate accordingly.
\<close>
lemma divmod_step_eq [simp]:
"divmod_step l (q, r) = (if numeral l \<le> r
then (2 * q + 1, r - numeral l) else (2 * q, r))"
by (simp add: divmod_step_def)
text \<open>
This is a formulation of school-method division.
If the divisor is smaller than the dividend, terminate.
If not, shift the dividend to the right until termination
occurs and then reiterate single division steps in the
opposite direction.
\<close>
lemma divmod_divmod_step:
"divmod m n = (if m < n then (0, numeral m)
else divmod_step n (divmod m (Num.Bit0 n)))"
proof (cases "m < n")
case True then have "numeral m < numeral n" by simp
then show ?thesis
by (simp add: prod_eq_iff div_less mod_less fst_divmod snd_divmod)
next
case False
have "divmod m n =
divmod_step n (numeral m div (2 * numeral n),
numeral m mod (2 * numeral n))"
proof (cases "numeral n \<le> numeral m mod (2 * numeral n)")
case True
with divmod_step_eq
have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) =
(2 * (numeral m div (2 * numeral n)) + 1, numeral m mod (2 * numeral n) - numeral n)"
by simp
moreover from True divmod_digit_1 [of "numeral m" "numeral n"]
have "2 * (numeral m div (2 * numeral n)) + 1 = numeral m div numeral n"
and "numeral m mod (2 * numeral n) - numeral n = numeral m mod numeral n"
by simp_all
ultimately show ?thesis by (simp only: divmod_def)
next
case False then have *: "numeral m mod (2 * numeral n) < numeral n"
by (simp add: not_le)
with divmod_step_eq
have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) =
(2 * (numeral m div (2 * numeral n)), numeral m mod (2 * numeral n))"
by auto
moreover from * divmod_digit_0 [of "numeral n" "numeral m"]
have "2 * (numeral m div (2 * numeral n)) = numeral m div numeral n"
and "numeral m mod (2 * numeral n) = numeral m mod numeral n"
by (simp_all only: zero_less_numeral)
ultimately show ?thesis by (simp only: divmod_def)
qed
then have "divmod m n =
divmod_step n (numeral m div numeral (Num.Bit0 n),
numeral m mod numeral (Num.Bit0 n))"
by (simp only: numeral.simps distrib mult_1)
then have "divmod m n = divmod_step n (divmod m (Num.Bit0 n))"
by (simp add: divmod_def)
with False show ?thesis by simp
qed
text \<open>The division rewrite proper -- first, trivial results involving \<open>1\<close>\<close>
lemma divmod_trivial [simp]:
"divmod Num.One Num.One = (numeral Num.One, 0)"
"divmod (Num.Bit0 m) Num.One = (numeral (Num.Bit0 m), 0)"
"divmod (Num.Bit1 m) Num.One = (numeral (Num.Bit1 m), 0)"
"divmod num.One (num.Bit0 n) = (0, Numeral1)"
"divmod num.One (num.Bit1 n) = (0, Numeral1)"
using divmod_divmod_step [of "Num.One"] by (simp_all add: divmod_def)
text \<open>Division by an even number is a right-shift\<close>
lemma divmod_cancel [simp]:
"divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r))" (is ?P)
"divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r + 1))" (is ?Q)
proof -
have *: "\<And>q. numeral (Num.Bit0 q) = 2 * numeral q"
"\<And>q. numeral (Num.Bit1 q) = 2 * numeral q + 1"
by (simp_all only: numeral_mult numeral.simps distrib) simp_all
have "1 div 2 = 0" "1 mod 2 = 1" by (auto intro: div_less mod_less)
then show ?P and ?Q
by (simp_all add: fst_divmod snd_divmod prod_eq_iff split_def * [of m] * [of n] mod_mult_mult1
div_mult2_eq [of _ _ 2] mod_mult2_eq [of _ _ 2]
add.commute del: numeral_times_numeral)
qed
text \<open>The really hard work\<close>
lemma divmod_steps [simp]:
"divmod (num.Bit0 m) (num.Bit1 n) =
(if m \<le> n then (0, numeral (num.Bit0 m))
else divmod_step (num.Bit1 n)
(divmod (num.Bit0 m)
(num.Bit0 (num.Bit1 n))))"
"divmod (num.Bit1 m) (num.Bit1 n) =
(if m < n then (0, numeral (num.Bit1 m))
else divmod_step (num.Bit1 n)
(divmod (num.Bit1 m)
(num.Bit0 (num.Bit1 n))))"
by (simp_all add: divmod_divmod_step)
lemmas divmod_algorithm_code = divmod_step_eq divmod_trivial divmod_cancel divmod_steps
text \<open>Special case: divisibility\<close>
definition divides_aux :: "'a \<times> 'a \<Rightarrow> bool"
where
"divides_aux qr \<longleftrightarrow> snd qr = 0"
lemma divides_aux_eq [simp]:
"divides_aux (q, r) \<longleftrightarrow> r = 0"
by (simp add: divides_aux_def)
lemma dvd_numeral_simp [simp]:
"numeral m dvd numeral n \<longleftrightarrow> divides_aux (divmod n m)"
by (simp add: divmod_def mod_eq_0_iff_dvd)
text \<open>Generic computation of quotient and remainder\<close>
lemma numeral_div_numeral [simp]:
"numeral k div numeral l = fst (divmod k l)"
by (simp add: fst_divmod)
lemma numeral_mod_numeral [simp]:
"numeral k mod numeral l = snd (divmod k l)"
by (simp add: snd_divmod)
lemma one_div_numeral [simp]:
"1 div numeral n = fst (divmod num.One n)"
by (simp add: fst_divmod)
lemma one_mod_numeral [simp]:
"1 mod numeral n = snd (divmod num.One n)"
by (simp add: snd_divmod)
end
subsection \<open>Division on @{typ nat}\<close>
context
begin
text \<open>
We define @{const divide} and @{const mod} on @{typ nat} by means
of a characteristic relation with two input arguments
@{term "m::nat"}, @{term "n::nat"} and two output arguments
@{term "q::nat"}(uotient) and @{term "r::nat"}(emainder).
\<close>
definition divmod_nat_rel :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where
"divmod_nat_rel m n qr \<longleftrightarrow>
m = fst qr * n + snd qr \<and>
(if n = 0 then fst qr = 0 else if n > 0 then 0 \<le> snd qr \<and> snd qr < n else n < snd qr \<and> snd qr \<le> 0)"
text \<open>@{const divmod_nat_rel} is total:\<close>
qualified lemma divmod_nat_rel_ex:
obtains q r where "divmod_nat_rel m n (q, r)"
proof (cases "n = 0")
case True with that show thesis
by (auto simp add: divmod_nat_rel_def)
next
case False
have "\<exists>q r. m = q * n + r \<and> r < n"
proof (induct m)
case 0 with \<open>n \<noteq> 0\<close>
have "(0::nat) = 0 * n + 0 \<and> 0 < n" by simp
then show ?case by blast
next
case (Suc m) then obtain q' r'
where m: "m = q' * n + r'" and n: "r' < n" by auto
then show ?case proof (cases "Suc r' < n")
case True
from m n have "Suc m = q' * n + Suc r'" by simp
with True show ?thesis by blast
next
case False then have "n \<le> Suc r'" by auto
moreover from n have "Suc r' \<le> n" by auto
ultimately have "n = Suc r'" by auto
with m have "Suc m = Suc q' * n + 0" by simp
with \<open>n \<noteq> 0\<close> show ?thesis by blast
qed
qed
with that show thesis
using \<open>n \<noteq> 0\<close> by (auto simp add: divmod_nat_rel_def)
qed
text \<open>@{const divmod_nat_rel} is injective:\<close>
qualified lemma divmod_nat_rel_unique:
assumes "divmod_nat_rel m n qr"
and "divmod_nat_rel m n qr'"
shows "qr = qr'"
proof (cases "n = 0")
case True with assms show ?thesis
by (cases qr, cases qr')
(simp add: divmod_nat_rel_def)
next
case False
have aux: "\<And>q r q' r'. q' * n + r' = q * n + r \<Longrightarrow> r < n \<Longrightarrow> q' \<le> (q::nat)"
apply (rule leI)
apply (subst less_iff_Suc_add)
apply (auto simp add: add_mult_distrib)
done
from \<open>n \<noteq> 0\<close> assms have *: "fst qr = fst qr'"
by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym)
with assms have "snd qr = snd qr'"
by (simp add: divmod_nat_rel_def)
with * show ?thesis by (cases qr, cases qr') simp
qed
text \<open>
We instantiate divisibility on the natural numbers by
means of @{const divmod_nat_rel}:
\<close>
qualified definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
"divmod_nat m n = (THE qr. divmod_nat_rel m n qr)"
qualified lemma divmod_nat_rel_divmod_nat:
"divmod_nat_rel m n (divmod_nat m n)"
proof -
from divmod_nat_rel_ex
obtain qr where rel: "divmod_nat_rel m n qr" .
then show ?thesis
by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique)
qed
qualified lemma divmod_nat_unique:
assumes "divmod_nat_rel m n qr"
shows "divmod_nat m n = qr"
using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat)
qualified lemma divmod_nat_zero: "divmod_nat m 0 = (0, m)"
by (simp add: Divides.divmod_nat_unique divmod_nat_rel_def)
qualified lemma divmod_nat_zero_left: "divmod_nat 0 n = (0, 0)"
by (simp add: Divides.divmod_nat_unique divmod_nat_rel_def)
qualified lemma divmod_nat_base: "m < n \<Longrightarrow> divmod_nat m n = (0, m)"
by (simp add: divmod_nat_unique divmod_nat_rel_def)
qualified lemma divmod_nat_step:
assumes "0 < n" and "n \<le> m"
shows "divmod_nat m n = apfst Suc (divmod_nat (m - n) n)"
proof (rule divmod_nat_unique)
have "divmod_nat_rel (m - n) n (divmod_nat (m - n) n)"
by (fact divmod_nat_rel_divmod_nat)
then show "divmod_nat_rel m n (apfst Suc (divmod_nat (m - n) n))"
unfolding divmod_nat_rel_def using assms by auto
qed
end
instantiation nat :: semiring_div
begin
definition divide_nat where
div_nat_def: "m div n = fst (Divides.divmod_nat m n)"
definition mod_nat where
"m mod n = snd (Divides.divmod_nat m n)"
lemma fst_divmod_nat [simp]:
"fst (Divides.divmod_nat m n) = m div n"
by (simp add: div_nat_def)
lemma snd_divmod_nat [simp]:
"snd (Divides.divmod_nat m n) = m mod n"
by (simp add: mod_nat_def)
lemma divmod_nat_div_mod:
"Divides.divmod_nat m n = (m div n, m mod n)"
by (simp add: prod_eq_iff)
lemma div_nat_unique:
assumes "divmod_nat_rel m n (q, r)"
shows "m div n = q"
using assms by (auto dest!: Divides.divmod_nat_unique simp add: prod_eq_iff)
lemma mod_nat_unique:
assumes "divmod_nat_rel m n (q, r)"
shows "m mod n = r"
using assms by (auto dest!: Divides.divmod_nat_unique simp add: prod_eq_iff)
lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)"
using Divides.divmod_nat_rel_divmod_nat by (simp add: divmod_nat_div_mod)
text \<open>The ''recursion'' equations for @{const divide} and @{const mod}\<close>
lemma div_less [simp]:
fixes m n :: nat
assumes "m < n"
shows "m div n = 0"
using assms Divides.divmod_nat_base by (simp add: prod_eq_iff)
lemma le_div_geq:
fixes m n :: nat
assumes "0 < n" and "n \<le> m"
shows "m div n = Suc ((m - n) div n)"
using assms Divides.divmod_nat_step by (simp add: prod_eq_iff)
lemma mod_less [simp]:
fixes m n :: nat
assumes "m < n"
shows "m mod n = m"
using assms Divides.divmod_nat_base by (simp add: prod_eq_iff)
lemma le_mod_geq:
fixes m n :: nat
assumes "n \<le> m"
shows "m mod n = (m - n) mod n"
using assms Divides.divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff)
instance proof
fix m n :: nat
show "m div n * n + m mod n = m"
using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def)
next
fix m n q :: nat
assume "n \<noteq> 0"
then show "(q + m * n) div n = m + q div n"
by (induct m) (simp_all add: le_div_geq)
next
fix m n q :: nat
assume "m \<noteq> 0"
hence "\<And>a b. divmod_nat_rel n q (a, b) \<Longrightarrow> divmod_nat_rel (m * n) (m * q) (a, m * b)"
unfolding divmod_nat_rel_def
by (auto split: if_split_asm, simp_all add: algebra_simps)
moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" .
ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" .
thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique)
next
fix n :: nat show "n div 0 = 0"
by (simp add: div_nat_def Divides.divmod_nat_zero)
next
fix n :: nat show "0 div n = 0"
by (simp add: div_nat_def Divides.divmod_nat_zero_left)
qed
end
instantiation nat :: normalization_semidom
begin
definition normalize_nat
where [simp]: "normalize = (id :: nat \<Rightarrow> nat)"
definition unit_factor_nat
where "unit_factor n = (if n = 0 then 0 else 1 :: nat)"
lemma unit_factor_simps [simp]:
"unit_factor 0 = (0::nat)"
"unit_factor (Suc n) = 1"
by (simp_all add: unit_factor_nat_def)
instance
by standard (simp_all add: unit_factor_nat_def)
end
lemma divmod_nat_if [code]:
"Divides.divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else
let (q, r) = Divides.divmod_nat (m - n) n in (Suc q, r))"
by (simp add: prod_eq_iff case_prod_beta not_less le_div_geq le_mod_geq)
text \<open>Simproc for cancelling @{const divide} and @{const mod}\<close>
ML_file "~~/src/Provers/Arith/cancel_div_mod.ML"
ML \<open>
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
(
val div_name = @{const_name divide};
val mod_name = @{const_name mod};
val mk_binop = HOLogic.mk_binop;
val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;
fun mk_sum [] = HOLogic.zero
| mk_sum [t] = t
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
fun dest_sum tm =
if HOLogic.is_zero tm then []
else
(case try HOLogic.dest_Suc tm of
SOME t => HOLogic.Suc_zero :: dest_sum t
| NONE =>
(case try dest_plus tm of
SOME (t, u) => dest_sum t @ dest_sum u
| NONE => [tm]));
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
(@{thm add_0_left} :: @{thm add_0_right} :: @{thms ac_simps}))
)
\<close>
simproc_setup cancel_div_mod_nat ("(m::nat) + n") = \<open>K Cancel_Div_Mod_Nat.proc\<close>
subsubsection \<open>Quotient\<close>
lemma div_geq: "0 < n \<Longrightarrow> \<not> m < n \<Longrightarrow> m div n = Suc ((m - n) div n)"
by (simp add: le_div_geq linorder_not_less)
lemma div_if: "0 < n \<Longrightarrow> m div n = (if m < n then 0 else Suc ((m - n) div n))"
by (simp add: div_geq)
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
by simp
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
by simp
lemma div_positive:
fixes m n :: nat
assumes "n > 0"
assumes "m \<ge> n"
shows "m div n > 0"
proof -
from \<open>m \<ge> n\<close> obtain q where "m = n + q"
by (auto simp add: le_iff_add)
with \<open>n > 0\<close> show ?thesis by simp
qed
lemma div_eq_0_iff: "(a div b::nat) = 0 \<longleftrightarrow> a < b \<or> b = 0"
by (metis div_less div_positive div_by_0 gr0I less_numeral_extra(3) not_less)
subsubsection \<open>Remainder\<close>
lemma mod_less_divisor [simp]:
fixes m n :: nat
assumes "n > 0"
shows "m mod n < (n::nat)"
using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto
lemma mod_Suc_le_divisor [simp]:
"m mod Suc n \<le> n"
using mod_less_divisor [of "Suc n" m] by arith
lemma mod_less_eq_dividend [simp]:
fixes m n :: nat
shows "m mod n \<le> m"
proof (rule add_leD2)
from mod_div_equality have "m div n * n + m mod n = m" .
then show "m div n * n + m mod n \<le> m" by auto
qed
lemma mod_geq: "\<not> m < (n::nat) \<Longrightarrow> m mod n = (m - n) mod n"
by (simp add: le_mod_geq linorder_not_less)
lemma mod_if: "m mod (n::nat) = (if m < n then m else (m - n) mod n)"
by (simp add: le_mod_geq)
lemma mod_1 [simp]: "m mod Suc 0 = 0"
by (induct m) (simp_all add: mod_geq)
(* a simple rearrangement of mod_div_equality: *)
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
using mod_div_equality2 [of n m] by arith
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
apply (drule mod_less_divisor [where m = m])
apply simp
done
subsubsection \<open>Quotient and Remainder\<close>
lemma divmod_nat_rel_mult1_eq:
"divmod_nat_rel b c (q, r)
\<Longrightarrow> divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)"
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
lemma div_mult1_eq:
"(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)"
by (blast intro: divmod_nat_rel_mult1_eq [THEN div_nat_unique] divmod_nat_rel)
lemma divmod_nat_rel_add1_eq:
"divmod_nat_rel a c (aq, ar) \<Longrightarrow> divmod_nat_rel b c (bq, br)
\<Longrightarrow> divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)"
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
lemma div_add1_eq:
"(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel)
lemma divmod_nat_rel_mult2_eq:
assumes "divmod_nat_rel a b (q, r)"
shows "divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)"
proof -
{ assume "r < b" and "0 < c"
then have "b * (q mod c) + r < b * c"
apply (cut_tac m = q and n = c in mod_less_divisor)
apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
apply (erule_tac P = "%x. lhs < rhs x" for lhs rhs in ssubst)
apply (simp add: add_mult_distrib2)
done
then have "r + b * (q mod c) < b * c"
by (simp add: ac_simps)
} with assms show ?thesis
by (auto simp add: divmod_nat_rel_def algebra_simps add_mult_distrib2 [symmetric])
qed
lemma div_mult2_eq: "a div (b * c) = (a div b) div (c::nat)"
by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique])
lemma mod_mult2_eq: "a mod (b * c) = b * (a div b mod c) + a mod (b::nat)"
by (auto simp add: mult.commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_nat_unique])
instantiation nat :: semiring_numeral_div
begin
definition divmod_nat :: "num \<Rightarrow> num \<Rightarrow> nat \<times> nat"
where
divmod'_nat_def: "divmod_nat m n = (numeral m div numeral n, numeral m mod numeral n)"
definition divmod_step_nat :: "num \<Rightarrow> nat \<times> nat \<Rightarrow> nat \<times> nat"
where
"divmod_step_nat l qr = (let (q, r) = qr
in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
else (2 * q, r))"
instance
by standard (auto intro: div_positive simp add: divmod'_nat_def divmod_step_nat_def mod_mult2_eq div_mult2_eq)
end
declare divmod_algorithm_code [where ?'a = nat, code]
subsubsection \<open>Further Facts about Quotient and Remainder\<close>
lemma div_1 [simp]:
"m div Suc 0 = m"
using div_by_1 [of m] by simp
(* Monotonicity of div in first argument *)
lemma div_le_mono [rule_format (no_asm)]:
"\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
apply (case_tac "k=0", simp)
apply (induct "n" rule: nat_less_induct, clarify)
apply (case_tac "n<k")
(* 1 case n<k *)
apply simp
(* 2 case n >= k *)
apply (case_tac "m<k")
(* 2.1 case m<k *)
apply simp
(* 2.2 case m>=k *)
apply (simp add: div_geq diff_le_mono)
done
(* Antimonotonicity of div in second argument *)
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
apply (subgoal_tac "0<n")
prefer 2 apply simp
apply (induct_tac k rule: nat_less_induct)
apply (rename_tac "k")
apply (case_tac "k<n", simp)
apply (subgoal_tac "~ (k<m) ")
prefer 2 apply simp
apply (simp add: div_geq)
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
prefer 2
apply (blast intro: div_le_mono diff_le_mono2)
apply (rule le_trans, simp)
apply (simp)
done
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
apply (case_tac "n=0", simp)
apply (subgoal_tac "m div n \<le> m div 1", simp)
apply (rule div_le_mono2)
apply (simp_all (no_asm_simp))
done
(* Similar for "less than" *)
lemma div_less_dividend [simp]:
"\<lbrakk>(1::nat) < n; 0 < m\<rbrakk> \<Longrightarrow> m div n < m"
apply (induct m rule: nat_less_induct)
apply (rename_tac "m")
apply (case_tac "m<n", simp)
apply (subgoal_tac "0<n")
prefer 2 apply simp
apply (simp add: div_geq)
apply (case_tac "n<m")
apply (subgoal_tac "(m-n) div n < (m-n) ")
apply (rule impI less_trans_Suc)+
apply assumption
apply (simp_all)
done
text\<open>A fact for the mutilated chess board\<close>
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
apply (case_tac "n=0", simp)
apply (induct "m" rule: nat_less_induct)
apply (case_tac "Suc (na) <n")
(* case Suc(na) < n *)
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
(* case n \<le> Suc(na) *)
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
apply (auto simp add: Suc_diff_le le_mod_geq)
done
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
(*Loses information, namely we also have r<d provided d is nonzero*)
lemma mod_eqD:
fixes m d r q :: nat
assumes "m mod d = r"
shows "\<exists>q. m = r + q * d"
proof -
from mod_div_equality obtain q where "q * d + m mod d = m" by blast
with assms have "m = r + q * d" by simp
then show ?thesis ..
qed
lemma split_div:
"P(n div k :: nat) =
((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
proof
assume P: ?P
show ?Q
proof (cases)
assume "k = 0"
with P show ?Q by simp
next
assume not0: "k \<noteq> 0"
thus ?Q
proof (simp, intro allI impI)
fix i j
assume n: "n = k*i + j" and j: "j < k"
show "P i"
proof (cases)
assume "i = 0"
with n j P show "P i" by simp
next
assume "i \<noteq> 0"
with not0 n j P show "P i" by(simp add:ac_simps)
qed
qed
qed
next
assume Q: ?Q
show ?P
proof (cases)
assume "k = 0"
with Q show ?P by simp
next
assume not0: "k \<noteq> 0"
with Q have R: ?R by simp
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
show ?P by simp
qed
qed
lemma split_div_lemma:
assumes "0 < n"
shows "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> q = ((m::nat) div n)" (is "?lhs \<longleftrightarrow> ?rhs")
proof
assume ?rhs
with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp
then have A: "n * q \<le> m" by simp
have "n - (m mod n) > 0" using mod_less_divisor assms by auto
then have "m < m + (n - (m mod n))" by simp
then have "m < n + (m - (m mod n))" by simp
with nq have "m < n + n * q" by simp
then have B: "m < n * Suc q" by simp
from A B show ?lhs ..
next
assume P: ?lhs
then have "divmod_nat_rel m n (q, m - n * q)"
unfolding divmod_nat_rel_def by (auto simp add: ac_simps)
then have "m div n = q"
by (rule div_nat_unique)
then show ?rhs by simp
qed
theorem split_div':
"P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
(\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
apply (cases "0 < n")
apply (simp only: add: split_div_lemma)
apply simp_all
done
lemma split_mod:
"P(n mod k :: nat) =
((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
proof
assume P: ?P
show ?Q
proof (cases)
assume "k = 0"
with P show ?Q by simp
next
assume not0: "k \<noteq> 0"
thus ?Q
proof (simp, intro allI impI)
fix i j
assume "n = k*i + j" "j < k"
thus "P j" using not0 P by (simp add: ac_simps)
qed
qed
next
assume Q: ?Q
show ?P
proof (cases)
assume "k = 0"
with Q show ?P by simp
next
assume not0: "k \<noteq> 0"
with Q have R: ?R by simp
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
show ?P by simp
qed
qed
theorem mod_div_equality' [nitpick_unfold]: "(m::nat) mod n = m - (m div n) * n"
using mod_div_equality [of m n] by arith
lemma div_mod_equality': "(m::nat) div n * n = m - m mod n"
using mod_div_equality [of m n] by arith
(* FIXME: very similar to mult_div_cancel *)
lemma div_eq_dividend_iff: "a \<noteq> 0 \<Longrightarrow> (a :: nat) div b = a \<longleftrightarrow> b = 1"
apply rule
apply (cases "b = 0")
apply simp_all
apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3)
done
subsubsection \<open>An ``induction'' law for modulus arithmetic.\<close>
lemma mod_induct_0:
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
and base: "P i" and i: "i<p"
shows "P 0"
proof (rule ccontr)
assume contra: "\<not>(P 0)"
from i have p: "0<p" by simp
have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
proof
fix k
show "?A k"
proof (induct k)
show "?A 0" by simp \<comment> "by contradiction"
next
fix n
assume ih: "?A n"
show "?A (Suc n)"
proof (clarsimp)
assume y: "P (p - Suc n)"
have n: "Suc n < p"
proof (rule ccontr)
assume "\<not>(Suc n < p)"
hence "p - Suc n = 0"
by simp
with y contra show "False"
by simp
qed
hence n2: "Suc (p - Suc n) = p-n" by arith
from p have "p - Suc n < p" by arith
with y step have z: "P ((Suc (p - Suc n)) mod p)"
by blast
show "False"
proof (cases "n=0")
case True
with z n2 contra show ?thesis by simp
next
case False
with p have "p-n < p" by arith
with z n2 False ih show ?thesis by simp
qed
qed
qed
qed
moreover
from i obtain k where "0<k \<and> i+k=p"
by (blast dest: less_imp_add_positive)
hence "0<k \<and> i=p-k" by auto
moreover
note base
ultimately
show "False" by blast
qed
lemma mod_induct:
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
and base: "P i" and i: "i<p" and j: "j<p"
shows "P j"
proof -
have "\<forall>j<p. P j"
proof
fix j
show "j<p \<longrightarrow> P j" (is "?A j")
proof (induct j)
from step base i show "?A 0"
by (auto elim: mod_induct_0)
next
fix k
assume ih: "?A k"
show "?A (Suc k)"
proof
assume suc: "Suc k < p"
hence k: "k<p" by simp
with ih have "P k" ..
with step k have "P (Suc k mod p)"
by blast
moreover
from suc have "Suc k mod p = Suc k"
by simp
ultimately
show "P (Suc k)" by simp
qed
qed
qed
with j show ?thesis by blast
qed
lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)"
by (simp add: numeral_2_eq_2 le_div_geq)
lemma mod2_Suc_Suc [simp]: "Suc (Suc m) mod 2 = m mod 2"
by (simp add: numeral_2_eq_2 le_mod_geq)
lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
by (simp add: mult_2 [symmetric])
lemma mod2_gr_0 [simp]: "0 < (m::nat) mod 2 \<longleftrightarrow> m mod 2 = 1"
proof -
{ fix n :: nat have "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (cases n) simp_all }
moreover have "m mod 2 < 2" by simp
ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" .
then show ?thesis by auto
qed
text\<open>These lemmas collapse some needless occurrences of Suc:
at least three Sucs, since two and fewer are rewritten back to Suc again!
We already have some rules to simplify operands smaller than 3.\<close>
lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
by (simp add: Suc3_eq_add_3)
lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
by (simp add: Suc3_eq_add_3)
lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
by (simp add: Suc3_eq_add_3)
lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
by (simp add: Suc3_eq_add_3)
lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v
lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v
lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1"
apply (induct "m")
apply (simp_all add: mod_Suc)
done
declare Suc_times_mod_eq [of "numeral w", simp] for w
lemma mod_greater_zero_iff_not_dvd:
fixes m n :: nat
shows "m mod n > 0 \<longleftrightarrow> \<not> n dvd m"
by (simp add: dvd_eq_mod_eq_0)
lemma Suc_div_le_mono [simp]: "n div k \<le> (Suc n) div k"
by (simp add: div_le_mono)
lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
by (cases n) simp_all
lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2"
proof -
from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all
from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp
qed
lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
proof -
have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
also have "... = Suc m mod n" by (rule mod_mult_self3)
finally show ?thesis .
qed
lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
apply (subst mod_Suc [of m])
apply (subst mod_Suc [of "m mod n"], simp)
done
lemma mod_2_not_eq_zero_eq_one_nat:
fixes n :: nat
shows "n mod 2 \<noteq> 0 \<longleftrightarrow> n mod 2 = 1"
by (fact not_mod_2_eq_0_eq_1)
lemma even_Suc_div_two [simp]:
"even n \<Longrightarrow> Suc n div 2 = n div 2"
using even_succ_div_two [of n] by simp
lemma odd_Suc_div_two [simp]:
"odd n \<Longrightarrow> Suc n div 2 = Suc (n div 2)"
using odd_succ_div_two [of n] by simp
lemma odd_two_times_div_two_nat [simp]:
assumes "odd n"
shows "2 * (n div 2) = n - (1 :: nat)"
proof -
from assms have "2 * (n div 2) + 1 = n"
by (rule odd_two_times_div_two_succ)
then have "Suc (2 * (n div 2)) - 1 = n - 1"
by simp
then show ?thesis
by simp
qed
lemma parity_induct [case_names zero even odd]:
assumes zero: "P 0"
assumes even: "\<And>n. P n \<Longrightarrow> P (2 * n)"
assumes odd: "\<And>n. P n \<Longrightarrow> P (Suc (2 * n))"
shows "P n"
proof (induct n rule: less_induct)
case (less n)
show "P n"
proof (cases "n = 0")
case True with zero show ?thesis by simp
next
case False
with less have hyp: "P (n div 2)" by simp
show ?thesis
proof (cases "even n")
case True
with hyp even [of "n div 2"] show ?thesis
by simp
next
case False
with hyp odd [of "n div 2"] show ?thesis
by simp
qed
qed
qed
lemma Suc_0_div_numeral [simp]:
fixes k l :: num
shows "Suc 0 div numeral k = fst (divmod Num.One k)"
by (simp_all add: fst_divmod)
lemma Suc_0_mod_numeral [simp]:
fixes k l :: num
shows "Suc 0 mod numeral k = snd (divmod Num.One k)"
by (simp_all add: snd_divmod)
lemma cut_eq_simps: \<comment> \<open>rewriting equivalence on \<open>n mod 2 ^ q\<close>\<close>
fixes m n q :: num
shows
"numeral n mod numeral Num.One = (0::nat)
\<longleftrightarrow> True"
"numeral (Num.Bit0 n) mod numeral (Num.Bit0 q) = (0::nat)
\<longleftrightarrow> numeral n mod numeral q = (0::nat)"
"numeral (Num.Bit1 n) mod numeral (Num.Bit0 q) = (0::nat)
\<longleftrightarrow> False"
"numeral m mod numeral Num.One = (numeral n mod numeral Num.One :: nat)
\<longleftrightarrow> True"
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> True"
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> False"
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> (numeral n mod numeral q :: nat) = 0"
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> False"
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> numeral m mod numeral q = (numeral n mod numeral q :: nat)"
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> False"
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> (numeral m mod numeral q :: nat) = 0"
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> False"
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q) :: nat)
\<longleftrightarrow> numeral m mod numeral q = (numeral n mod numeral q :: nat)"
by (auto simp add: case_prod_beta Suc_double_not_eq_double double_not_eq_Suc_double)
subsection \<open>Division on @{typ int}\<close>
definition divmod_int_rel :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool" \<comment> \<open>definition of quotient and remainder\<close>
where "divmod_int_rel a b = (\<lambda>(q, r). a = b * q + r \<and>
(if 0 < b then 0 \<le> r \<and> r < b else if b < 0 then b < r \<and> r \<le> 0 else q = 0))"
lemma unique_quotient_lemma:
"b * q' + r' \<le> b * q + r \<Longrightarrow> 0 \<le> r' \<Longrightarrow> r' < b \<Longrightarrow> r < b \<Longrightarrow> q' \<le> (q::int)"
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
prefer 2 apply (simp add: right_diff_distrib)
apply (subgoal_tac "0 < b * (1 + q - q') ")
apply (erule_tac [2] order_le_less_trans)
prefer 2 apply (simp add: right_diff_distrib distrib_left)
apply (subgoal_tac "b * q' < b * (1 + q) ")
prefer 2 apply (simp add: right_diff_distrib distrib_left)
apply (simp add: mult_less_cancel_left)
done
lemma unique_quotient_lemma_neg:
"b * q' + r' \<le> b*q + r \<Longrightarrow> r \<le> 0 \<Longrightarrow> b < r \<Longrightarrow> b < r' \<Longrightarrow> q \<le> (q'::int)"
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma) auto
lemma unique_quotient:
"divmod_int_rel a b (q, r) \<Longrightarrow> divmod_int_rel a b (q', r') \<Longrightarrow> q = q'"
apply (simp add: divmod_int_rel_def linorder_neq_iff split: if_split_asm)
apply (blast intro: order_antisym
dest: order_eq_refl [THEN unique_quotient_lemma]
order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
done
lemma unique_remainder:
"divmod_int_rel a b (q, r) \<Longrightarrow> divmod_int_rel a b (q', r') \<Longrightarrow> r = r'"
apply (subgoal_tac "q = q'")
apply (simp add: divmod_int_rel_def)
apply (blast intro: unique_quotient)
done
instantiation int :: Divides.div
begin
definition divide_int
where "k div l = (if l = 0 \<or> k = 0 then 0
else if k > 0 \<and> l > 0 \<or> k < 0 \<and> l < 0
then int (nat \<bar>k\<bar> div nat \<bar>l\<bar>)
else
if l dvd k then - int (nat \<bar>k\<bar> div nat \<bar>l\<bar>)
else - int (Suc (nat \<bar>k\<bar> div nat \<bar>l\<bar>)))"
definition mod_int
where "k mod l = (if l = 0 then k else if l dvd k then 0
else if k > 0 \<and> l > 0 \<or> k < 0 \<and> l < 0
then sgn l * int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)
else sgn l * (\<bar>l\<bar> - int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)))"
instance ..
end
lemma divmod_int_rel:
"divmod_int_rel k l (k div l, k mod l)"
unfolding divmod_int_rel_def divide_int_def mod_int_def
apply (cases k rule: int_cases3)
apply (simp add: mod_greater_zero_iff_not_dvd not_le algebra_simps)
apply (cases l rule: int_cases3)
apply (simp add: mod_greater_zero_iff_not_dvd not_le algebra_simps)
apply (simp_all del: of_nat_add of_nat_mult add: mod_greater_zero_iff_not_dvd not_le algebra_simps int_dvd_iff of_nat_add [symmetric] of_nat_mult [symmetric])
apply (cases l rule: int_cases3)
apply (simp_all del: of_nat_add of_nat_mult add: not_le algebra_simps int_dvd_iff of_nat_add [symmetric] of_nat_mult [symmetric])
done
instantiation int :: ring_div
begin
subsubsection \<open>Uniqueness and Monotonicity of Quotients and Remainders\<close>
lemma divmod_int_unique:
assumes "divmod_int_rel k l (q, r)"
shows div_int_unique: "k div l = q" and mod_int_unique: "k mod l = r"
using assms divmod_int_rel [of k l]
using unique_quotient [of k l] unique_remainder [of k l]
by auto
instance
proof
fix a b :: int
show "a div b * b + a mod b = a"
using divmod_int_rel [of a b]
unfolding divmod_int_rel_def by (simp add: mult.commute)
next
fix a b c :: int
assume "b \<noteq> 0"
hence "divmod_int_rel (a + c * b) b (c + a div b, a mod b)"
using divmod_int_rel [of a b]
unfolding divmod_int_rel_def by (auto simp: algebra_simps)
thus "(a + c * b) div b = c + a div b"
by (rule div_int_unique)
next
fix a b c :: int
assume "c \<noteq> 0"
hence "\<And>q r. divmod_int_rel a b (q, r)
\<Longrightarrow> divmod_int_rel (c * a) (c * b) (q, c * r)"
unfolding divmod_int_rel_def
by - (rule linorder_cases [of 0 b], auto simp: algebra_simps
mult_less_0_iff zero_less_mult_iff mult_strict_right_mono
mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff)
hence "divmod_int_rel (c * a) (c * b) (a div b, c * (a mod b))"
using divmod_int_rel [of a b] .
thus "(c * a) div (c * b) = a div b"
by (rule div_int_unique)
next
fix a :: int show "a div 0 = 0"
by (rule div_int_unique, simp add: divmod_int_rel_def)
next
fix a :: int show "0 div a = 0"
by (rule div_int_unique, auto simp add: divmod_int_rel_def)
qed
end
lemma is_unit_int:
"is_unit (k::int) \<longleftrightarrow> k = 1 \<or> k = - 1"
by auto
instantiation int :: normalization_semidom
begin
definition normalize_int
where [simp]: "normalize = (abs :: int \<Rightarrow> int)"
definition unit_factor_int
where [simp]: "unit_factor = (sgn :: int \<Rightarrow> int)"
instance
proof
fix k :: int
assume "k \<noteq> 0"
then have "\<bar>sgn k\<bar> = 1"
by (cases "0::int" k rule: linorder_cases) simp_all
then show "is_unit (unit_factor k)"
by simp
qed (simp_all add: sgn_times mult_sgn_abs)
end
text\<open>Basic laws about division and remainder\<close>
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
by (fact mod_div_equality2 [symmetric])
lemma zdiv_int: "int (a div b) = int a div int b"
by (simp add: divide_int_def)
lemma zmod_int: "int (a mod b) = int a mod int b"
by (simp add: mod_int_def int_dvd_iff)
text \<open>Tool setup\<close>
ML \<open>
structure Cancel_Div_Mod_Int = Cancel_Div_Mod
(
val div_name = @{const_name Rings.divide};
val mod_name = @{const_name mod};
val mk_binop = HOLogic.mk_binop;
val mk_sum = Arith_Data.mk_sum HOLogic.intT;
val dest_sum = Arith_Data.dest_sum;
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
(@{thm diff_conv_add_uminus} :: @{thms add_0_left add_0_right} @ @{thms ac_simps}))
)
\<close>
simproc_setup cancel_div_mod_int ("(k::int) + l") = \<open>K Cancel_Div_Mod_Int.proc\<close>
lemma pos_mod_conj: "(0::int) < b \<Longrightarrow> 0 \<le> a mod b \<and> a mod b < b"
using divmod_int_rel [of a b]
by (auto simp add: divmod_int_rel_def prod_eq_iff)
lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1]
and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2]
lemma neg_mod_conj: "b < (0::int) \<Longrightarrow> a mod b \<le> 0 \<and> b < a mod b"
using divmod_int_rel [of a b]
by (auto simp add: divmod_int_rel_def prod_eq_iff)
lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1]
and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2]
subsubsection \<open>General Properties of div and mod\<close>
lemma div_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a div b = 0"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma div_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a div b = 0"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a div b = -1"
apply (rule div_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
(*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*)
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a mod b = a"
apply (rule_tac q = 0 in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma mod_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a mod b = a"
apply (rule_tac q = 0 in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a mod b = a+b"
apply (rule_tac q = "-1" in mod_int_unique)
apply (auto simp add: divmod_int_rel_def)
done
text\<open>There is no \<open>mod_neg_pos_trivial\<close>.\<close>
subsubsection \<open>Laws for div and mod with Unary Minus\<close>
lemma zminus1_lemma:
"divmod_int_rel a b (q, r) ==> b \<noteq> 0
==> divmod_int_rel (-a) b (if r=0 then -q else -q - 1,
if r=0 then 0 else b-r)"
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_diff_distrib)
lemma zdiv_zminus1_eq_if:
"b \<noteq> (0::int)
==> (-a) div b =
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
by (blast intro: divmod_int_rel [THEN zminus1_lemma, THEN div_int_unique])
lemma zmod_zminus1_eq_if:
"(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))"
apply (case_tac "b = 0", simp)
apply (blast intro: divmod_int_rel [THEN zminus1_lemma, THEN mod_int_unique])
done
lemma zmod_zminus1_not_zero:
fixes k l :: int
shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
unfolding zmod_zminus1_eq_if by auto
lemma zdiv_zminus2_eq_if:
"b \<noteq> (0::int)
==> a div (-b) =
(if a mod b = 0 then - (a div b) else - (a div b) - 1)"
by (simp add: zdiv_zminus1_eq_if div_minus_right)
lemma zmod_zminus2_eq_if:
"a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)"
by (simp add: zmod_zminus1_eq_if mod_minus_right)
lemma zmod_zminus2_not_zero:
fixes k l :: int
shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
unfolding zmod_zminus2_eq_if by auto
subsubsection \<open>Monotonicity in the First Argument (Dividend)\<close>
lemma zdiv_mono1: "[| a \<le> a'; 0 < (b::int) |] ==> a div b \<le> a' div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
apply (rule unique_quotient_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
lemma zdiv_mono1_neg: "[| a \<le> a'; (b::int) < 0 |] ==> a' div b \<le> a div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
apply (rule unique_quotient_lemma_neg)
apply (erule subst)
apply (erule subst, simp_all)
done
subsubsection \<open>Monotonicity in the Second Argument (Divisor)\<close>
lemma q_pos_lemma:
"[| 0 \<le> b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \<le> (q'::int)"
apply (subgoal_tac "0 < b'* (q' + 1) ")
apply (simp add: zero_less_mult_iff)
apply (simp add: distrib_left)
done
lemma zdiv_mono2_lemma:
"[| b*q + r = b'*q' + r'; 0 \<le> b'*q' + r';
r' < b'; 0 \<le> r; 0 < b'; b' \<le> b |]
==> q \<le> (q'::int)"
apply (frule q_pos_lemma, assumption+)
apply (subgoal_tac "b*q < b* (q' + 1) ")
apply (simp add: mult_less_cancel_left)
apply (subgoal_tac "b*q = r' - r + b'*q'")
prefer 2 apply simp
apply (simp (no_asm_simp) add: distrib_left)
apply (subst add.commute, rule add_less_le_mono, arith)
apply (rule mult_right_mono, auto)
done
lemma zdiv_mono2:
"[| (0::int) \<le> a; 0 < b'; b' \<le> b |] ==> a div b \<le> a div b'"
apply (subgoal_tac "b \<noteq> 0")
prefer 2 apply arith
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
apply (rule zdiv_mono2_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
lemma q_neg_lemma:
"[| b'*q' + r' < 0; 0 \<le> r'; 0 < b' |] ==> q' \<le> (0::int)"
apply (subgoal_tac "b'*q' < 0")
apply (simp add: mult_less_0_iff, arith)
done
lemma zdiv_mono2_neg_lemma:
"[| b*q + r = b'*q' + r'; b'*q' + r' < 0;
r < b; 0 \<le> r'; 0 < b'; b' \<le> b |]
==> q' \<le> (q::int)"
apply (frule q_neg_lemma, assumption+)
apply (subgoal_tac "b*q' < b* (q + 1) ")
apply (simp add: mult_less_cancel_left)
apply (simp add: distrib_left)
apply (subgoal_tac "b*q' \<le> b'*q'")
prefer 2 apply (simp add: mult_right_mono_neg, arith)
done
lemma zdiv_mono2_neg:
"[| a < (0::int); 0 < b'; b' \<le> b |] ==> a div b' \<le> a div b"
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
apply (rule zdiv_mono2_neg_lemma)
apply (erule subst)
apply (erule subst, simp_all)
done
subsubsection \<open>More Algebraic Laws for div and mod\<close>
text\<open>proving (a*b) div c = a * (b div c) + a * (b mod c)\<close>
lemma zmult1_lemma:
"[| divmod_int_rel b c (q, r) |]
==> divmod_int_rel (a * b) c (a*q + a*r div c, a*r mod c)"
by (auto simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left ac_simps)
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
apply (case_tac "c = 0", simp)
apply (blast intro: divmod_int_rel [THEN zmult1_lemma, THEN div_int_unique])
done
text\<open>proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c)\<close>
lemma zadd1_lemma:
"[| divmod_int_rel a c (aq, ar); divmod_int_rel b c (bq, br) |]
==> divmod_int_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)"
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left)
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
lemma zdiv_zadd1_eq:
"(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
apply (case_tac "c = 0", simp)
apply (blast intro: zadd1_lemma [OF divmod_int_rel divmod_int_rel] div_int_unique)
done
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
(* REVISIT: should this be generalized to all semiring_div types? *)
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
lemma zmod_zdiv_equality' [nitpick_unfold]:
"(m::int) mod n = m - (m div n) * n"
using mod_div_equality [of m n] by arith
subsubsection \<open>Proving @{term "a div (b * c) = (a div b) div c"}\<close>
(*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but
7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems
to cause particular problems.*)
text\<open>first, four lemmas to bound the remainder for the cases b<0 and b>0\<close>
lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \<le> 0 |] ==> b * c < b * (q mod c) + r"
apply (subgoal_tac "b * (c - q mod c) < r * 1")
apply (simp add: algebra_simps)
apply (rule order_le_less_trans)
apply (erule_tac [2] mult_strict_right_mono)
apply (rule mult_left_mono_neg)
using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps)
apply (simp)
apply (simp)
done
lemma zmult2_lemma_aux2:
"[| (0::int) < c; b < r; r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
apply (subgoal_tac "b * (q mod c) \<le> 0")
apply arith
apply (simp add: mult_le_0_iff)
done
lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \<le> r; r < b |] ==> 0 \<le> b * (q mod c) + r"
apply (subgoal_tac "0 \<le> b * (q mod c) ")
apply arith
apply (simp add: zero_le_mult_iff)
done
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
apply (simp add: right_diff_distrib)
apply (rule order_less_le_trans)
apply (erule mult_strict_right_mono)
apply (rule_tac [2] mult_left_mono)
apply simp
using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps)
apply simp
done
lemma zmult2_lemma: "[| divmod_int_rel a b (q, r); 0 < c |]
==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)"
by (auto simp add: mult.assoc divmod_int_rel_def linorder_neq_iff
zero_less_mult_iff distrib_left [symmetric]
zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: if_split_asm)
lemma zdiv_zmult2_eq:
fixes a b c :: int
shows "0 \<le> c \<Longrightarrow> a div (b * c) = (a div b) div c"
apply (case_tac "b = 0", simp)
apply (force simp add: le_less divmod_int_rel [THEN zmult2_lemma, THEN div_int_unique])
done
lemma zmod_zmult2_eq:
fixes a b c :: int
shows "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b"
apply (case_tac "b = 0", simp)
apply (force simp add: le_less divmod_int_rel [THEN zmult2_lemma, THEN mod_int_unique])
done
lemma div_pos_geq:
fixes k l :: int
assumes "0 < l" and "l \<le> k"
shows "k div l = (k - l) div l + 1"
proof -
have "k = (k - l) + l" by simp
then obtain j where k: "k = j + l" ..
with assms show ?thesis by simp
qed
lemma mod_pos_geq:
fixes k l :: int
assumes "0 < l" and "l \<le> k"
shows "k mod l = (k - l) mod l"
proof -
have "k = (k - l) + l" by simp
then obtain j where k: "k = j + l" ..
with assms show ?thesis by simp
qed
subsubsection \<open>Splitting Rules for div and mod\<close>
text\<open>The proofs of the two lemmas below are essentially identical\<close>
lemma split_pos_lemma:
"0<k ==>
P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
apply (rule iffI, clarify)
apply (erule_tac P="P x y" for x y in rev_mp)
apply (subst mod_add_eq)
apply (subst zdiv_zadd1_eq)
apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)
txt\<open>converse direction\<close>
apply (drule_tac x = "n div k" in spec)
apply (drule_tac x = "n mod k" in spec, simp)
done
lemma split_neg_lemma:
"k<0 ==>
P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
apply (rule iffI, clarify)
apply (erule_tac P="P x y" for x y in rev_mp)
apply (subst mod_add_eq)
apply (subst zdiv_zadd1_eq)
apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)
txt\<open>converse direction\<close>
apply (drule_tac x = "n div k" in spec)
apply (drule_tac x = "n mod k" in spec, simp)
done
lemma split_zdiv:
"P(n div k :: int) =
((k = 0 --> P 0) &
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) &
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
apply (case_tac "k=0", simp)
apply (simp only: linorder_neq_iff)
apply (erule disjE)
apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"]
split_neg_lemma [of concl: "%x y. P x"])
done
lemma split_zmod:
"P(n mod k :: int) =
((k = 0 --> P n) &
(0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) &
(k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
apply (case_tac "k=0", simp)
apply (simp only: linorder_neq_iff)
apply (erule disjE)
apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"]
split_neg_lemma [of concl: "%x y. P y"])
done
text \<open>Enable (lin)arith to deal with @{const divide} and @{const mod}
when these are applied to some constant that is of the form
@{term "numeral k"}:\<close>
declare split_zdiv [of _ _ "numeral k", arith_split] for k
declare split_zmod [of _ _ "numeral k", arith_split] for k
subsubsection \<open>Computing \<open>div\<close> and \<open>mod\<close> with shifting\<close>
lemma pos_divmod_int_rel_mult_2:
assumes "0 \<le> b"
assumes "divmod_int_rel a b (q, r)"
shows "divmod_int_rel (1 + 2*a) (2*b) (q, 1 + 2*r)"
using assms unfolding divmod_int_rel_def by auto
declaration \<open>K (Lin_Arith.add_simps @{thms uminus_numeral_One})\<close>
lemma neg_divmod_int_rel_mult_2:
assumes "b \<le> 0"
assumes "divmod_int_rel (a + 1) b (q, r)"
shows "divmod_int_rel (1 + 2*a) (2*b) (q, 2*r - 1)"
using assms unfolding divmod_int_rel_def by auto
text\<open>computing div by shifting\<close>
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
using pos_divmod_int_rel_mult_2 [OF _ divmod_int_rel]
by (rule div_int_unique)
lemma neg_zdiv_mult_2:
assumes A: "a \<le> (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a"
using neg_divmod_int_rel_mult_2 [OF A divmod_int_rel]
by (rule div_int_unique)
(* FIXME: add rules for negative numerals *)
lemma zdiv_numeral_Bit0 [simp]:
"numeral (Num.Bit0 v) div numeral (Num.Bit0 w) =
numeral v div (numeral w :: int)"
unfolding numeral.simps unfolding mult_2 [symmetric]
by (rule div_mult_mult1, simp)
lemma zdiv_numeral_Bit1 [simp]:
"numeral (Num.Bit1 v) div numeral (Num.Bit0 w) =
(numeral v div (numeral w :: int))"
unfolding numeral.simps
unfolding mult_2 [symmetric] add.commute [of _ 1]
by (rule pos_zdiv_mult_2, simp)
lemma pos_zmod_mult_2:
fixes a b :: int
assumes "0 \<le> a"
shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)"
using pos_divmod_int_rel_mult_2 [OF assms divmod_int_rel]
by (rule mod_int_unique)
lemma neg_zmod_mult_2:
fixes a b :: int
assumes "a \<le> 0"
shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1"
using neg_divmod_int_rel_mult_2 [OF assms divmod_int_rel]
by (rule mod_int_unique)
(* FIXME: add rules for negative numerals *)
lemma zmod_numeral_Bit0 [simp]:
"numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) =
(2::int) * (numeral v mod numeral w)"
unfolding numeral_Bit0 [of v] numeral_Bit0 [of w]
unfolding mult_2 [symmetric] by (rule mod_mult_mult1)
lemma zmod_numeral_Bit1 [simp]:
"numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) =
2 * (numeral v mod numeral w) + (1::int)"
unfolding numeral_Bit1 [of v] numeral_Bit0 [of w]
unfolding mult_2 [symmetric] add.commute [of _ 1]
by (rule pos_zmod_mult_2, simp)
lemma zdiv_eq_0_iff:
"(i::int) div k = 0 \<longleftrightarrow> k=0 \<or> 0\<le>i \<and> i<k \<or> i\<le>0 \<and> k<i" (is "?L = ?R")
proof
assume ?L
have "?L \<longrightarrow> ?R" by (rule split_zdiv[THEN iffD2]) simp
with \<open>?L\<close> show ?R by blast
next
assume ?R thus ?L
by(auto simp: div_pos_pos_trivial div_neg_neg_trivial)
qed
subsubsection \<open>Quotients of Signs\<close>
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
by (simp add: divide_int_def)
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
by (simp add: mod_int_def)
lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0"
apply (subgoal_tac "a div b \<le> -1", force)
apply (rule order_trans)
apply (rule_tac a' = "-1" in zdiv_mono1)
apply (auto simp add: div_eq_minus1)
done
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
by (drule zdiv_mono1_neg, auto)
lemma div_nonpos_pos_le0: "[| (a::int) \<le> 0; b > 0 |] ==> a div b \<le> 0"
by (drule zdiv_mono1, auto)
text\<open>Now for some equivalences of the form \<open>a div b >=< 0 \<longleftrightarrow> \<dots>\<close>
conditional upon the sign of \<open>a\<close> or \<open>b\<close>. There are many more.
They should all be simp rules unless that causes too much search.\<close>
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
apply auto
apply (drule_tac [2] zdiv_mono1)
apply (auto simp add: linorder_neq_iff)
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
apply (blast intro: div_neg_pos_less0)
done
lemma pos_imp_zdiv_pos_iff:
"0<k \<Longrightarrow> 0 < (i::int) div k \<longleftrightarrow> k \<le> i"
using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k]
by arith
lemma neg_imp_zdiv_nonneg_iff:
"b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
apply (subst div_minus_minus [symmetric])
apply (subst pos_imp_zdiv_nonneg_iff, auto)
done
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
lemma nonneg1_imp_zdiv_pos_iff:
"(0::int) <= a \<Longrightarrow> (a div b > 0) = (a >= b & b>0)"
apply rule
apply rule
using div_pos_pos_trivial[of a b]apply arith
apply(cases "b=0")apply simp
using div_nonneg_neg_le0[of a b]apply arith
using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp
done
lemma zmod_le_nonneg_dividend: "(m::int) \<ge> 0 ==> m mod k \<le> m"
apply (rule split_zmod[THEN iffD2])
apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le)
done
lemma zmult_div_cancel:
"(n::int) * (m div n) = m - (m mod n)"
using zmod_zdiv_equality [where a="m" and b="n"]
by (simp add: algebra_simps) (* FIXME: generalize *)
subsubsection \<open>Computation of Division and Remainder\<close>
instantiation int :: semiring_numeral_div
begin
definition divmod_int :: "num \<Rightarrow> num \<Rightarrow> int \<times> int"
where
"divmod_int m n = (numeral m div numeral n, numeral m mod numeral n)"
definition divmod_step_int :: "num \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int"
where
"divmod_step_int l qr = (let (q, r) = qr
in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
else (2 * q, r))"
instance
by standard (auto intro: zmod_le_nonneg_dividend simp add: divmod_int_def divmod_step_int_def
pos_imp_zdiv_pos_iff div_pos_pos_trivial mod_pos_pos_trivial zmod_zmult2_eq zdiv_zmult2_eq)
end
declare divmod_algorithm_code [where ?'a = int, code]
context
begin
qualified definition adjust_div :: "int \<times> int \<Rightarrow> int"
where
"adjust_div qr = (let (q, r) = qr in q + of_bool (r \<noteq> 0))"
qualified lemma adjust_div_eq [simp, code]:
"adjust_div (q, r) = q + of_bool (r \<noteq> 0)"
by (simp add: adjust_div_def)
qualified definition adjust_mod :: "int \<Rightarrow> int \<Rightarrow> int"
where
[simp]: "adjust_mod l r = (if r = 0 then 0 else l - r)"
lemma minus_numeral_div_numeral [simp]:
"- numeral m div numeral n = - (adjust_div (divmod m n) :: int)"
proof -
have "int (fst (divmod m n)) = fst (divmod m n)"
by (simp only: fst_divmod divide_int_def) auto
then show ?thesis
by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def)
qed
lemma minus_numeral_mod_numeral [simp]:
"- numeral m mod numeral n = adjust_mod (numeral n) (snd (divmod m n) :: int)"
proof -
have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \<noteq> (0::int)"
using that by (simp only: snd_divmod mod_int_def) auto
then show ?thesis
by (auto simp add: split_def Let_def adjust_div_def divides_aux_def mod_int_def)
qed
lemma numeral_div_minus_numeral [simp]:
"numeral m div - numeral n = - (adjust_div (divmod m n) :: int)"
proof -
have "int (fst (divmod m n)) = fst (divmod m n)"
by (simp only: fst_divmod divide_int_def) auto
then show ?thesis
by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def)
qed
lemma numeral_mod_minus_numeral [simp]:
"numeral m mod - numeral n = - adjust_mod (numeral n) (snd (divmod m n) :: int)"
proof -
have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \<noteq> (0::int)"
using that by (simp only: snd_divmod mod_int_def) auto
then show ?thesis
by (auto simp add: split_def Let_def adjust_div_def divides_aux_def mod_int_def)
qed
lemma minus_one_div_numeral [simp]:
"- 1 div numeral n = - (adjust_div (divmod Num.One n) :: int)"
using minus_numeral_div_numeral [of Num.One n] by simp
lemma minus_one_mod_numeral [simp]:
"- 1 mod numeral n = adjust_mod (numeral n) (snd (divmod Num.One n) :: int)"
using minus_numeral_mod_numeral [of Num.One n] by simp
lemma one_div_minus_numeral [simp]:
"1 div - numeral n = - (adjust_div (divmod Num.One n) :: int)"
using numeral_div_minus_numeral [of Num.One n] by simp
lemma one_mod_minus_numeral [simp]:
"1 mod - numeral n = - adjust_mod (numeral n) (snd (divmod Num.One n) :: int)"
using numeral_mod_minus_numeral [of Num.One n] by simp
end
subsubsection \<open>Further properties\<close>
text \<open>Simplify expresions in which div and mod combine numerical constants\<close>
lemma int_div_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a div b = q"
by (rule div_int_unique [of a b q r]) (simp add: divmod_int_rel_def)
lemma int_div_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a div b = q"
by (rule div_int_unique [of a b q r],
simp add: divmod_int_rel_def)
lemma int_mod_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a mod b = r"
by (rule mod_int_unique [of a b q r],
simp add: divmod_int_rel_def)
lemma int_mod_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a mod b = r"
by (rule mod_int_unique [of a b q r],
simp add: divmod_int_rel_def)
lemma abs_div: "(y::int) dvd x \<Longrightarrow> \<bar>x div y\<bar> = \<bar>x\<bar> div \<bar>y\<bar>"
by (unfold dvd_def, cases "y=0", auto simp add: abs_mult)
text\<open>Suggested by Matthias Daum\<close>
lemma int_power_div_base:
"\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)")
apply (erule ssubst)
apply (simp only: power_add)
apply simp_all
done
text \<open>by Brian Huffman\<close>
lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m"
by (rule mod_minus_eq [symmetric])
lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)"
by (rule mod_diff_left_eq [symmetric])
lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)"
by (rule mod_diff_right_eq [symmetric])
lemmas zmod_simps =
mod_add_left_eq [symmetric]
mod_add_right_eq [symmetric]
mod_mult_right_eq[symmetric]
mod_mult_left_eq [symmetric]
power_mod
zminus_zmod zdiff_zmod_left zdiff_zmod_right
text \<open>Distributive laws for function \<open>nat\<close>.\<close>
lemma nat_div_distrib: "0 \<le> x \<Longrightarrow> nat (x div y) = nat x div nat y"
apply (rule linorder_cases [of y 0])
apply (simp add: div_nonneg_neg_le0)
apply simp
apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int)
done
(*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*)
lemma nat_mod_distrib:
"\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x mod y) = nat x mod nat y"
apply (case_tac "y = 0", simp)
apply (simp add: nat_eq_iff zmod_int)
done
text \<open>transfer setup\<close>
lemma transfer_nat_int_functions:
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)"
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)"
by (auto simp add: nat_div_distrib nat_mod_distrib)
lemma transfer_nat_int_function_closures:
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0"
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0"
apply (cases "y = 0")
apply (auto simp add: pos_imp_zdiv_nonneg_iff)
apply (cases "y = 0")
apply auto
done
declare transfer_morphism_nat_int [transfer add return:
transfer_nat_int_functions
transfer_nat_int_function_closures
]
lemma transfer_int_nat_functions:
"(int x) div (int y) = int (x div y)"
"(int x) mod (int y) = int (x mod y)"
by (auto simp add: zdiv_int zmod_int)
lemma transfer_int_nat_function_closures:
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)"
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)"
by (simp_all only: is_nat_def transfer_nat_int_function_closures)
declare transfer_morphism_int_nat [transfer add return:
transfer_int_nat_functions
transfer_int_nat_function_closures
]
text\<open>Suggested by Matthias Daum\<close>
lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)"
apply (subgoal_tac "nat x div nat k < nat x")
apply (simp add: nat_div_distrib [symmetric])
apply (rule Divides.div_less_dividend, simp_all)
done
lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \<longleftrightarrow> n dvd x - y"
proof
assume H: "x mod n = y mod n"
hence "x mod n - y mod n = 0" by simp
hence "(x mod n - y mod n) mod n = 0" by simp
hence "(x - y) mod n = 0" by (simp add: mod_diff_eq[symmetric])
thus "n dvd x - y" by (simp add: dvd_eq_mod_eq_0)
next
assume H: "n dvd x - y"
then obtain k where k: "x-y = n*k" unfolding dvd_def by blast
hence "x = n*k + y" by simp
hence "x mod n = (n*k + y) mod n" by simp
thus "x mod n = y mod n" by (simp add: mod_add_left_eq)
qed
lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y mod n" and xy:"y \<le> x"
shows "\<exists>q. x = y + n * q"
proof-
from xy have th: "int x - int y = int (x - y)" by simp
from xyn have "int x mod int n = int y mod int n"
by (simp add: zmod_int [symmetric])
hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric])
hence "n dvd x - y" by (simp add: th zdvd_int)
then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith
qed
lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)"
(is "?lhs = ?rhs")
proof
assume H: "x mod n = y mod n"
{assume xy: "x \<le> y"
from H have th: "y mod n = x mod n" by simp
from nat_mod_eq_lemma[OF th xy] have ?rhs
apply clarify apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)}
moreover
{assume xy: "y \<le> x"
from nat_mod_eq_lemma[OF H xy] have ?rhs
apply clarify apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)}
ultimately show ?rhs using linear[of x y] by blast
next
assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast
hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp
thus ?lhs by simp
qed
subsubsection \<open>Dedicated simproc for calculation\<close>
text \<open>
There is space for improvement here: the calculation itself
could be carried outside the logic, and a generic simproc
(simplifier setup) for generic calculation would be helpful.
\<close>
simproc_setup numeral_divmod
("0 div 0 :: 'a :: semiring_numeral_div" | "0 mod 0 :: 'a :: semiring_numeral_div" |
"0 div 1 :: 'a :: semiring_numeral_div" | "0 mod 1 :: 'a :: semiring_numeral_div" |
"0 div - 1 :: int" | "0 mod - 1 :: int" |
"0 div numeral b :: 'a :: semiring_numeral_div" | "0 mod numeral b :: 'a :: semiring_numeral_div" |
"0 div - numeral b :: int" | "0 mod - numeral b :: int" |
"1 div 0 :: 'a :: semiring_numeral_div" | "1 mod 0 :: 'a :: semiring_numeral_div" |
"1 div 1 :: 'a :: semiring_numeral_div" | "1 mod 1 :: 'a :: semiring_numeral_div" |
"1 div - 1 :: int" | "1 mod - 1 :: int" |
"1 div numeral b :: 'a :: semiring_numeral_div" | "1 mod numeral b :: 'a :: semiring_numeral_div" |
"1 div - numeral b :: int" |"1 mod - numeral b :: int" |
"- 1 div 0 :: int" | "- 1 mod 0 :: int" | "- 1 div 1 :: int" | "- 1 mod 1 :: int" |
"- 1 div - 1 :: int" | "- 1 mod - 1 :: int" | "- 1 div numeral b :: int" | "- 1 mod numeral b :: int" |
"- 1 div - numeral b :: int" | "- 1 mod - numeral b :: int" |
"numeral a div 0 :: 'a :: semiring_numeral_div" | "numeral a mod 0 :: 'a :: semiring_numeral_div" |
"numeral a div 1 :: 'a :: semiring_numeral_div" | "numeral a mod 1 :: 'a :: semiring_numeral_div" |
"numeral a div - 1 :: int" | "numeral a mod - 1 :: int" |
"numeral a div numeral b :: 'a :: semiring_numeral_div" | "numeral a mod numeral b :: 'a :: semiring_numeral_div" |
"numeral a div - numeral b :: int" | "numeral a mod - numeral b :: int" |
"- numeral a div 0 :: int" | "- numeral a mod 0 :: int" |
"- numeral a div 1 :: int" | "- numeral a mod 1 :: int" |
"- numeral a div - 1 :: int" | "- numeral a mod - 1 :: int" |
"- numeral a div numeral b :: int" | "- numeral a mod numeral b :: int" |
"- numeral a div - numeral b :: int" | "- numeral a mod - numeral b :: int") =
\<open> let
val if_cong = the (Code.get_case_cong @{theory} @{const_name If});
fun successful_rewrite ctxt ct =
let
val thm = Simplifier.rewrite ctxt ct
in if Thm.is_reflexive thm then NONE else SOME thm end;
in fn phi =>
let
val simps = Morphism.fact phi (@{thms div_0 mod_0 div_by_0 mod_by_0 div_by_1 mod_by_1
one_div_numeral one_mod_numeral minus_one_div_numeral minus_one_mod_numeral
one_div_minus_numeral one_mod_minus_numeral
numeral_div_numeral numeral_mod_numeral minus_numeral_div_numeral minus_numeral_mod_numeral
numeral_div_minus_numeral numeral_mod_minus_numeral
div_minus_minus mod_minus_minus Divides.adjust_div_eq of_bool_eq one_neq_zero
numeral_neq_zero neg_equal_0_iff_equal arith_simps arith_special divmod_trivial
divmod_cancel divmod_steps divmod_step_eq fst_conv snd_conv numeral_One
case_prod_beta rel_simps Divides.adjust_mod_def div_minus1_right mod_minus1_right
minus_minus numeral_times_numeral mult_zero_right mult_1_right}
@ [@{lemma "0 = 0 \<longleftrightarrow> True" by simp}]);
fun prepare_simpset ctxt = HOL_ss |> Simplifier.simpset_map ctxt
(Simplifier.add_cong if_cong #> fold Simplifier.add_simp simps)
in fn ctxt => successful_rewrite (Simplifier.put_simpset (prepare_simpset ctxt) ctxt) end
end;
\<close>
subsubsection \<open>Code generation\<close>
lemma [code]:
fixes k :: int
shows
"k div 0 = 0"
"k mod 0 = k"
"0 div k = 0"
"0 mod k = 0"
"k div Int.Pos Num.One = k"
"k mod Int.Pos Num.One = 0"
"k div Int.Neg Num.One = - k"
"k mod Int.Neg Num.One = 0"
"Int.Pos m div Int.Pos n = (fst (divmod m n) :: int)"
"Int.Pos m mod Int.Pos n = (snd (divmod m n) :: int)"
"Int.Neg m div Int.Pos n = - (Divides.adjust_div (divmod m n) :: int)"
"Int.Neg m mod Int.Pos n = Divides.adjust_mod (Int.Pos n) (snd (divmod m n) :: int)"
"Int.Pos m div Int.Neg n = - (Divides.adjust_div (divmod m n) :: int)"
"Int.Pos m mod Int.Neg n = - Divides.adjust_mod (Int.Pos n) (snd (divmod m n) :: int)"
"Int.Neg m div Int.Neg n = (fst (divmod m n) :: int)"
"Int.Neg m mod Int.Neg n = - (snd (divmod m n) :: int)"
by simp_all
code_identifier
code_module Divides \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
lemma dvd_eq_mod_eq_0_numeral:
"numeral x dvd (numeral y :: 'a) \<longleftrightarrow> numeral y mod numeral x = (0 :: 'a::semiring_div)"
by (fact dvd_eq_mod_eq_0)
end