(* Title: HOL/Groups_Big.thy
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
with contributions by Jeremy Avigad
*)
section \<open>Big sum and product over finite (non-empty) sets\<close>
theory Groups_Big
imports Finite_Set Power
begin
subsection \<open>Generic monoid operation over a set\<close>
no_notation times (infixl "*" 70)
no_notation Groups.one ("1")
locale comm_monoid_set = comm_monoid
begin
interpretation comp_fun_commute f
by standard (simp add: fun_eq_iff left_commute)
interpretation comp?: comp_fun_commute "f \<circ> g"
by (fact comp_comp_fun_commute)
definition F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
where
eq_fold: "F g A = Finite_Set.fold (f \<circ> g) 1 A"
lemma infinite [simp]:
"\<not> finite A \<Longrightarrow> F g A = 1"
by (simp add: eq_fold)
lemma empty [simp]:
"F g {} = 1"
by (simp add: eq_fold)
lemma insert [simp]:
assumes "finite A" and "x \<notin> A"
shows "F g (insert x A) = g x * F g A"
using assms by (simp add: eq_fold)
lemma remove:
assumes "finite A" and "x \<in> A"
shows "F g A = g x * F g (A - {x})"
proof -
from \<open>x \<in> A\<close> obtain B where A: "A = insert x B" and "x \<notin> B"
by (auto dest: mk_disjoint_insert)
moreover from \<open>finite A\<close> A have "finite B" by simp
ultimately show ?thesis by simp
qed
lemma insert_remove:
assumes "finite A"
shows "F g (insert x A) = g x * F g (A - {x})"
using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)
lemma neutral:
assumes "\<forall>x\<in>A. g x = 1"
shows "F g A = 1"
using assms by (induct A rule: infinite_finite_induct) simp_all
lemma neutral_const [simp]:
"F (\<lambda>_. 1) A = 1"
by (simp add: neutral)
lemma union_inter:
assumes "finite A" and "finite B"
shows "F g (A \<union> B) * F g (A \<inter> B) = F g A * F g B"
\<comment> \<open>The reversed orientation looks more natural, but LOOPS as a simprule!\<close>
using assms proof (induct A)
case empty then show ?case by simp
next
case (insert x A) then show ?case
by (auto simp add: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute)
qed
corollary union_inter_neutral:
assumes "finite A" and "finite B"
and I0: "\<forall>x \<in> A \<inter> B. g x = 1"
shows "F g (A \<union> B) = F g A * F g B"
using assms by (simp add: union_inter [symmetric] neutral)
corollary union_disjoint:
assumes "finite A" and "finite B"
assumes "A \<inter> B = {}"
shows "F g (A \<union> B) = F g A * F g B"
using assms by (simp add: union_inter_neutral)
lemma union_diff2:
assumes "finite A" and "finite B"
shows "F g (A \<union> B) = F g (A - B) * F g (B - A) * F g (A \<inter> B)"
proof -
have "A \<union> B = A - B \<union> (B - A) \<union> A \<inter> B"
by auto
with assms show ?thesis by simp (subst union_disjoint, auto)+
qed
lemma subset_diff:
assumes "B \<subseteq> A" and "finite A"
shows "F g A = F g (A - B) * F g B"
proof -
from assms have "finite (A - B)" by auto
moreover from assms have "finite B" by (rule finite_subset)
moreover from assms have "(A - B) \<inter> B = {}" by auto
ultimately have "F g (A - B \<union> B) = F g (A - B) * F g B" by (rule union_disjoint)
moreover from assms have "A \<union> B = A" by auto
ultimately show ?thesis by simp
qed
lemma setdiff_irrelevant:
assumes "finite A"
shows "F g (A - {x. g x = z}) = F g A"
using assms by (induct A) (simp_all add: insert_Diff_if)
lemma not_neutral_contains_not_neutral:
assumes "F g A \<noteq> z"
obtains a where "a \<in> A" and "g a \<noteq> z"
proof -
from assms have "\<exists>a\<in>A. g a \<noteq> z"
proof (induct A rule: infinite_finite_induct)
case (insert a A)
then show ?case by simp (rule, simp)
qed simp_all
with that show thesis by blast
qed
lemma reindex:
assumes "inj_on h A"
shows "F g (h ` A) = F (g \<circ> h) A"
proof (cases "finite A")
case True
with assms show ?thesis by (simp add: eq_fold fold_image comp_assoc)
next
case False with assms have "\<not> finite (h ` A)" by (blast dest: finite_imageD)
with False show ?thesis by simp
qed
lemma cong:
assumes "A = B"
assumes g_h: "\<And>x. x \<in> B \<Longrightarrow> g x = h x"
shows "F g A = F h B"
using g_h unfolding \<open>A = B\<close>
by (induct B rule: infinite_finite_induct) auto
lemma strong_cong [cong]:
assumes "A = B" "\<And>x. x \<in> B =simp=> g x = h x"
shows "F (\<lambda>x. g x) A = F (\<lambda>x. h x) B"
by (rule cong) (insert assms, simp_all add: simp_implies_def)
lemma reindex_cong:
assumes "inj_on l B"
assumes "A = l ` B"
assumes "\<And>x. x \<in> B \<Longrightarrow> g (l x) = h x"
shows "F g A = F h B"
using assms by (simp add: reindex)
lemma UNION_disjoint:
assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
shows "F g (UNION I A) = F (\<lambda>x. F g (A x)) I"
apply (insert assms)
apply (induct rule: finite_induct)
apply simp
apply atomize
apply (subgoal_tac "\<forall>i\<in>Fa. x \<noteq> i")
prefer 2 apply blast
apply (subgoal_tac "A x Int UNION Fa A = {}")
prefer 2 apply blast
apply (simp add: union_disjoint)
done
lemma Union_disjoint:
assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A \<inter> B = {}"
shows "F g (\<Union>C) = (F \<circ> F) g C"
proof cases
assume "finite C"
from UNION_disjoint [OF this assms]
show ?thesis by simp
qed (auto dest: finite_UnionD intro: infinite)
lemma distrib:
"F (\<lambda>x. g x * h x) A = F g A * F h A"
by (induct A rule: infinite_finite_induct) (simp_all add: assoc commute left_commute)
lemma Sigma:
"finite A \<Longrightarrow> \<forall>x\<in>A. finite (B x) \<Longrightarrow> F (\<lambda>x. F (g x) (B x)) A = F (case_prod g) (SIGMA x:A. B x)"
apply (subst Sigma_def)
apply (subst UNION_disjoint, assumption, simp)
apply blast
apply (rule cong)
apply rule
apply (simp add: fun_eq_iff)
apply (subst UNION_disjoint, simp, simp)
apply blast
apply (simp add: comp_def)
done
lemma related:
assumes Re: "R 1 1"
and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)"
and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
shows "R (F h S) (F g S)"
using fS by (rule finite_subset_induct) (insert assms, auto)
lemma mono_neutral_cong_left:
assumes "finite T" and "S \<subseteq> T" and "\<forall>i \<in> T - S. h i = 1"
and "\<And>x. x \<in> S \<Longrightarrow> g x = h x" shows "F g S = F h T"
proof-
have eq: "T = S \<union> (T - S)" using \<open>S \<subseteq> T\<close> by blast
have d: "S \<inter> (T - S) = {}" using \<open>S \<subseteq> T\<close> by blast
from \<open>finite T\<close> \<open>S \<subseteq> T\<close> have f: "finite S" "finite (T - S)"
by (auto intro: finite_subset)
show ?thesis using assms(4)
by (simp add: union_disjoint [OF f d, unfolded eq [symmetric]] neutral [OF assms(3)])
qed
lemma mono_neutral_cong_right:
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1; \<And>x. x \<in> S \<Longrightarrow> g x = h x \<rbrakk>
\<Longrightarrow> F g T = F h S"
by (auto intro!: mono_neutral_cong_left [symmetric])
lemma mono_neutral_left:
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1 \<rbrakk> \<Longrightarrow> F g S = F g T"
by (blast intro: mono_neutral_cong_left)
lemma mono_neutral_right:
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1 \<rbrakk> \<Longrightarrow> F g T = F g S"
by (blast intro!: mono_neutral_left [symmetric])
lemma reindex_bij_betw: "bij_betw h S T \<Longrightarrow> F (\<lambda>x. g (h x)) S = F g T"
by (auto simp: bij_betw_def reindex)
lemma reindex_bij_witness:
assumes witness:
"\<And>a. a \<in> S \<Longrightarrow> i (j a) = a"
"\<And>a. a \<in> S \<Longrightarrow> j a \<in> T"
"\<And>b. b \<in> T \<Longrightarrow> j (i b) = b"
"\<And>b. b \<in> T \<Longrightarrow> i b \<in> S"
assumes eq:
"\<And>a. a \<in> S \<Longrightarrow> h (j a) = g a"
shows "F g S = F h T"
proof -
have "bij_betw j S T"
using bij_betw_byWitness[where A=S and f=j and f'=i and A'=T] witness by auto
moreover have "F g S = F (\<lambda>x. h (j x)) S"
by (intro cong) (auto simp: eq)
ultimately show ?thesis
by (simp add: reindex_bij_betw)
qed
lemma reindex_bij_betw_not_neutral:
assumes fin: "finite S'" "finite T'"
assumes bij: "bij_betw h (S - S') (T - T')"
assumes nn:
"\<And>a. a \<in> S' \<Longrightarrow> g (h a) = z"
"\<And>b. b \<in> T' \<Longrightarrow> g b = z"
shows "F (\<lambda>x. g (h x)) S = F g T"
proof -
have [simp]: "finite S \<longleftrightarrow> finite T"
using bij_betw_finite[OF bij] fin by auto
show ?thesis
proof cases
assume "finite S"
with nn have "F (\<lambda>x. g (h x)) S = F (\<lambda>x. g (h x)) (S - S')"
by (intro mono_neutral_cong_right) auto
also have "\<dots> = F g (T - T')"
using bij by (rule reindex_bij_betw)
also have "\<dots> = F g T"
using nn \<open>finite S\<close> by (intro mono_neutral_cong_left) auto
finally show ?thesis .
qed simp
qed
lemma reindex_nontrivial:
assumes "finite A"
and nz: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> h x = h y \<Longrightarrow> g (h x) = 1"
shows "F g (h ` A) = F (g \<circ> h) A"
proof (subst reindex_bij_betw_not_neutral [symmetric])
show "bij_betw h (A - {x \<in> A. (g \<circ> h) x = 1}) (h ` A - h ` {x \<in> A. (g \<circ> h) x = 1})"
using nz by (auto intro!: inj_onI simp: bij_betw_def)
qed (insert \<open>finite A\<close>, auto)
lemma reindex_bij_witness_not_neutral:
assumes fin: "finite S'" "finite T'"
assumes witness:
"\<And>a. a \<in> S - S' \<Longrightarrow> i (j a) = a"
"\<And>a. a \<in> S - S' \<Longrightarrow> j a \<in> T - T'"
"\<And>b. b \<in> T - T' \<Longrightarrow> j (i b) = b"
"\<And>b. b \<in> T - T' \<Longrightarrow> i b \<in> S - S'"
assumes nn:
"\<And>a. a \<in> S' \<Longrightarrow> g a = z"
"\<And>b. b \<in> T' \<Longrightarrow> h b = z"
assumes eq:
"\<And>a. a \<in> S \<Longrightarrow> h (j a) = g a"
shows "F g S = F h T"
proof -
have bij: "bij_betw j (S - (S' \<inter> S)) (T - (T' \<inter> T))"
using witness by (intro bij_betw_byWitness[where f'=i]) auto
have F_eq: "F g S = F (\<lambda>x. h (j x)) S"
by (intro cong) (auto simp: eq)
show ?thesis
unfolding F_eq using fin nn eq
by (intro reindex_bij_betw_not_neutral[OF _ _ bij]) auto
qed
lemma delta:
assumes fS: "finite S"
shows "F (\<lambda>k. if k = a then b k else 1) S = (if a \<in> S then b a else 1)"
proof-
let ?f = "(\<lambda>k. if k=a then b k else 1)"
{ assume a: "a \<notin> S"
hence "\<forall>k\<in>S. ?f k = 1" by simp
hence ?thesis using a by simp }
moreover
{ assume a: "a \<in> S"
let ?A = "S - {a}"
let ?B = "{a}"
have eq: "S = ?A \<union> ?B" using a by blast
have dj: "?A \<inter> ?B = {}" by simp
from fS have fAB: "finite ?A" "finite ?B" by auto
have "F ?f S = F ?f ?A * F ?f ?B"
using union_disjoint [OF fAB dj, of ?f, unfolded eq [symmetric]]
by simp
then have ?thesis using a by simp }
ultimately show ?thesis by blast
qed
lemma delta':
assumes fS: "finite S"
shows "F (\<lambda>k. if a = k then b k else 1) S = (if a \<in> S then b a else 1)"
using delta [OF fS, of a b, symmetric] by (auto intro: cong)
lemma If_cases:
fixes P :: "'b \<Rightarrow> bool" and g h :: "'b \<Rightarrow> 'a"
assumes fA: "finite A"
shows "F (\<lambda>x. if P x then h x else g x) A =
F h (A \<inter> {x. P x}) * F g (A \<inter> - {x. P x})"
proof -
have a: "A = A \<inter> {x. P x} \<union> A \<inter> -{x. P x}"
"(A \<inter> {x. P x}) \<inter> (A \<inter> -{x. P x}) = {}"
by blast+
from fA
have f: "finite (A \<inter> {x. P x})" "finite (A \<inter> -{x. P x})" by auto
let ?g = "\<lambda>x. if P x then h x else g x"
from union_disjoint [OF f a(2), of ?g] a(1)
show ?thesis
by (subst (1 2) cong) simp_all
qed
lemma cartesian_product:
"F (\<lambda>x. F (g x) B) A = F (case_prod g) (A \<times> B)"
apply (rule sym)
apply (cases "finite A")
apply (cases "finite B")
apply (simp add: Sigma)
apply (cases "A={}", simp)
apply simp
apply (auto intro: infinite dest: finite_cartesian_productD2)
apply (cases "B = {}") apply (auto intro: infinite dest: finite_cartesian_productD1)
done
lemma inter_restrict:
assumes "finite A"
shows "F g (A \<inter> B) = F (\<lambda>x. if x \<in> B then g x else 1) A"
proof -
let ?g = "\<lambda>x. if x \<in> A \<inter> B then g x else 1"
have "\<forall>i\<in>A - A \<inter> B. (if i \<in> A \<inter> B then g i else 1) = 1"
by simp
moreover have "A \<inter> B \<subseteq> A" by blast
ultimately have "F ?g (A \<inter> B) = F ?g A" using \<open>finite A\<close>
by (intro mono_neutral_left) auto
then show ?thesis by simp
qed
lemma inter_filter:
"finite A \<Longrightarrow> F g {x \<in> A. P x} = F (\<lambda>x. if P x then g x else 1) A"
by (simp add: inter_restrict [symmetric, of A "{x. P x}" g, simplified mem_Collect_eq] Int_def)
lemma Union_comp:
assumes "\<forall>A \<in> B. finite A"
and "\<And>A1 A2 x. A1 \<in> B \<Longrightarrow> A2 \<in> B \<Longrightarrow> A1 \<noteq> A2 \<Longrightarrow> x \<in> A1 \<Longrightarrow> x \<in> A2 \<Longrightarrow> g x = 1"
shows "F g (\<Union>B) = (F \<circ> F) g B"
using assms proof (induct B rule: infinite_finite_induct)
case (infinite A)
then have "\<not> finite (\<Union>A)" by (blast dest: finite_UnionD)
with infinite show ?case by simp
next
case empty then show ?case by simp
next
case (insert A B)
then have "finite A" "finite B" "finite (\<Union>B)" "A \<notin> B"
and "\<forall>x\<in>A \<inter> \<Union>B. g x = 1"
and H: "F g (\<Union>B) = (F o F) g B" by auto
then have "F g (A \<union> \<Union>B) = F g A * F g (\<Union>B)"
by (simp add: union_inter_neutral)
with \<open>finite B\<close> \<open>A \<notin> B\<close> show ?case
by (simp add: H)
qed
lemma commute:
"F (\<lambda>i. F (g i) B) A = F (\<lambda>j. F (\<lambda>i. g i j) A) B"
unfolding cartesian_product
by (rule reindex_bij_witness [where i = "\<lambda>(i, j). (j, i)" and j = "\<lambda>(i, j). (j, i)"]) auto
lemma commute_restrict:
"finite A \<Longrightarrow> finite B \<Longrightarrow>
F (\<lambda>x. F (g x) {y. y \<in> B \<and> R x y}) A = F (\<lambda>y. F (\<lambda>x. g x y) {x. x \<in> A \<and> R x y}) B"
by (simp add: inter_filter) (rule commute)
lemma Plus:
fixes A :: "'b set" and B :: "'c set"
assumes fin: "finite A" "finite B"
shows "F g (A <+> B) = F (g \<circ> Inl) A * F (g \<circ> Inr) B"
proof -
have "A <+> B = Inl ` A \<union> Inr ` B" by auto
moreover from fin have "finite (Inl ` A :: ('b + 'c) set)" "finite (Inr ` B :: ('b + 'c) set)"
by auto
moreover have "Inl ` A \<inter> Inr ` B = ({} :: ('b + 'c) set)" by auto
moreover have "inj_on (Inl :: 'b \<Rightarrow> 'b + 'c) A" "inj_on (Inr :: 'c \<Rightarrow> 'b + 'c) B"
by (auto intro: inj_onI)
ultimately show ?thesis using fin
by (simp add: union_disjoint reindex)
qed
lemma same_carrier:
assumes "finite C"
assumes subset: "A \<subseteq> C" "B \<subseteq> C"
assumes trivial: "\<And>a. a \<in> C - A \<Longrightarrow> g a = 1" "\<And>b. b \<in> C - B \<Longrightarrow> h b = 1"
shows "F g A = F h B \<longleftrightarrow> F g C = F h C"
proof -
from \<open>finite C\<close> subset have
"finite A" and "finite B" and "finite (C - A)" and "finite (C - B)"
by (auto elim: finite_subset)
from subset have [simp]: "A - (C - A) = A" by auto
from subset have [simp]: "B - (C - B) = B" by auto
from subset have "C = A \<union> (C - A)" by auto
then have "F g C = F g (A \<union> (C - A))" by simp
also have "\<dots> = F g (A - (C - A)) * F g (C - A - A) * F g (A \<inter> (C - A))"
using \<open>finite A\<close> \<open>finite (C - A)\<close> by (simp only: union_diff2)
finally have P: "F g C = F g A" using trivial by simp
from subset have "C = B \<union> (C - B)" by auto
then have "F h C = F h (B \<union> (C - B))" by simp
also have "\<dots> = F h (B - (C - B)) * F h (C - B - B) * F h (B \<inter> (C - B))"
using \<open>finite B\<close> \<open>finite (C - B)\<close> by (simp only: union_diff2)
finally have Q: "F h C = F h B" using trivial by simp
from P Q show ?thesis by simp
qed
lemma same_carrierI:
assumes "finite C"
assumes subset: "A \<subseteq> C" "B \<subseteq> C"
assumes trivial: "\<And>a. a \<in> C - A \<Longrightarrow> g a = 1" "\<And>b. b \<in> C - B \<Longrightarrow> h b = 1"
assumes "F g C = F h C"
shows "F g A = F h B"
using assms same_carrier [of C A B] by simp
end
notation times (infixl "*" 70)
notation Groups.one ("1")
subsection \<open>Generalized summation over a set\<close>
context comm_monoid_add
begin
sublocale setsum: comm_monoid_set plus 0
defines
setsum = setsum.F ..
abbreviation Setsum ("\<Sum>_" [1000] 999)
where "\<Sum>A \<equiv> setsum (\<lambda>x. x) A"
end
text \<open>Now: lot's of fancy syntax. First, @{term "setsum (\<lambda>x. e) A"} is written \<open>\<Sum>x\<in>A. e\<close>.\<close>
syntax (ASCII)
"_setsum" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b::comm_monoid_add" ("(3SUM _:_./ _)" [0, 51, 10] 10)
syntax
"_setsum" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b::comm_monoid_add" ("(2\<Sum>_\<in>_./ _)" [0, 51, 10] 10)
translations \<comment> \<open>Beware of argument permutation!\<close>
"\<Sum>i\<in>A. b" \<rightleftharpoons> "CONST setsum (\<lambda>i. b) A"
text \<open>Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter \<open>\<Sum>x|P. e\<close>.\<close>
syntax (ASCII)
"_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0, 0, 10] 10)
syntax
"_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(2\<Sum>_ | (_)./ _)" [0, 0, 10] 10)
translations
"\<Sum>x|P. t" => "CONST setsum (\<lambda>x. t) {x. P}"
print_translation \<open>
let
fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] =
if x <> y then raise Match
else
let
val x' = Syntax_Trans.mark_bound_body (x, Tx);
val t' = subst_bound (x', t);
val P' = subst_bound (x', P);
in
Syntax.const @{syntax_const "_qsetsum"} $ Syntax_Trans.mark_bound_abs (x, Tx) $ P' $ t'
end
| setsum_tr' _ = raise Match;
in [(@{const_syntax setsum}, K setsum_tr')] end
\<close>
text \<open>TODO generalization candidates\<close>
lemma (in comm_monoid_add) setsum_image_gen:
assumes fS: "finite S"
shows "setsum g S = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
proof-
{ fix x assume "x \<in> S" then have "{y. y\<in> f`S \<and> f x = y} = {f x}" by auto }
hence "setsum g S = setsum (\<lambda>x. setsum (\<lambda>y. g x) {y. y\<in> f`S \<and> f x = y}) S"
by simp
also have "\<dots> = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
by (rule setsum.commute_restrict [OF fS finite_imageI [OF fS]])
finally show ?thesis .
qed
subsubsection \<open>Properties in more restricted classes of structures\<close>
lemma setsum_Un: "finite A ==> finite B ==>
(setsum f (A Un B) :: 'a :: ab_group_add) =
setsum f A + setsum f B - setsum f (A Int B)"
by (subst setsum.union_inter [symmetric], auto simp add: algebra_simps)
lemma setsum_Un2:
assumes "finite (A \<union> B)"
shows "setsum f (A \<union> B) = setsum f (A - B) + setsum f (B - A) + setsum f (A \<inter> B)"
proof -
have "A \<union> B = A - B \<union> (B - A) \<union> A \<inter> B"
by auto
with assms show ?thesis by simp (subst setsum.union_disjoint, auto)+
qed
lemma setsum_diff1: "finite A \<Longrightarrow>
(setsum f (A - {a}) :: ('a::ab_group_add)) =
(if a:A then setsum f A - f a else setsum f A)"
by (erule finite_induct) (auto simp add: insert_Diff_if)
lemma setsum_diff:
assumes le: "finite A" "B \<subseteq> A"
shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
proof -
from le have finiteB: "finite B" using finite_subset by auto
show ?thesis using finiteB le
proof induct
case empty
thus ?case by auto
next
case (insert x F)
thus ?case using le finiteB
by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb)
qed
qed
lemma (in ordered_comm_monoid_add) setsum_mono:
assumes le: "\<And>i. i\<in>K \<Longrightarrow> f i \<le> g i"
shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)"
proof (cases "finite K")
case True
thus ?thesis using le
proof induct
case empty
thus ?case by simp
next
case insert
thus ?case using add_mono by fastforce
qed
next
case False then show ?thesis by simp
qed
lemma (in strict_ordered_comm_monoid_add) setsum_strict_mono:
assumes "finite A" "A \<noteq> {}" and "\<And>x. x \<in> A \<Longrightarrow> f x < g x"
shows "setsum f A < setsum g A"
using assms
proof (induct rule: finite_ne_induct)
case singleton thus ?case by simp
next
case insert thus ?case by (auto simp: add_strict_mono)
qed
lemma setsum_strict_mono_ex1:
fixes f g :: "'i \<Rightarrow> 'a::ordered_cancel_comm_monoid_add"
assumes "finite A" and "\<forall>x\<in>A. f x \<le> g x" and "\<exists>a\<in>A. f a < g a"
shows "setsum f A < setsum g A"
proof-
from assms(3) obtain a where a: "a:A" "f a < g a" by blast
have "setsum f A = setsum f ((A-{a}) \<union> {a})"
by(simp add:insert_absorb[OF \<open>a:A\<close>])
also have "\<dots> = setsum f (A-{a}) + setsum f {a}"
using \<open>finite A\<close> by(subst setsum.union_disjoint) auto
also have "setsum f (A-{a}) \<le> setsum g (A-{a})"
by(rule setsum_mono)(simp add: assms(2))
also have "setsum f {a} < setsum g {a}" using a by simp
also have "setsum g (A - {a}) + setsum g {a} = setsum g((A-{a}) \<union> {a})"
using \<open>finite A\<close> by(subst setsum.union_disjoint[symmetric]) auto
also have "\<dots> = setsum g A" by(simp add:insert_absorb[OF \<open>a:A\<close>])
finally show ?thesis by (auto simp add: add_right_mono add_strict_left_mono)
qed
lemma setsum_negf: "(\<Sum>x\<in>A. - f x::'a::ab_group_add) = - (\<Sum>x\<in>A. f x)"
proof (cases "finite A")
case True thus ?thesis by (induct set: finite) auto
next
case False thus ?thesis by simp
qed
lemma setsum_subtractf: "(\<Sum>x\<in>A. f x - g x::'a::ab_group_add) = (\<Sum>x\<in>A. f x) - (\<Sum>x\<in>A. g x)"
using setsum.distrib [of f "- g" A] by (simp add: setsum_negf)
lemma setsum_subtractf_nat:
"(\<And>x. x \<in> A \<Longrightarrow> g x \<le> f x) \<Longrightarrow> (\<Sum>x\<in>A. f x - g x::nat) = (\<Sum>x\<in>A. f x) - (\<Sum>x\<in>A. g x)"
by (induction A rule: infinite_finite_induct) (auto simp: setsum_mono)
lemma (in ordered_comm_monoid_add) setsum_nonneg:
assumes nn: "\<forall>x\<in>A. 0 \<le> f x"
shows "0 \<le> setsum f A"
proof (cases "finite A")
case True thus ?thesis using nn
proof induct
case empty then show ?case by simp
next
case (insert x F)
then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono)
with insert show ?case by simp
qed
next
case False thus ?thesis by simp
qed
lemma (in ordered_comm_monoid_add) setsum_nonpos:
assumes np: "\<forall>x\<in>A. f x \<le> 0"
shows "setsum f A \<le> 0"
proof (cases "finite A")
case True thus ?thesis using np
proof induct
case empty then show ?case by simp
next
case (insert x F)
then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono)
with insert show ?case by simp
qed
next
case False thus ?thesis by simp
qed
lemma (in ordered_comm_monoid_add) setsum_nonneg_eq_0_iff:
"finite A \<Longrightarrow> \<forall>x\<in>A. 0 \<le> f x \<Longrightarrow> setsum f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)"
by (induct set: finite, simp) (simp add: add_nonneg_eq_0_iff setsum_nonneg)
lemma (in ordered_comm_monoid_add) setsum_nonneg_0:
"finite s \<Longrightarrow> (\<And>i. i \<in> s \<Longrightarrow> f i \<ge> 0) \<Longrightarrow> (\<Sum> i \<in> s. f i) = 0 \<Longrightarrow> i \<in> s \<Longrightarrow> f i = 0"
by (simp add: setsum_nonneg_eq_0_iff)
lemma (in ordered_comm_monoid_add) setsum_nonneg_leq_bound:
assumes "finite s" "\<And>i. i \<in> s \<Longrightarrow> f i \<ge> 0" "(\<Sum>i \<in> s. f i) = B" "i \<in> s"
shows "f i \<le> B"
proof -
have "f i \<le> f i + (\<Sum>i \<in> s - {i}. f i)"
using assms by (intro add_increasing2 setsum_nonneg) auto
also have "\<dots> = B"
using setsum.remove[of s i f] assms by simp
finally show ?thesis by auto
qed
lemma (in ordered_comm_monoid_add) setsum_mono2:
assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b"
shows "setsum f A \<le> setsum f B"
proof -
have "setsum f A \<le> setsum f A + setsum f (B-A)"
by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def)
also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin]
by (simp add: setsum.union_disjoint del:Un_Diff_cancel)
also have "A \<union> (B-A) = B" using sub by blast
finally show ?thesis .
qed
lemma (in ordered_comm_monoid_add) setsum_le_included:
assumes "finite s" "finite t"
and "\<forall>y\<in>t. 0 \<le> g y" "(\<forall>x\<in>s. \<exists>y\<in>t. i y = x \<and> f x \<le> g y)"
shows "setsum f s \<le> setsum g t"
proof -
have "setsum f s \<le> setsum (\<lambda>y. setsum g {x. x\<in>t \<and> i x = y}) s"
proof (rule setsum_mono)
fix y assume "y \<in> s"
with assms obtain z where z: "z \<in> t" "y = i z" "f y \<le> g z" by auto
with assms show "f y \<le> setsum g {x \<in> t. i x = y}" (is "?A y \<le> ?B y")
using order_trans[of "?A (i z)" "setsum g {z}" "?B (i z)", intro]
by (auto intro!: setsum_mono2)
qed
also have "... \<le> setsum (\<lambda>y. setsum g {x. x\<in>t \<and> i x = y}) (i ` t)"
using assms(2-4) by (auto intro!: setsum_mono2 setsum_nonneg)
also have "... \<le> setsum g t"
using assms by (auto simp: setsum_image_gen[symmetric])
finally show ?thesis .
qed
lemma (in ordered_comm_monoid_add) setsum_mono3:
"finite B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> \<forall>x\<in>B - A. 0 \<le> f x \<Longrightarrow> setsum f A \<le> setsum f B"
by (rule setsum_mono2) auto
lemma (in canonically_ordered_monoid_add) setsum_eq_0_iff [simp]:
"finite F \<Longrightarrow> (setsum f F = 0) = (\<forall>a\<in>F. f a = 0)"
by (intro ballI setsum_nonneg_eq_0_iff zero_le)
lemma setsum_right_distrib:
fixes f :: "'a => ('b::semiring_0)"
shows "r * setsum f A = setsum (%n. r * f n) A"
proof (cases "finite A")
case True
thus ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A) thus ?case by (simp add: distrib_left)
qed
next
case False thus ?thesis by simp
qed
lemma setsum_left_distrib:
"setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)"
proof (cases "finite A")
case True
then show ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A) thus ?case by (simp add: distrib_right)
qed
next
case False thus ?thesis by simp
qed
lemma setsum_divide_distrib:
"setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)"
proof (cases "finite A")
case True
then show ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A) thus ?case by (simp add: add_divide_distrib)
qed
next
case False thus ?thesis by simp
qed
lemma setsum_abs[iff]:
fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
shows "\<bar>setsum f A\<bar> \<le> setsum (%i. \<bar>f i\<bar>) A"
proof (cases "finite A")
case True
thus ?thesis
proof induct
case empty thus ?case by simp
next
case (insert x A)
thus ?case by (auto intro: abs_triangle_ineq order_trans)
qed
next
case False thus ?thesis by simp
qed
lemma setsum_abs_ge_zero[iff]:
fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
shows "0 \<le> setsum (%i. \<bar>f i\<bar>) A"
by (simp add: setsum_nonneg)
lemma abs_setsum_abs[simp]:
fixes f :: "'a => ('b::ordered_ab_group_add_abs)"
shows "\<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar> = (\<Sum>a\<in>A. \<bar>f a\<bar>)"
proof (cases "finite A")
case True
thus ?thesis
proof induct
case empty thus ?case by simp
next
case (insert a A)
hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp
also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp
also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>"
by (simp del: abs_of_nonneg)
also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp
finally show ?case .
qed
next
case False thus ?thesis by simp
qed
lemma setsum_diff1_ring: assumes "finite A" "a \<in> A"
shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)"
unfolding setsum.remove [OF assms] by auto
lemma setsum_product:
fixes f :: "'a => ('b::semiring_0)"
shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)"
by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum.commute)
lemma setsum_mult_setsum_if_inj:
fixes f :: "'a => ('b::semiring_0)"
shows "inj_on (%(a,b). f a * g b) (A \<times> B) ==>
setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}"
by(auto simp: setsum_product setsum.cartesian_product
intro!: setsum.reindex_cong[symmetric])
lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a"
apply (case_tac "finite A")
prefer 2 apply simp
apply (erule rev_mp)
apply (erule finite_induct, auto)
done
lemma setsum_eq_Suc0_iff: "finite A \<Longrightarrow>
setsum f A = Suc 0 \<longleftrightarrow> (EX a:A. f a = Suc 0 & (ALL b:A. a\<noteq>b \<longrightarrow> f b = 0))"
apply(erule finite_induct)
apply (auto simp add:add_is_1)
done
lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]]
lemma setsum_Un_nat: "finite A ==> finite B ==>
(setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)"
\<comment> \<open>For the natural numbers, we have subtraction.\<close>
by (subst setsum.union_inter [symmetric], auto simp add: algebra_simps)
lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
(if a:A then setsum f A - f a else setsum f A)"
apply (case_tac "finite A")
prefer 2 apply simp
apply (erule finite_induct)
apply (auto simp add: insert_Diff_if)
apply (drule_tac a = a in mk_disjoint_insert, auto)
done
lemma setsum_diff_nat:
assumes "finite B" and "B \<subseteq> A"
shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)"
using assms
proof induct
show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
next
fix F x assume finF: "finite F" and xnotinF: "x \<notin> F"
and xFinA: "insert x F \<subseteq> A"
and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F"
from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp
from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
by (simp add: setsum_diff1_nat)
from xFinA have "F \<subseteq> A" by simp
with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp
with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
by simp
from xnotinF have "A - insert x F = (A - F) - {x}" by auto
with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x"
by simp
from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp
with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)"
by simp
thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp
qed
lemma setsum_comp_morphism:
assumes "h 0 = 0" and "\<And>x y. h (x + y) = h x + h y"
shows "setsum (h \<circ> g) A = h (setsum g A)"
proof (cases "finite A")
case False then show ?thesis by (simp add: assms)
next
case True then show ?thesis by (induct A) (simp_all add: assms)
qed
lemma (in comm_semiring_1) dvd_setsum:
"(\<And>a. a \<in> A \<Longrightarrow> d dvd f a) \<Longrightarrow> d dvd setsum f A"
by (induct A rule: infinite_finite_induct) simp_all
lemma (in ordered_comm_monoid_add) setsum_pos:
"finite I \<Longrightarrow> I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> 0 < f i) \<Longrightarrow> 0 < setsum f I"
by (induct I rule: finite_ne_induct) (auto intro: add_pos_pos)
lemma (in ordered_comm_monoid_add) setsum_pos2:
assumes I: "finite I" "i \<in> I" "0 < f i" "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"
shows "0 < setsum f I"
proof -
have "0 < f i + setsum f (I - {i})"
using assms by (intro add_pos_nonneg setsum_nonneg) auto
also have "\<dots> = setsum f I"
using assms by (simp add: setsum.remove)
finally show ?thesis .
qed
lemma setsum_cong_Suc:
assumes "0 \<notin> A" "\<And>x. Suc x \<in> A \<Longrightarrow> f (Suc x) = g (Suc x)"
shows "setsum f A = setsum g A"
proof (rule setsum.cong)
fix x assume "x \<in> A"
with assms(1) show "f x = g x" by (cases x) (auto intro!: assms(2))
qed simp_all
subsubsection \<open>Cardinality as special case of @{const setsum}\<close>
lemma card_eq_setsum:
"card A = setsum (\<lambda>x. 1) A"
proof -
have "plus \<circ> (\<lambda>_. Suc 0) = (\<lambda>_. Suc)"
by (simp add: fun_eq_iff)
then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) = Finite_Set.fold (\<lambda>_. Suc)"
by (rule arg_cong)
then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) 0 A = Finite_Set.fold (\<lambda>_. Suc) 0 A"
by (blast intro: fun_cong)
then show ?thesis by (simp add: card.eq_fold setsum.eq_fold)
qed
lemma setsum_constant [simp]:
"(\<Sum>x \<in> A. y) = of_nat (card A) * y"
apply (cases "finite A")
apply (erule finite_induct)
apply (auto simp add: algebra_simps)
done
lemma setsum_Suc: "setsum (\<lambda>x. Suc(f x)) A = setsum f A + card A"
using setsum.distrib[of f "\<lambda>_. 1" A]
by simp
lemma setsum_bounded_above:
assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, ordered_comm_monoid_add})"
shows "setsum f A \<le> of_nat (card A) * K"
proof (cases "finite A")
case True
thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp
next
case False thus ?thesis by simp
qed
lemma setsum_bounded_above_strict:
assumes "\<And>i. i\<in>A \<Longrightarrow> f i < (K::'a::{ordered_cancel_comm_monoid_add,semiring_1})"
"card A > 0"
shows "setsum f A < of_nat (card A) * K"
using assms setsum_strict_mono[where A=A and g = "%x. K"]
by (simp add: card_gt_0_iff)
lemma setsum_bounded_below:
assumes le: "\<And>i. i\<in>A \<Longrightarrow> (K::'a::{semiring_1, ordered_comm_monoid_add}) \<le> f i"
shows "of_nat (card A) * K \<le> setsum f A"
proof (cases "finite A")
case True
thus ?thesis using le setsum_mono[where K=A and f = "%x. K"] by simp
next
case False thus ?thesis by simp
qed
lemma card_UN_disjoint:
assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
shows "card (UNION I A) = (\<Sum>i\<in>I. card(A i))"
proof -
have "(\<Sum>i\<in>I. card (A i)) = (\<Sum>i\<in>I. \<Sum>x\<in>A i. 1)" by simp
with assms show ?thesis by (simp add: card_eq_setsum setsum.UNION_disjoint del: setsum_constant)
qed
lemma card_Union_disjoint:
"finite C ==> (ALL A:C. finite A) ==>
(ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {})
==> card (\<Union>C) = setsum card C"
apply (frule card_UN_disjoint [of C id])
apply simp_all
done
lemma setsum_multicount_gen:
assumes "finite s" "finite t" "\<forall>j\<in>t. (card {i\<in>s. R i j} = k j)"
shows "setsum (\<lambda>i. (card {j\<in>t. R i j})) s = setsum k t" (is "?l = ?r")
proof-
have "?l = setsum (\<lambda>i. setsum (\<lambda>x.1) {j\<in>t. R i j}) s" by auto
also have "\<dots> = ?r" unfolding setsum.commute_restrict [OF assms(1-2)]
using assms(3) by auto
finally show ?thesis .
qed
lemma setsum_multicount:
assumes "finite S" "finite T" "\<forall>j\<in>T. (card {i\<in>S. R i j} = k)"
shows "setsum (\<lambda>i. card {j\<in>T. R i j}) S = k * card T" (is "?l = ?r")
proof-
have "?l = setsum (\<lambda>i. k) T" by (rule setsum_multicount_gen) (auto simp: assms)
also have "\<dots> = ?r" by (simp add: mult.commute)
finally show ?thesis by auto
qed
subsubsection \<open>Cardinality of products\<close>
lemma card_SigmaI [simp]:
"\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk>
\<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))"
by(simp add: card_eq_setsum setsum.Sigma del:setsum_constant)
(*
lemma SigmaI_insert: "y \<notin> A ==>
(SIGMA x:(insert y A). B x) = (({y} \<times> (B y)) \<union> (SIGMA x: A. B x))"
by auto
*)
lemma card_cartesian_product: "card (A \<times> B) = card(A) * card(B)"
by (cases "finite A \<and> finite B")
(auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2)
lemma card_cartesian_product_singleton: "card({x} \<times> A) = card(A)"
by (simp add: card_cartesian_product)
subsection \<open>Generalized product over a set\<close>
context comm_monoid_mult
begin
sublocale setprod: comm_monoid_set times 1
defines
setprod = setprod.F ..
abbreviation
Setprod ("\<Prod>_" [1000] 999) where
"\<Prod>A \<equiv> setprod (\<lambda>x. x) A"
end
syntax (ASCII)
"_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(4PROD _:_./ _)" [0, 51, 10] 10)
syntax
"_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(2\<Prod>_\<in>_./ _)" [0, 51, 10] 10)
translations \<comment> \<open>Beware of argument permutation!\<close>
"\<Prod>i\<in>A. b" == "CONST setprod (\<lambda>i. b) A"
text \<open>Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter \<open>\<Prod>x|P. e\<close>.\<close>
syntax (ASCII)
"_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(4PROD _ |/ _./ _)" [0, 0, 10] 10)
syntax
"_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(2\<Prod>_ | (_)./ _)" [0, 0, 10] 10)
translations
"\<Prod>x|P. t" => "CONST setprod (\<lambda>x. t) {x. P}"
context comm_monoid_mult
begin
lemma setprod_dvd_setprod:
"(\<And>a. a \<in> A \<Longrightarrow> f a dvd g a) \<Longrightarrow> setprod f A dvd setprod g A"
proof (induct A rule: infinite_finite_induct)
case infinite then show ?case by (auto intro: dvdI)
next
case empty then show ?case by (auto intro: dvdI)
next
case (insert a A) then
have "f a dvd g a" and "setprod f A dvd setprod g A" by simp_all
then obtain r s where "g a = f a * r" and "setprod g A = setprod f A * s" by (auto elim!: dvdE)
then have "g a * setprod g A = f a * setprod f A * (r * s)" by (simp add: ac_simps)
with insert.hyps show ?case by (auto intro: dvdI)
qed
lemma setprod_dvd_setprod_subset:
"finite B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> setprod f A dvd setprod f B"
by (auto simp add: setprod.subset_diff ac_simps intro: dvdI)
end
subsubsection \<open>Properties in more restricted classes of structures\<close>
context comm_semiring_1
begin
lemma dvd_setprod_eqI [intro]:
assumes "finite A" and "a \<in> A" and "b = f a"
shows "b dvd setprod f A"
proof -
from \<open>finite A\<close> have "setprod f (insert a (A - {a})) = f a * setprod f (A - {a})"
by (intro setprod.insert) auto
also from \<open>a \<in> A\<close> have "insert a (A - {a}) = A" by blast
finally have "setprod f A = f a * setprod f (A - {a})" .
with \<open>b = f a\<close> show ?thesis by simp
qed
lemma dvd_setprodI [intro]:
assumes "finite A" and "a \<in> A"
shows "f a dvd setprod f A"
using assms by auto
lemma setprod_zero:
assumes "finite A" and "\<exists>a\<in>A. f a = 0"
shows "setprod f A = 0"
using assms proof (induct A)
case empty then show ?case by simp
next
case (insert a A)
then have "f a = 0 \<or> (\<exists>a\<in>A. f a = 0)" by simp
then have "f a * setprod f A = 0" by rule (simp_all add: insert)
with insert show ?case by simp
qed
lemma setprod_dvd_setprod_subset2:
assumes "finite B" and "A \<subseteq> B" and "\<And>a. a \<in> A \<Longrightarrow> f a dvd g a"
shows "setprod f A dvd setprod g B"
proof -
from assms have "setprod f A dvd setprod g A"
by (auto intro: setprod_dvd_setprod)
moreover from assms have "setprod g A dvd setprod g B"
by (auto intro: setprod_dvd_setprod_subset)
ultimately show ?thesis by (rule dvd_trans)
qed
end
lemma setprod_zero_iff [simp]:
assumes "finite A"
shows "setprod f A = (0::'a::semidom) \<longleftrightarrow> (\<exists>a\<in>A. f a = 0)"
using assms by (induct A) (auto simp: no_zero_divisors)
lemma (in semidom_divide) setprod_diff1:
assumes "finite A" and "f a \<noteq> 0"
shows "setprod f (A - {a}) = (if a \<in> A then setprod f A div f a else setprod f A)"
proof (cases "a \<notin> A")
case True then show ?thesis by simp
next
case False with assms show ?thesis
proof (induct A rule: finite_induct)
case empty then show ?case by simp
next
case (insert b B)
then show ?case
proof (cases "a = b")
case True with insert show ?thesis by simp
next
case False with insert have "a \<in> B" by simp
define C where "C = B - {a}"
with \<open>finite B\<close> \<open>a \<in> B\<close>
have *: "B = insert a C" "finite C" "a \<notin> C" by auto
with insert show ?thesis by (auto simp add: insert_commute ac_simps)
qed
qed
qed
lemma setsum_zero_power [simp]:
fixes c :: "nat \<Rightarrow> 'a::division_ring"
shows "(\<Sum>i\<in>A. c i * 0^i) = (if finite A \<and> 0 \<in> A then c 0 else 0)"
apply (cases "finite A")
by (induction A rule: finite_induct) auto
lemma setsum_zero_power' [simp]:
fixes c :: "nat \<Rightarrow> 'a::field"
shows "(\<Sum>i\<in>A. c i * 0^i / d i) = (if finite A \<and> 0 \<in> A then c 0 / d 0 else 0)"
using setsum_zero_power [of "\<lambda>i. c i / d i" A]
by auto
lemma (in field) setprod_inversef:
"finite A \<Longrightarrow> setprod (inverse \<circ> f) A = inverse (setprod f A)"
by (induct A rule: finite_induct) simp_all
lemma (in field) setprod_dividef:
"finite A \<Longrightarrow> (\<Prod>x\<in>A. f x / g x) = setprod f A / setprod g A"
using setprod_inversef [of A g] by (simp add: divide_inverse setprod.distrib)
lemma setprod_Un:
fixes f :: "'b \<Rightarrow> 'a :: field"
assumes "finite A" and "finite B"
and "\<forall>x\<in>A \<inter> B. f x \<noteq> 0"
shows "setprod f (A \<union> B) = setprod f A * setprod f B / setprod f (A \<inter> B)"
proof -
from assms have "setprod f A * setprod f B = setprod f (A \<union> B) * setprod f (A \<inter> B)"
by (simp add: setprod.union_inter [symmetric, of A B])
with assms show ?thesis by simp
qed
lemma (in linordered_semidom) setprod_nonneg:
"(\<forall>a\<in>A. 0 \<le> f a) \<Longrightarrow> 0 \<le> setprod f A"
by (induct A rule: infinite_finite_induct) simp_all
lemma (in linordered_semidom) setprod_pos:
"(\<forall>a\<in>A. 0 < f a) \<Longrightarrow> 0 < setprod f A"
by (induct A rule: infinite_finite_induct) simp_all
lemma (in linordered_semidom) setprod_mono:
"\<forall>i\<in>A. 0 \<le> f i \<and> f i \<le> g i \<Longrightarrow> setprod f A \<le> setprod g A"
by (induct A rule: infinite_finite_induct) (auto intro!: setprod_nonneg mult_mono)
lemma (in linordered_semidom) setprod_mono_strict:
assumes"finite A" "\<forall>i\<in>A. 0 \<le> f i \<and> f i < g i" "A \<noteq> {}"
shows "setprod f A < setprod g A"
using assms
apply (induct A rule: finite_induct)
apply (simp add: )
apply (force intro: mult_strict_mono' setprod_nonneg)
done
lemma (in linordered_field) abs_setprod:
"\<bar>setprod f A\<bar> = (\<Prod>x\<in>A. \<bar>f x\<bar>)"
by (induct A rule: infinite_finite_induct) (simp_all add: abs_mult)
lemma setprod_eq_1_iff [simp]:
"finite A \<Longrightarrow> setprod f A = 1 \<longleftrightarrow> (\<forall>a\<in>A. f a = (1::nat))"
by (induct A rule: finite_induct) simp_all
lemma setprod_pos_nat_iff [simp]:
"finite A \<Longrightarrow> setprod f A > 0 \<longleftrightarrow> (\<forall>a\<in>A. f a > (0::nat))"
using setprod_zero_iff by (simp del: neq0_conv add: zero_less_iff_neq_zero)
lemma setprod_constant:
"(\<Prod>x\<in> A. (y::'a::comm_monoid_mult)) = y ^ card A"
by (induct A rule: infinite_finite_induct) simp_all
lemma setprod_power_distrib:
fixes f :: "'a \<Rightarrow> 'b::comm_semiring_1"
shows "setprod f A ^ n = setprod (\<lambda>x. (f x) ^ n) A"
proof (cases "finite A")
case True then show ?thesis
by (induct A rule: finite_induct) (auto simp add: power_mult_distrib)
next
case False then show ?thesis
by simp
qed
lemma power_setsum:
"c ^ (\<Sum>a\<in>A. f a) = (\<Prod>a\<in>A. c ^ f a)"
by (induct A rule: infinite_finite_induct) (simp_all add: power_add)
lemma setprod_gen_delta:
assumes fS: "finite S"
shows "setprod (\<lambda>k. if k=a then b k else c) S = (if a \<in> S then (b a ::'a::comm_monoid_mult) * c^ (card S - 1) else c^ card S)"
proof-
let ?f = "(\<lambda>k. if k=a then b k else c)"
{assume a: "a \<notin> S"
hence "\<forall> k\<in> S. ?f k = c" by simp
hence ?thesis using a setprod_constant by simp }
moreover
{assume a: "a \<in> S"
let ?A = "S - {a}"
let ?B = "{a}"
have eq: "S = ?A \<union> ?B" using a by blast
have dj: "?A \<inter> ?B = {}" by simp
from fS have fAB: "finite ?A" "finite ?B" by auto
have fA0:"setprod ?f ?A = setprod (\<lambda>i. c) ?A"
by (rule setprod.cong) auto
have cA: "card ?A = card S - 1" using fS a by auto
have fA1: "setprod ?f ?A = c ^ card ?A"
unfolding fA0 by (rule setprod_constant)
have "setprod ?f ?A * setprod ?f ?B = setprod ?f S"
using setprod.union_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]]
by simp
then have ?thesis using a cA
by (simp add: fA1 field_simps cong add: setprod.cong cong del: if_weak_cong)}
ultimately show ?thesis by blast
qed
end