(* Title: Provers/blast.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1997 University of Cambridge
Generic tableau prover with proof reconstruction
SKOLEMIZES ReplaceI WRONGLY: allow new vars in prems, or forbid such rules??
Needs explicit instantiation of assumptions?
Given the typeargs system, constructor Const could be eliminated, with
TConst replaced by a constructor that takes the typargs list as an argument.
However, Const is heavily used for logical connectives.
Blast_tac is often more powerful than fast_tac, but has some limitations.
Blast_tac...
* ignores wrappers (addss, addbefore, addafter, addWrapper, ...);
this restriction is intrinsic
* ignores elimination rules that don't have the correct format
(conclusion must be a formula variable)
* rules must not require higher-order unification, e.g. apply_type in ZF
+ message "Function Var's argument not a bound variable" relates to this
* its proof strategy is more general but can actually be slower
Known problems:
"Recursive" chains of rules can sometimes exclude other unsafe formulae
from expansion. This happens because newly-created formulae always
have priority over existing ones. But obviously recursive rules
such as transitivity are treated specially to prevent this. Sometimes
the formulae get into the wrong order (see WRONG below).
With substition for equalities (hyp_subst_tac):
When substitution affects a haz formula or literal, it is moved
back to the list of safe formulae.
But there's no way of putting it in the right place. A "moved" or
"no DETERM" flag would prevent proofs failing here.
*)
(*Should be a type abbreviation?*)
type netpair = (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net;
signature BLAST_DATA =
sig
type claset
val equality_name: string
val not_name: string
val notE : thm (* [| ~P; P |] ==> R *)
val ccontr : thm
val contr_tac : int -> tactic
val dup_intr : thm -> thm
val hyp_subst_tac : bool ref -> int -> tactic
val claset : unit -> claset
val rep_cs : (* dependent on classical.ML *)
claset -> {safeIs: thm list, safeEs: thm list,
hazIs: thm list, hazEs: thm list,
swrappers: (string * wrapper) list,
uwrappers: (string * wrapper) list,
safe0_netpair: netpair, safep_netpair: netpair,
haz_netpair: netpair, dup_netpair: netpair, xtra_netpair: ContextRules.netpair}
val cla_modifiers: (Args.T list -> (Method.modifier * Args.T list)) list
val cla_meth': (claset -> int -> tactic) -> thm list -> Proof.context -> Proof.method
end;
signature BLAST =
sig
type claset
exception TRANS of string (*reports translation errors*)
datatype term =
Const of string * term list
| Skolem of string * term option ref list
| Free of string
| Var of term option ref
| Bound of int
| Abs of string*term
| $ of term*term;
type branch
val depth_tac : claset -> int -> int -> tactic
val depth_limit : int ref
val blast_tac : claset -> int -> tactic
val Blast_tac : int -> tactic
val setup : theory -> theory
(*debugging tools*)
val stats : bool ref
val trace : bool ref
val fullTrace : branch list list ref
val fromType : (indexname * term) list ref -> Term.typ -> term
val fromTerm : Term.term -> term
val fromSubgoal : Term.term -> term
val instVars : term -> (unit -> unit)
val toTerm : int -> term -> Term.term
val readGoal : theory -> string -> term
val tryInThy : theory -> int -> string ->
(int->tactic) list * branch list list * (int*int*exn) list
val trygl : claset -> int -> int ->
(int->tactic) list * branch list list * (int*int*exn) list
val Trygl : int -> int ->
(int->tactic) list * branch list list * (int*int*exn) list
val normBr : branch -> branch
end;
functor BlastFun(Data: BLAST_DATA) : BLAST =
struct
type claset = Data.claset;
val trace = ref false
and stats = ref false; (*for runtime and search statistics*)
datatype term =
Const of string * term list (*typargs constant--as a terms!*)
| Skolem of string * term option ref list
| Free of string
| Var of term option ref
| Bound of int
| Abs of string*term
| op $ of term*term;
(** Basic syntactic operations **)
fun is_Var (Var _) = true
| is_Var _ = false;
fun dest_Var (Var x) = x;
fun rand (f$x) = x;
(* maps (f, [t1,...,tn]) to f(t1,...,tn) *)
val list_comb : term * term list -> term = Library.foldl (op $);
(* maps f(t1,...,tn) to (f, [t1,...,tn]) ; naturally tail-recursive*)
fun strip_comb u : term * term list =
let fun stripc (f$t, ts) = stripc (f, t::ts)
| stripc x = x
in stripc(u,[]) end;
(* maps f(t1,...,tn) to f , which is never a combination *)
fun head_of (f$t) = head_of f
| head_of u = u;
(** Particular constants **)
fun negate P = Const (Data.not_name, []) $ P;
fun isNot (Const (c, _) $ _) = c = Data.not_name
| isNot _ = false;
fun mkGoal P = Const ("*Goal*", []) $ P;
fun isGoal (Const ("*Goal*", _) $ _) = true
| isGoal _ = false;
val TruepropC = ObjectLogic.judgment_name (the_context ());
val TruepropT = Sign.the_const_type (the_context ()) TruepropC;
fun mk_Trueprop t = Term.$ (Term.Const (TruepropC, TruepropT), t);
fun strip_Trueprop (tm as Const (c, _) $ t) = if c = TruepropC then t else tm
| strip_Trueprop tm = tm;
(*** Dealing with overloaded constants ***)
(*alist is a map from TVar names to Vars. We need to unify the TVars
faithfully in order to track overloading*)
fun fromType alist (Term.Type(a,Ts)) = list_comb (Const (a, []), map (fromType alist) Ts)
| fromType alist (Term.TFree(a,_)) = Free a
| fromType alist (Term.TVar (ixn,_)) =
(case (AList.lookup (op =) (!alist) ixn) of
NONE => let val t' = Var(ref NONE)
in alist := (ixn, t') :: !alist; t'
end
| SOME v => v)
(*refer to the theory in which blast is initialized*)
val typargs = ref (fn ((_, T): string * typ) => [T]);
fun fromConst alist (a, T) =
Const (a, map (fromType alist) (! typargs (a, T)));
(*Tests whether 2 terms are alpha-convertible; chases instantiations*)
fun (Const (a, ts)) aconv (Const (b, us)) = a=b andalso aconvs (ts, us)
| (Skolem (a,_)) aconv (Skolem (b,_)) = a=b (*arglists must then be equal*)
| (Free a) aconv (Free b) = a=b
| (Var(ref(SOME t))) aconv u = t aconv u
| t aconv (Var(ref(SOME u))) = t aconv u
| (Var v) aconv (Var w) = v=w (*both Vars are un-assigned*)
| (Bound i) aconv (Bound j) = i=j
| (Abs(_,t)) aconv (Abs(_,u)) = t aconv u
| (f$t) aconv (g$u) = (f aconv g) andalso (t aconv u)
| _ aconv _ = false
and aconvs ([], []) = true
| aconvs (t :: ts, u :: us) = t aconv u andalso aconvs (ts, us)
| aconvs _ = false;
fun mem_term (_, []) = false
| mem_term (t, t'::ts) = t aconv t' orelse mem_term(t,ts);
fun ins_term(t,ts) = if mem_term(t,ts) then ts else t :: ts;
fun mem_var (v: term option ref, []) = false
| mem_var (v, v'::vs) = v=v' orelse mem_var(v,vs);
fun ins_var(v,vs) = if mem_var(v,vs) then vs else v :: vs;
(** Vars **)
(*Accumulates the Vars in the term, suppressing duplicates*)
fun add_term_vars (Skolem(a,args), vars) = add_vars_vars(args,vars)
| add_term_vars (Var (v as ref NONE), vars) = ins_var (v, vars)
| add_term_vars (Var (ref (SOME u)), vars) = add_term_vars(u,vars)
| add_term_vars (Const (_,ts), vars) = add_terms_vars(ts,vars)
| add_term_vars (Abs (_,body), vars) = add_term_vars(body,vars)
| add_term_vars (f$t, vars) = add_term_vars (f, add_term_vars(t, vars))
| add_term_vars (_, vars) = vars
(*Term list version. [The fold functionals are slow]*)
and add_terms_vars ([], vars) = vars
| add_terms_vars (t::ts, vars) = add_terms_vars (ts, add_term_vars(t,vars))
(*Var list version.*)
and add_vars_vars ([], vars) = vars
| add_vars_vars (ref (SOME u) :: vs, vars) =
add_vars_vars (vs, add_term_vars(u,vars))
| add_vars_vars (v::vs, vars) = (*v must be a ref NONE*)
add_vars_vars (vs, ins_var (v, vars));
(*Chase assignments in "vars"; return a list of unassigned variables*)
fun vars_in_vars vars = add_vars_vars(vars,[]);
(*increment a term's non-local bound variables
inc is increment for bound variables
lev is level at which a bound variable is considered 'loose'*)
fun incr_bv (inc, lev, u as Bound i) = if i>=lev then Bound(i+inc) else u
| incr_bv (inc, lev, Abs(a,body)) = Abs(a, incr_bv(inc,lev+1,body))
| incr_bv (inc, lev, f$t) = incr_bv(inc,lev,f) $ incr_bv(inc,lev,t)
| incr_bv (inc, lev, u) = u;
fun incr_boundvars 0 t = t
| incr_boundvars inc t = incr_bv(inc,0,t);
(*Accumulate all 'loose' bound vars referring to level 'lev' or beyond.
(Bound 0) is loose at level 0 *)
fun add_loose_bnos (Bound i, lev, js) = if i<lev then js
else insert (op =) (i - lev) js
| add_loose_bnos (Abs (_,t), lev, js) = add_loose_bnos (t, lev+1, js)
| add_loose_bnos (f$t, lev, js) =
add_loose_bnos (f, lev, add_loose_bnos (t, lev, js))
| add_loose_bnos (_, _, js) = js;
fun loose_bnos t = add_loose_bnos (t, 0, []);
fun subst_bound (arg, t) : term =
let fun subst (t as Bound i, lev) =
if i<lev then t (*var is locally bound*)
else if i=lev then incr_boundvars lev arg
else Bound(i-1) (*loose: change it*)
| subst (Abs(a,body), lev) = Abs(a, subst(body,lev+1))
| subst (f$t, lev) = subst(f,lev) $ subst(t,lev)
| subst (t,lev) = t
in subst (t,0) end;
(*Normalize...but not the bodies of ABSTRACTIONS*)
fun norm t = case t of
Skolem (a,args) => Skolem(a, vars_in_vars args)
| Const(a,ts) => Const(a, map norm ts)
| (Var (ref NONE)) => t
| (Var (ref (SOME u))) => norm u
| (f $ u) => (case norm f of
Abs(_,body) => norm (subst_bound (u, body))
| nf => nf $ norm u)
| _ => t;
(*Weak (one-level) normalize for use in unification*)
fun wkNormAux t = case t of
(Var v) => (case !v of
SOME u => wkNorm u
| NONE => t)
| (f $ u) => (case wkNormAux f of
Abs(_,body) => wkNorm (subst_bound (u, body))
| nf => nf $ u)
| Abs (a,body) => (*eta-contract if possible*)
(case wkNormAux body of
nb as (f $ t) =>
if member (op =) (loose_bnos f) 0 orelse wkNorm t <> Bound 0
then Abs(a,nb)
else wkNorm (incr_boundvars ~1 f)
| nb => Abs (a,nb))
| _ => t
and wkNorm t = case head_of t of
Const _ => t
| Skolem(a,args) => t
| Free _ => t
| _ => wkNormAux t;
(*Does variable v occur in u? For unification.
Dangling bound vars are also forbidden.*)
fun varOccur v =
let fun occL lev [] = false (*same as (exists occ), but faster*)
| occL lev (u::us) = occ lev u orelse occL lev us
and occ lev (Var w) =
v=w orelse
(case !w of NONE => false
| SOME u => occ lev u)
| occ lev (Skolem(_,args)) = occL lev (map Var args)
(*ignore Const, since term variables can't occur in types (?) *)
| occ lev (Bound i) = lev <= i
| occ lev (Abs(_,u)) = occ (lev+1) u
| occ lev (f$u) = occ lev u orelse occ lev f
| occ lev _ = false;
in occ 0 end;
exception UNIFY;
val trail = ref [] : term option ref list ref;
val ntrail = ref 0;
(*Restore the trail to some previous state: for backtracking*)
fun clearTo n =
while !ntrail<>n do
(hd(!trail) := NONE;
trail := tl (!trail);
ntrail := !ntrail - 1);
(*First-order unification with bound variables.
"vars" is a list of variables local to the rule and NOT to be put
on the trail (no point in doing so)
*)
fun unify(vars,t,u) =
let val n = !ntrail
fun update (t as Var v, u) =
if t aconv u then ()
else if varOccur v u then raise UNIFY
else if mem_var(v, vars) then v := SOME u
else (*avoid updating Vars in the branch if possible!*)
if is_Var u andalso mem_var(dest_Var u, vars)
then dest_Var u := SOME t
else (v := SOME u;
trail := v :: !trail; ntrail := !ntrail + 1)
fun unifyAux (t,u) =
case (wkNorm t, wkNorm u) of
(nt as Var v, nu) => update(nt,nu)
| (nu, nt as Var v) => update(nt,nu)
| (Const(a,ats), Const(b,bts)) => if a=b then unifysAux(ats,bts)
else raise UNIFY
| (Abs(_,t'), Abs(_,u')) => unifyAux(t',u')
(*NB: can yield unifiers having dangling Bound vars!*)
| (f$t', g$u') => (unifyAux(f,g); unifyAux(t',u'))
| (nt, nu) => if nt aconv nu then () else raise UNIFY
and unifysAux ([], []) = ()
| unifysAux (t :: ts, u :: us) = (unifyAux (t, u); unifysAux (ts, us))
| unifysAux _ = raise UNIFY;
in (unifyAux(t,u); true) handle UNIFY => (clearTo n; false)
end;
(*Convert from "real" terms to prototerms; eta-contract.
Code is similar to fromSubgoal.*)
fun fromTerm t =
let val alistVar = ref []
and alistTVar = ref []
fun from (Term.Const aT) = fromConst alistTVar aT
| from (Term.Free (a,_)) = Free a
| from (Term.Bound i) = Bound i
| from (Term.Var (ixn,T)) =
(case (AList.lookup (op =) (!alistVar) ixn) of
NONE => let val t' = Var(ref NONE)
in alistVar := (ixn, t') :: !alistVar; t'
end
| SOME v => v)
| from (Term.Abs (a,_,u)) =
(case from u of
u' as (f $ Bound 0) =>
if member (op =) (loose_bnos f) 0 then Abs(a,u')
else incr_boundvars ~1 f
| u' => Abs(a,u'))
| from (Term.$ (f,u)) = from f $ from u
in from t end;
(*A debugging function: replaces all Vars by dummy Frees for visual inspection
of whether they are distinct. Function revert undoes the assignments.*)
fun instVars t =
let val name = ref "a"
val updated = ref []
fun inst (Const(a,ts)) = List.app inst ts
| inst (Var(v as ref NONE)) = (updated := v :: (!updated);
v := SOME (Free ("?" ^ !name));
name := Symbol.bump_string (!name))
| inst (Abs(a,t)) = inst t
| inst (f $ u) = (inst f; inst u)
| inst _ = ()
fun revert() = List.app (fn v => v:=NONE) (!updated)
in inst t; revert end;
(* A1==>...An==>B goes to [A1,...,An], where B is not an implication *)
fun strip_imp_prems (Const ("==>", _) $ A $ B) = strip_Trueprop A :: strip_imp_prems B
| strip_imp_prems _ = [];
(* A1==>...An==>B goes to B, where B is not an implication *)
fun strip_imp_concl (Const ("==>", _) $ A $ B) = strip_imp_concl B
| strip_imp_concl A = strip_Trueprop A;
(*** Conversion of Elimination Rules to Tableau Operations ***)
exception ElimBadConcl and ElimBadPrem;
(*The conclusion becomes the goal/negated assumption *False*: delete it!
If we don't find it then the premise is ill-formed and could cause
PROOF FAILED*)
fun delete_concl [] = raise ElimBadPrem
| delete_concl (P :: Ps) =
(case P of
Const (c, _) $ Var (ref (SOME (Const ("*False*", _)))) =>
if c = "*Goal*" orelse c = Data.not_name then Ps
else P :: delete_concl Ps
| _ => P :: delete_concl Ps);
fun skoPrem vars (Const ("all", _) $ Abs (_, P)) =
skoPrem vars (subst_bound (Skolem (gensym "S_", vars), P))
| skoPrem vars P = P;
fun convertPrem t =
delete_concl (mkGoal (strip_imp_concl t) :: strip_imp_prems t);
(*Expects elimination rules to have a formula variable as conclusion*)
fun convertRule vars t =
let val (P::Ps) = strip_imp_prems t
val Var v = strip_imp_concl t
in v := SOME (Const ("*False*", []));
(P, map (convertPrem o skoPrem vars) Ps)
end
handle Bind => raise ElimBadConcl;
(*Like dup_elim, but puts the duplicated major premise FIRST*)
fun rev_dup_elim th = (th RSN (2, revcut_rl)) |> assumption 2 |> Seq.hd;
(*Rotate the assumptions in all new subgoals for the LIFO discipline*)
local
(*Count new hyps so that they can be rotated*)
fun nNewHyps [] = 0
| nNewHyps (Const ("*Goal*", _) $ _ :: Ps) = nNewHyps Ps
| nNewHyps (P::Ps) = 1 + nNewHyps Ps;
fun rot_tac [] i st = Seq.single st
| rot_tac (0::ks) i st = rot_tac ks (i+1) st
| rot_tac (k::ks) i st = rot_tac ks (i+1) (rotate_rule (~k) i st);
in
fun rot_subgoals_tac (rot, rl) =
rot_tac (if rot then map nNewHyps rl else [])
end;
fun TRACE rl tac st i = if !trace then (prth rl; tac st i) else tac st i;
(*Resolution/matching tactics: if upd then the proof state may be updated.
Matching makes the tactics more deterministic in the presence of Vars.*)
fun emtac upd rl = TRACE rl (if upd then etac rl else ematch_tac [rl]);
fun rmtac upd rl = TRACE rl (if upd then rtac rl else match_tac [rl]);
(*Tableau rule from elimination rule.
Flag "upd" says that the inference updated the branch.
Flag "dup" requests duplication of the affected formula.*)
fun fromRule vars rl =
let val trl = rl |> rep_thm |> #prop |> fromTerm |> convertRule vars
fun tac (upd, dup,rot) i =
emtac upd (if dup then rev_dup_elim rl else rl) i
THEN
rot_subgoals_tac (rot, #2 trl) i
in Option.SOME (trl, tac) end
handle ElimBadPrem => (*reject: prems don't preserve conclusion*)
(warning("Ignoring weak elimination rule\n" ^ string_of_thm rl);
Option.NONE)
| ElimBadConcl => (*ignore: conclusion is not just a variable*)
(if !trace then (warning("Ignoring ill-formed elimination rule:\n" ^
"conclusion should be a variable\n" ^ string_of_thm rl))
else ();
Option.NONE);
(*** Conversion of Introduction Rules ***)
fun convertIntrPrem t = mkGoal (strip_imp_concl t) :: strip_imp_prems t;
fun convertIntrRule vars t =
let val Ps = strip_imp_prems t
val P = strip_imp_concl t
in (mkGoal P, map (convertIntrPrem o skoPrem vars) Ps)
end;
(*Tableau rule from introduction rule.
Flag "upd" says that the inference updated the branch.
Flag "dup" requests duplication of the affected formula.
Since haz rules are now delayed, "dup" is always FALSE for
introduction rules.*)
fun fromIntrRule vars rl =
let val trl = rl |> rep_thm |> #prop |> fromTerm |> convertIntrRule vars
fun tac (upd,dup,rot) i =
rmtac upd (if dup then Data.dup_intr rl else rl) i
THEN
rot_subgoals_tac (rot, #2 trl) i
in (trl, tac) end;
val dummyVar = Term.Var (("etc",0), dummyT);
(*Convert from prototerms to ordinary terms with dummy types
Ignore abstractions; identify all Vars; STOP at given depth*)
fun toTerm 0 _ = dummyVar
| toTerm d (Const(a,_)) = Term.Const (a,dummyT) (*no need to convert typargs*)
| toTerm d (Skolem(a,_)) = Term.Const (a,dummyT)
| toTerm d (Free a) = Term.Free (a,dummyT)
| toTerm d (Bound i) = Term.Bound i
| toTerm d (Var _) = dummyVar
| toTerm d (Abs(a,_)) = dummyVar
| toTerm d (f $ u) = Term.$ (toTerm d f, toTerm (d-1) u);
fun netMkRules P vars (nps: netpair list) =
case P of
(Const ("*Goal*", _) $ G) =>
let val pG = mk_Trueprop (toTerm 2 G)
val intrs = maps (fn (inet,_) => Net.unify_term inet pG) nps
in map (fromIntrRule vars o #2) (Tactic.orderlist intrs) end
| _ =>
let val pP = mk_Trueprop (toTerm 3 P)
val elims = maps (fn (_,enet) => Net.unify_term enet pP) nps
in map_filter (fromRule vars o #2) (Tactic.orderlist elims) end;
(*Pending formulae carry md (may duplicate) flags*)
type branch =
{pairs: ((term*bool) list * (*safe formulae on this level*)
(term*bool) list) list, (*haz formulae on this level*)
lits: term list, (*literals: irreducible formulae*)
vars: term option ref list, (*variables occurring in branch*)
lim: int}; (*resource limit*)
val fullTrace = ref[] : branch list list ref;
(*Normalize a branch--for tracing*)
fun norm2 (G,md) = (norm G, md);
fun normLev (Gs,Hs) = (map norm2 Gs, map norm2 Hs);
fun normBr {pairs, lits, vars, lim} =
{pairs = map normLev pairs,
lits = map norm lits,
vars = vars,
lim = lim};
val dummyTVar = Term.TVar(("a",0), []);
val dummyVar2 = Term.Var(("var",0), dummyT);
(*convert Blast_tac's type representation to real types for tracing*)
fun showType (Free a) = Term.TFree (a,[])
| showType (Var _) = dummyTVar
| showType t =
(case strip_comb t of
(Const (a, _), us) => Term.Type(a, map showType us)
| _ => dummyT);
(*Display top-level overloading if any*)
fun topType thy (Const (c, ts)) = SOME (Sign.const_instance thy (c, map showType ts))
| topType thy (Abs(a,t)) = topType thy t
| topType thy (f $ u) = (case topType thy f of NONE => topType thy u | some => some)
| topType _ _ = NONE;
(*Convert from prototerms to ordinary terms with dummy types for tracing*)
fun showTerm d (Const (a,_)) = Term.Const (a,dummyT)
| showTerm d (Skolem(a,_)) = Term.Const (a,dummyT)
| showTerm d (Free a) = Term.Free (a,dummyT)
| showTerm d (Bound i) = Term.Bound i
| showTerm d (Var(ref(SOME u))) = showTerm d u
| showTerm d (Var(ref NONE)) = dummyVar2
| showTerm d (Abs(a,t)) = if d=0 then dummyVar
else Term.Abs(a, dummyT, showTerm (d-1) t)
| showTerm d (f $ u) = if d=0 then dummyVar
else Term.$ (showTerm d f, showTerm (d-1) u);
fun string_of sign d t = Sign.string_of_term sign (showTerm d t);
(*Convert a Goal to an ordinary Not. Used also in dup_intr, where a goal like
Ex(P) is duplicated as the assumption ~Ex(P). *)
fun negOfGoal (Const ("*Goal*", _) $ G) = negate G
| negOfGoal G = G;
fun negOfGoal2 (G,md) = (negOfGoal G, md);
(*Converts all Goals to Nots in the safe parts of a branch. They could
have been moved there from the literals list after substitution (equalSubst).
There can be at most one--this function could be made more efficient.*)
fun negOfGoals pairs = map (fn (Gs,haz) => (map negOfGoal2 Gs, haz)) pairs;
(*Tactic. Convert *Goal* to negated assumption in FIRST position*)
fun negOfGoal_tac i = TRACE Data.ccontr (rtac Data.ccontr) i THEN
rotate_tac ~1 i;
fun traceTerm sign t =
let val t' = norm (negOfGoal t)
val stm = string_of sign 8 t'
in
case topType sign t' of
NONE => stm (*no type to attach*)
| SOME T => stm ^ "\t:: " ^ Sign.string_of_typ sign T
end;
(*Print tracing information at each iteration of prover*)
fun tracing sign brs =
let fun printPairs (((G,_)::_,_)::_) = immediate_output(traceTerm sign G)
| printPairs (([],(H,_)::_)::_) = immediate_output(traceTerm sign H ^ "\t (Unsafe)")
| printPairs _ = ()
fun printBrs (brs0 as {pairs, lits, lim, ...} :: brs) =
(fullTrace := brs0 :: !fullTrace;
List.app (fn _ => immediate_output "+") brs;
immediate_output (" [" ^ Int.toString lim ^ "] ");
printPairs pairs;
writeln"")
in if !trace then printBrs (map normBr brs) else ()
end;
fun traceMsg s = if !trace then writeln s else ();
(*Tracing: variables updated in the last branch operation?*)
fun traceVars sign ntrl =
if !trace then
(case !ntrail-ntrl of
0 => ()
| 1 => immediate_output"\t1 variable UPDATED:"
| n => immediate_output("\t" ^ Int.toString n ^ " variables UPDATED:");
(*display the instantiations themselves, though no variable names*)
List.app (fn v => immediate_output(" " ^ string_of sign 4 (the (!v))))
(List.take(!trail, !ntrail-ntrl));
writeln"")
else ();
(*Tracing: how many new branches are created?*)
fun traceNew prems =
if !trace then
case length prems of
0 => immediate_output"branch closed by rule"
| 1 => immediate_output"branch extended (1 new subgoal)"
| n => immediate_output("branch split: "^ Int.toString n ^ " new subgoals")
else ();
(*** Code for handling equality: naive substitution, like hyp_subst_tac ***)
(*Replace the ATOMIC term "old" by "new" in t*)
fun subst_atomic (old,new) t =
let fun subst (Var(ref(SOME u))) = subst u
| subst (Abs(a,body)) = Abs(a, subst body)
| subst (f$t) = subst f $ subst t
| subst t = if t aconv old then new else t
in subst t end;
(*Eta-contract a term from outside: just enough to reduce it to an atom*)
fun eta_contract_atom (t0 as Abs(a, body)) =
(case eta_contract2 body of
f $ Bound 0 => if member (op =) (loose_bnos f) 0 then t0
else eta_contract_atom (incr_boundvars ~1 f)
| _ => t0)
| eta_contract_atom t = t
and eta_contract2 (f$t) = f $ eta_contract_atom t
| eta_contract2 t = eta_contract_atom t;
(*When can we safely delete the equality?
Not if it equates two constants; consider 0=1.
Not if it resembles x=t[x], since substitution does not eliminate x.
Not if it resembles ?x=0; another goal could instantiate ?x to Suc(i)
Prefer to eliminate Bound variables if possible.
Result: true = use as is, false = reorient first *)
(*Can t occur in u? For substitution.
Does NOT examine the args of Skolem terms: substitution does not affect them.
REFLEXIVE because hyp_subst_tac fails on x=x.*)
fun substOccur t =
let (*NO vars are permitted in u except the arguments of t, if it is
a Skolem term. This ensures that no equations are deleted that could
be instantiated to a cycle. For example, x=?a is rejected because ?a
could be instantiated to Suc(x).*)
val vars = case t of
Skolem(_,vars) => vars
| _ => []
fun occEq u = (t aconv u) orelse occ u
and occ (Var(ref(SOME u))) = occEq u
| occ (Var v) = not (mem_var (v, vars))
| occ (Abs(_,u)) = occEq u
| occ (f$u) = occEq u orelse occEq f
| occ (_) = false;
in occEq end;
exception DEST_EQ;
(*Take apart an equality. NO constant Trueprop*)
fun dest_eq (Const (c, _) $ t $ u) =
if c = Data.equality_name then (eta_contract_atom t, eta_contract_atom u)
else raise DEST_EQ
| dest_eq _ = raise DEST_EQ;
(*Reject the equality if u occurs in (or equals!) t*)
fun check (t,u,v) = if substOccur t u then raise DEST_EQ else v;
(*IF the goal is an equality with a substitutable variable
THEN orient that equality ELSE raise exception DEST_EQ*)
fun orientGoal (t,u) = case (t,u) of
(Skolem _, _) => check(t,u,(t,u)) (*eliminates t*)
| (_, Skolem _) => check(u,t,(u,t)) (*eliminates u*)
| (Free _, _) => check(t,u,(t,u)) (*eliminates t*)
| (_, Free _) => check(u,t,(u,t)) (*eliminates u*)
| _ => raise DEST_EQ;
(*Substitute through the branch if an equality goal (else raise DEST_EQ).
Moves affected literals back into the branch, but it is not clear where
they should go: this could make proofs fail.*)
fun equalSubst sign (G, {pairs, lits, vars, lim}) =
let val (t,u) = orientGoal(dest_eq G)
val subst = subst_atomic (t,u)
fun subst2(G,md) = (subst G, md)
(*substitute throughout list; extract affected formulae*)
fun subForm ((G,md), (changed, pairs)) =
let val nG = subst G
in if nG aconv G then (changed, (G,md)::pairs)
else ((nG,md)::changed, pairs)
end
(*substitute throughout "stack frame"; extract affected formulae*)
fun subFrame ((Gs,Hs), (changed, frames)) =
let val (changed', Gs') = foldr subForm (changed, []) Gs
val (changed'', Hs') = foldr subForm (changed', []) Hs
in (changed'', (Gs',Hs')::frames) end
(*substitute throughout literals; extract affected ones*)
fun subLit (lit, (changed, nlits)) =
let val nlit = subst lit
in if nlit aconv lit then (changed, nlit::nlits)
else ((nlit,true)::changed, nlits)
end
val (changed, lits') = foldr subLit ([], []) lits
val (changed', pairs') = foldr subFrame (changed, []) pairs
in if !trace then writeln ("Substituting " ^ traceTerm sign u ^
" for " ^ traceTerm sign t ^ " in branch" )
else ();
{pairs = (changed',[])::pairs', (*affected formulas, and others*)
lits = lits', (*unaffected literals*)
vars = vars,
lim = lim}
end;
exception NEWBRANCHES and CLOSEF;
exception PROVE;
(*Trying eq_contr_tac first INCREASES the effort, slowing reconstruction*)
val contr_tac = ematch_tac [Data.notE] THEN'
(eq_assume_tac ORELSE' assume_tac);
val eContr_tac = TRACE Data.notE contr_tac;
val eAssume_tac = TRACE asm_rl (eq_assume_tac ORELSE' assume_tac);
(*Try to unify complementary literals and return the corresponding tactic. *)
fun tryClose (G, L) =
let
fun close t u tac = if unify ([], t, u) then SOME tac else NONE;
fun arg (_ $ t) = t;
in
if isGoal G then close (arg G) L eAssume_tac
else if isGoal L then close G (arg L) eAssume_tac
else if isNot G then close (arg G) L eContr_tac
else if isNot L then close G (arg L) eContr_tac
else NONE
end;
(*Were there Skolem terms in the premise? Must NOT chase Vars*)
fun hasSkolem (Skolem _) = true
| hasSkolem (Abs (_,body)) = hasSkolem body
| hasSkolem (f$t) = hasSkolem f orelse hasSkolem t
| hasSkolem _ = false;
(*Attach the right "may duplicate" flag to new formulae: if they contain
Skolem terms then allow duplication.*)
fun joinMd md [] = []
| joinMd md (G::Gs) = (G, hasSkolem G orelse md) :: joinMd md Gs;
(** Backtracking and Pruning **)
(*clashVar vars (n,trail) determines whether any of the last n elements
of "trail" occur in "vars" OR in their instantiations*)
fun clashVar [] = (fn _ => false)
| clashVar vars =
let fun clash (0, _) = false
| clash (_, []) = false
| clash (n, v::vs) = exists (varOccur v) vars orelse clash(n-1,vs)
in clash end;
(*nbrs = # of branches just prior to closing this one. Delete choice points
for goals proved by the latest inference, provided NO variables in the
next branch have been updated.*)
fun prune (1, nxtVars, choices) = choices (*DON'T prune at very end: allow
backtracking over bad proofs*)
| prune (nbrs: int, nxtVars, choices) =
let fun traceIt last =
let val ll = length last
and lc = length choices
in if !trace andalso ll<lc then
(writeln("Pruning " ^ Int.toString(lc-ll) ^ " levels");
last)
else last
end
fun pruneAux (last, _, _, []) = last
| pruneAux (last, ntrl, trl, (ntrl',nbrs',exn) :: choices) =
if nbrs' < nbrs
then last (*don't backtrack beyond first solution of goal*)
else if nbrs' > nbrs then pruneAux (last, ntrl, trl, choices)
else (* nbrs'=nbrs *)
if clashVar nxtVars (ntrl-ntrl', trl) then last
else (*no clashes: can go back at least this far!*)
pruneAux(choices, ntrl', List.drop(trl, ntrl-ntrl'),
choices)
in traceIt (pruneAux (choices, !ntrail, !trail, choices)) end;
fun nextVars ({pairs, lits, vars, lim} :: _) = map Var vars
| nextVars [] = [];
fun backtrack (choices as (ntrl, nbrs, exn)::_) =
(if !trace then (writeln ("Backtracking; now there are " ^
Int.toString nbrs ^ " branches"))
else ();
raise exn)
| backtrack _ = raise PROVE;
(*Add the literal G, handling *Goal* and detecting duplicates.*)
fun addLit (Const ("*Goal*", _) $ G, lits) =
(*New literal is a *Goal*, so change all other Goals to Nots*)
let fun bad (Const ("*Goal*", _) $ _) = true
| bad (Const (c, _) $ G') = c = Data.not_name andalso G aconv G'
| bad _ = false;
fun change [] = []
| change (lit :: lits) =
(case lit of
Const (c, _) $ G' =>
if c = "*Goal*" orelse c = Data.not_name then
if G aconv G' then change lits
else negate G' :: change lits
else lit :: change lits
| _ => lit :: change lits)
in
Const ("*Goal*", []) $ G :: (if exists bad lits then change lits else lits)
end
| addLit (G,lits) = ins_term(G, lits)
(*For calculating the "penalty" to assess on a branching factor of n
log2 seems a little too severe*)
fun log n = if n<4 then 0 else 1 + log(n div 4);
(*match(t,u) says whether the term u might be an instance of the pattern t
Used to detect "recursive" rules such as transitivity*)
fun match (Var _) u = true
| match (Const (a,tas)) (Const (b,tbs)) =
a = "*Goal*" andalso b = Data.not_name orelse
a = Data.not_name andalso b = "*Goal*" orelse
a = b andalso matchs tas tbs
| match (Free a) (Free b) = (a=b)
| match (Bound i) (Bound j) = (i=j)
| match (Abs(_,t)) (Abs(_,u)) = match t u
| match (f$t) (g$u) = match f g andalso match t u
| match t u = false
and matchs [] [] = true
| matchs (t :: ts) (u :: us) = match t u andalso matchs ts us;
(*Branches closed: number of branches closed during the search
Branches tried: number of branches created by splitting (counting from 1)*)
val nclosed = ref 0
and ntried = ref 1;
fun printStats (b, start, tacs) =
if b then
writeln (endTiming start ^ " for search. Closed: "
^ Int.toString (!nclosed) ^
" tried: " ^ Int.toString (!ntried) ^
" tactics: " ^ Int.toString (length tacs))
else ();
(*Tableau prover based on leanTaP. Argument is a list of branches. Each
branch contains a list of unexpanded formulae, a list of literals, and a
bound on unsafe expansions.
"start" is CPU time at start, for printing search time
*)
fun prove (sign, start, cs, brs, cont) =
let val {safe0_netpair, safep_netpair, haz_netpair, ...} = Data.rep_cs cs
val safeList = [safe0_netpair, safep_netpair]
and hazList = [haz_netpair]
fun prv (tacs, trs, choices, []) =
(printStats (!trace orelse !stats, start, tacs);
cont (tacs, trs, choices)) (*all branches closed!*)
| prv (tacs, trs, choices,
brs0 as {pairs = ((G,md)::br, haz)::pairs,
lits, vars, lim} :: brs) =
(*apply a safe rule only (possibly allowing instantiation);
defer any haz formulae*)
let exception PRV (*backtrack to precisely this recursion!*)
val ntrl = !ntrail
val nbrs = length brs0
val nxtVars = nextVars brs
val G = norm G
val rules = netMkRules G vars safeList
(*Make a new branch, decrementing "lim" if instantiations occur*)
fun newBr (vars',lim') prems =
map (fn prem =>
if (exists isGoal prem)
then {pairs = ((joinMd md prem, []) ::
negOfGoals ((br, haz)::pairs)),
lits = map negOfGoal lits,
vars = vars',
lim = lim'}
else {pairs = ((joinMd md prem, []) ::
(br, haz) :: pairs),
lits = lits,
vars = vars',
lim = lim'})
prems @
brs
(*Seek a matching rule. If unifiable then add new premises
to branch.*)
fun deeper [] = raise NEWBRANCHES
| deeper (((P,prems),tac)::grls) =
if unify(add_term_vars(P,[]), P, G)
then (*P comes from the rule; G comes from the branch.*)
let val updated = ntrl < !ntrail (*branch updated*)
val lim' = if updated
then lim - (1+log(length rules))
else lim (*discourage branching updates*)
val vars = vars_in_vars vars
val vars' = foldr add_terms_vars vars prems
val choices' = (ntrl, nbrs, PRV) :: choices
val tacs' = (tac(updated,false,true))
:: tacs (*no duplication; rotate*)
in
traceNew prems; traceVars sign ntrl;
(if null prems then (*closed the branch: prune!*)
(nclosed := !nclosed + 1;
prv(tacs', brs0::trs,
prune (nbrs, nxtVars, choices'),
brs))
else (*prems non-null*)
if lim'<0 (*faster to kill ALL the alternatives*)
then (traceMsg"Excessive branching: KILLED";
clearTo ntrl; raise NEWBRANCHES)
else
(ntried := !ntried + length prems - 1;
prv(tacs', brs0::trs, choices',
newBr (vars',lim') prems)))
handle PRV =>
if updated then
(*Backtrack at this level.
Reset Vars and try another rule*)
(clearTo ntrl; deeper grls)
else (*backtrack to previous level*)
backtrack choices
end
else deeper grls
(*Try to close branch by unifying with head goal*)
fun closeF [] = raise CLOSEF
| closeF (L::Ls) =
case tryClose(G,L) of
NONE => closeF Ls
| SOME tac =>
let val choices' =
(if !trace then (immediate_output"branch closed";
traceVars sign ntrl)
else ();
prune (nbrs, nxtVars,
(ntrl, nbrs, PRV) :: choices))
in nclosed := !nclosed + 1;
prv (tac::tacs, brs0::trs, choices', brs)
handle PRV =>
(*reset Vars and try another literal
[this handler is pruned if possible!]*)
(clearTo ntrl; closeF Ls)
end
(*Try to unify a queued formula (safe or haz) with head goal*)
fun closeFl [] = raise CLOSEF
| closeFl ((br, haz)::pairs) =
closeF (map fst br)
handle CLOSEF => closeF (map fst haz)
handle CLOSEF => closeFl pairs
in tracing sign brs0;
if lim<0 then (traceMsg "Limit reached. "; backtrack choices)
else
prv (Data.hyp_subst_tac trace :: tacs,
brs0::trs, choices,
equalSubst sign
(G, {pairs = (br,haz)::pairs,
lits = lits, vars = vars, lim = lim})
:: brs)
handle DEST_EQ => closeF lits
handle CLOSEF => closeFl ((br,haz)::pairs)
handle CLOSEF => deeper rules
handle NEWBRANCHES =>
(case netMkRules G vars hazList of
[] => (*there are no plausible haz rules*)
(traceMsg "moving formula to literals";
prv (tacs, brs0::trs, choices,
{pairs = (br,haz)::pairs,
lits = addLit(G,lits),
vars = vars,
lim = lim} :: brs))
| _ => (*G admits some haz rules: try later*)
(traceMsg "moving formula to haz list";
prv (if isGoal G then negOfGoal_tac :: tacs
else tacs,
brs0::trs,
choices,
{pairs = (br, haz@[(negOfGoal G, md)])::pairs,
lits = lits,
vars = vars,
lim = lim} :: brs)))
end
| prv (tacs, trs, choices,
{pairs = ([],haz)::(Gs,haz')::pairs, lits, vars, lim} :: brs) =
(*no more "safe" formulae: transfer haz down a level*)
prv (tacs, trs, choices,
{pairs = (Gs,haz@haz')::pairs,
lits = lits,
vars = vars,
lim = lim} :: brs)
| prv (tacs, trs, choices,
brs0 as {pairs = [([], (H,md)::Hs)],
lits, vars, lim} :: brs) =
(*no safe steps possible at any level: apply a haz rule*)
let exception PRV (*backtrack to precisely this recursion!*)
val H = norm H
val ntrl = !ntrail
val rules = netMkRules H vars hazList
(*new premises of haz rules may NOT be duplicated*)
fun newPrem (vars,P,dup,lim') prem =
let val Gs' = map (fn Q => (Q,false)) prem
and Hs' = if dup then Hs @ [(negOfGoal H, md)] else Hs
and lits' = if (exists isGoal prem)
then map negOfGoal lits
else lits
in {pairs = if exists (match P) prem then [(Gs',Hs')]
(*Recursive in this premise. Don't make new
"stack frame". New haz premises will end up
at the BACK of the queue, preventing
exclusion of others*)
else [(Gs',[]), ([],Hs')],
lits = lits',
vars = vars,
lim = lim'}
end
fun newBr x prems = map (newPrem x) prems @ brs
(*Seek a matching rule. If unifiable then add new premises
to branch.*)
fun deeper [] = raise NEWBRANCHES
| deeper (((P,prems),tac)::grls) =
if unify(add_term_vars(P,[]), P, H)
then
let val updated = ntrl < !ntrail (*branch updated*)
val vars = vars_in_vars vars
val vars' = foldr add_terms_vars vars prems
(*duplicate H if md permits*)
val dup = md (*earlier had "andalso vars' <> vars":
duplicate only if the subgoal has new vars*)
(*any instances of P in the subgoals?
NB: boolean "recur" affects tracing only!*)
and recur = exists (exists (match P)) prems
val lim' = (*Decrement "lim" extra if updates occur*)
if updated then lim - (1+log(length rules))
else lim-1
(*It is tempting to leave "lim" UNCHANGED if
both dup and recur are false. Proofs are
found at shallower depths, but looping
occurs too often...*)
val mayUndo =
(*Allowing backtracking from a rule application
if other matching rules exist, if the rule
updated variables, or if the rule did not
introduce new variables. This latter condition
means it is not a standard "gamma-rule" but
some other form of unsafe rule. Aim is to
emulate Fast_tac, which allows all unsafe steps
to be undone.*)
not(null grls) (*other rules to try?*)
orelse updated
orelse vars=vars' (*no new Vars?*)
val tac' = tac(updated, dup, true)
(*if recur then perhaps shouldn't call rotate_tac: new
formulae should be last, but that's WRONG if the new
formulae are Goals, since they remain in the first
position*)
in
if lim'<0 andalso not (null prems)
then (*it's faster to kill ALL the alternatives*)
(traceMsg"Excessive branching: KILLED";
clearTo ntrl; raise NEWBRANCHES)
else
traceNew prems;
if !trace andalso dup then immediate_output" (duplicating)"
else ();
if !trace andalso recur then immediate_output" (recursive)"
else ();
traceVars sign ntrl;
if null prems then nclosed := !nclosed + 1
else ntried := !ntried + length prems - 1;
prv(tac' :: tacs,
brs0::trs,
(ntrl, length brs0, PRV) :: choices,
newBr (vars', P, dup, lim') prems)
handle PRV =>
if mayUndo
then (*reset Vars and try another rule*)
(clearTo ntrl; deeper grls)
else (*backtrack to previous level*)
backtrack choices
end
else deeper grls
in tracing sign brs0;
if lim<1 then (traceMsg "Limit reached. "; backtrack choices)
else deeper rules
handle NEWBRANCHES =>
(*cannot close branch: move H to literals*)
prv (tacs, brs0::trs, choices,
{pairs = [([], Hs)],
lits = H::lits,
vars = vars,
lim = lim} :: brs)
end
| prv (tacs, trs, choices, _ :: brs) = backtrack choices
in prv ([], [], [(!ntrail, length brs, PROVE)], brs) end;
(*Construct an initial branch.*)
fun initBranch (ts,lim) =
{pairs = [(map (fn t => (t,true)) ts, [])],
lits = [],
vars = add_terms_vars (ts,[]),
lim = lim};
(*** Conversion & Skolemization of the Isabelle proof state ***)
(*Make a list of all the parameters in a subgoal, even if nested*)
local open Term
in
fun discard_foralls (Const("all",_)$Abs(a,T,t)) = discard_foralls t
| discard_foralls t = t;
end;
(*List of variables not appearing as arguments to the given parameter*)
fun getVars [] i = []
| getVars ((_,(v,is))::alist) (i: int) =
if member (op =) is i then getVars alist i
else v :: getVars alist i;
exception TRANS of string;
(*Translation of a subgoal: Skolemize all parameters*)
fun fromSubgoal t =
let val alistVar = ref []
and alistTVar = ref []
fun hdvar ((ix,(v,is))::_) = v
fun from lev t =
let val (ht,ts) = Term.strip_comb t
fun apply u = list_comb (u, map (from lev) ts)
fun bounds [] = []
| bounds (Term.Bound i::ts) =
if i<lev then raise TRANS
"Function unknown's argument not a parameter"
else i-lev :: bounds ts
| bounds ts = raise TRANS
"Function unknown's argument not a bound variable"
in
case ht of
Term.Const aT => apply (fromConst alistTVar aT)
| Term.Free (a,_) => apply (Free a)
| Term.Bound i => apply (Bound i)
| Term.Var (ix,_) =>
(case (AList.lookup (op =) (!alistVar) ix) of
NONE => (alistVar := (ix, (ref NONE, bounds ts))
:: !alistVar;
Var (hdvar(!alistVar)))
| SOME(v,is) => if is=bounds ts then Var v
else raise TRANS
("Discrepancy among occurrences of "
^ Syntax.string_of_vname ix))
| Term.Abs (a,_,body) =>
if null ts then Abs(a, from (lev+1) body)
else raise TRANS "argument not in normal form"
end
val npars = length (Logic.strip_params t)
(*Skolemize a subgoal from a proof state*)
fun skoSubgoal i t =
if i<npars then
skoSubgoal (i+1)
(subst_bound (Skolem (gensym "T_", getVars (!alistVar) i),
t))
else t
in skoSubgoal 0 (from 0 (discard_foralls t)) end;
fun reject_const thy c =
if is_some (Sign.const_type thy c) then
error ("Blast: theory contains illegal constant " ^ quote c)
else ();
fun initialize thy =
(fullTrace:=[]; trail := []; ntrail := 0;
nclosed := 0; ntried := 1; typargs := Sign.const_typargs thy;
reject_const thy "*Goal*"; reject_const thy "*False*");
(*Tactic using tableau engine and proof reconstruction.
"start" is CPU time at start, for printing SEARCH time
(also prints reconstruction time)
"lim" is depth limit.*)
fun timing_depth_tac start cs lim i st0 =
let val st = (initialize (theory_of_thm st0); ObjectLogic.atomize_goal i st0);
val {sign,...} = rep_thm st
val skoprem = fromSubgoal (List.nth(prems_of st, i-1))
val hyps = strip_imp_prems skoprem
and concl = strip_imp_concl skoprem
fun cont (tacs,_,choices) =
let val start = startTiming()
in
case Seq.pull(EVERY' (rev tacs) i st) of
NONE => (writeln ("PROOF FAILED for depth " ^
Int.toString lim);
if !trace then error "************************\n"
else ();
backtrack choices)
| cell => (if (!trace orelse !stats)
then writeln (endTiming start ^ " for reconstruction")
else ();
Seq.make(fn()=> cell))
end
in prove (sign, start, cs, [initBranch (mkGoal concl :: hyps, lim)], cont)
end
handle PROVE => Seq.empty;
(*Public version with fixed depth*)
fun depth_tac cs lim i st = timing_depth_tac (startTiming()) cs lim i st;
val depth_limit = ref 20;
fun blast_tac cs i st =
((DEEPEN (1, !depth_limit) (timing_depth_tac (startTiming()) cs) 0) i
THEN flexflex_tac) st
handle TRANS s =>
((if !trace then warning ("blast: " ^ s) else ());
Seq.empty);
fun Blast_tac i = blast_tac (Data.claset()) i;
(*** For debugging: these apply the prover to a subgoal and return
the resulting tactics, trace, etc. ***)
(*Translate subgoal i from a proof state*)
fun trygl cs lim i =
let val st = topthm()
val {sign,...} = rep_thm st
val skoprem = (initialize (theory_of_thm st);
fromSubgoal (List.nth(prems_of st, i-1)))
val hyps = strip_imp_prems skoprem
and concl = strip_imp_concl skoprem
in timeap prove (sign, startTiming(), cs,
[initBranch (mkGoal concl :: hyps, lim)], I)
end
handle Subscript => error("There is no subgoal " ^ Int.toString i);
fun Trygl lim i = trygl (Data.claset()) lim i;
(*Read a string to make an initial, singleton branch*)
fun readGoal thy s = Sign.read_prop thy s |> fromTerm |> rand |> mkGoal;
fun tryInThy thy lim s =
(initialize thy;
timeap prove (thy,
startTiming(),
Data.claset(),
[initBranch ([readGoal thy s], lim)],
I));
(** method setup **)
fun blast_args m =
Method.bang_sectioned_args'
Data.cla_modifiers (Scan.lift (Scan.option Args.nat)) m;
fun blast_meth NONE = Data.cla_meth' blast_tac
| blast_meth (SOME lim) = Data.cla_meth' (fn cs => depth_tac cs lim);
val setup =
Method.add_methods [("blast", blast_args blast_meth, "tableau prover")];
end;