| author | wenzelm |
| Fri, 06 Dec 2024 13:33:25 +0100 | |
| changeset 81543 | fa37ee54644c |
| parent 80932 | 261cd8722677 |
| child 82248 | e8c96013ea8a |
| permissions | -rw-r--r-- |
(* Title: HOL/Equiv_Relations.thy Author: Lawrence C Paulson, 1996 Cambridge University Computer Laboratory *) section \<open>Equivalence Relations in Higher-Order Set Theory\<close> theory Equiv_Relations imports BNF_Least_Fixpoint begin subsection \<open>Equivalence relations -- set version\<close> definition equiv :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" where "equiv A r \<longleftrightarrow> refl_on A r \<and> sym r \<and> trans r" lemma equivI: "refl_on A r \<Longrightarrow> sym r \<Longrightarrow> trans r \<Longrightarrow> equiv A r" by (simp add: equiv_def) lemma equivE: assumes "equiv A r" obtains "refl_on A r" and "sym r" and "trans r" using assms by (simp add: equiv_def) text \<open> Suppes, Theorem 70: \<open>r\<close> is an equiv relation iff \<open>r\<inverse> O r = r\<close>. First half: \<open>equiv A r \<Longrightarrow> r\<inverse> O r = r\<close>. \<close> lemma sym_trans_comp_subset: "sym r \<Longrightarrow> trans r \<Longrightarrow> r\<inverse> O r \<subseteq> r" unfolding trans_def sym_def converse_unfold by blast lemma refl_on_comp_subset: "refl_on A r \<Longrightarrow> r \<subseteq> r\<inverse> O r" unfolding refl_on_def by blast lemma equiv_comp_eq: "equiv A r \<Longrightarrow> r\<inverse> O r = r" unfolding equiv_def by (iprover intro: sym_trans_comp_subset refl_on_comp_subset equalityI) text \<open>Second half.\<close> lemma comp_equivI: assumes "r\<inverse> O r = r" "Domain r = A" shows "equiv A r" proof - have *: "\<And>x y. (x, y) \<in> r \<Longrightarrow> (y, x) \<in> r" using assms by blast show ?thesis unfolding equiv_def refl_on_def sym_def trans_def using assms by (auto intro: *) qed subsection \<open>Equivalence classes\<close> lemma equiv_class_subset: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} \<subseteq> r``{b}" \<comment> \<open>lemma for the next result\<close> unfolding equiv_def trans_def sym_def by blast theorem equiv_class_eq: "equiv A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> r``{a} = r``{b}" by (intro equalityI equiv_class_subset; force simp add: equiv_def sym_def) lemma equiv_class_self: "equiv A r \<Longrightarrow> a \<in> A \<Longrightarrow> a \<in> r``{a}" unfolding equiv_def refl_on_def by blast lemma subset_equiv_class: "equiv A r \<Longrightarrow> r``{b} \<subseteq> r``{a} \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r" \<comment> \<open>lemma for the next result\<close> unfolding equiv_def refl_on_def by blast lemma eq_equiv_class: "r``{a} = r``{b} \<Longrightarrow> equiv A r \<Longrightarrow> b \<in> A \<Longrightarrow> (a, b) \<in> r" by (iprover intro: equalityD2 subset_equiv_class) lemma equiv_class_nondisjoint: "equiv A r \<Longrightarrow> x \<in> (r``{a} \<inter> r``{b}) \<Longrightarrow> (a, b) \<in> r" unfolding equiv_def trans_def sym_def by blast lemma equiv_type: "equiv A r \<Longrightarrow> r \<subseteq> A \<times> A" unfolding equiv_def refl_on_def by blast lemma equiv_class_eq_iff: "equiv A r \<Longrightarrow> (x, y) \<in> r \<longleftrightarrow> r``{x} = r``{y} \<and> x \<in> A \<and> y \<in> A" by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) lemma eq_equiv_class_iff: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> r``{x} = r``{y} \<longleftrightarrow> (x, y) \<in> r" by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type) lemma disjnt_equiv_class: "equiv A r \<Longrightarrow> disjnt (r``{a}) (r``{b}) \<longleftrightarrow> (a, b) \<notin> r" by (auto dest: equiv_class_self simp: equiv_class_eq_iff disjnt_def) subsection \<open>Quotients\<close> definition quotient :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set" (infixl \<open>'/'/\<close> 90) where "A//r = (\<Union>x \<in> A. {r``{x}})" \<comment> \<open>set of equiv classes\<close> lemma quotientI: "x \<in> A \<Longrightarrow> r``{x} \<in> A//r" unfolding quotient_def by blast lemma quotientE: "X \<in> A//r \<Longrightarrow> (\<And>x. X = r``{x} \<Longrightarrow> x \<in> A \<Longrightarrow> P) \<Longrightarrow> P" unfolding quotient_def by blast lemma Union_quotient: "equiv A r \<Longrightarrow> \<Union>(A//r) = A" unfolding equiv_def refl_on_def quotient_def by blast lemma quotient_disj: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> Y \<in> A//r \<Longrightarrow> X = Y \<or> X \<inter> Y = {}" unfolding quotient_def equiv_def trans_def sym_def by blast lemma quotient_eqI: assumes "equiv A r" "X \<in> A//r" "Y \<in> A//r" and xy: "x \<in> X" "y \<in> Y" "(x, y) \<in> r" shows "X = Y" proof - obtain a b where "a \<in> A" and a: "X = r `` {a}" and "b \<in> A" and b: "Y = r `` {b}" using assms by (auto elim!: quotientE) then have "(a,b) \<in> r" using xy \<open>equiv A r\<close> unfolding equiv_def sym_def trans_def by blast then show ?thesis unfolding a b by (rule equiv_class_eq [OF \<open>equiv A r\<close>]) qed lemma quotient_eq_iff: assumes "equiv A r" "X \<in> A//r" "Y \<in> A//r" and xy: "x \<in> X" "y \<in> Y" shows "X = Y \<longleftrightarrow> (x, y) \<in> r" proof assume L: "X = Y" with assms show "(x, y) \<in> r" unfolding equiv_def sym_def trans_def by (blast elim!: quotientE) next assume \<section>: "(x, y) \<in> r" show "X = Y" by (rule quotient_eqI) (use \<section> assms in \<open>blast+\<close>) qed lemma eq_equiv_class_iff2: "equiv A r \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> {x}//r = {y}//r \<longleftrightarrow> (x, y) \<in> r" by (simp add: quotient_def eq_equiv_class_iff) lemma quotient_empty [simp]: "{}//r = {}" by (simp add: quotient_def) lemma quotient_is_empty [iff]: "A//r = {} \<longleftrightarrow> A = {}" by (simp add: quotient_def) lemma quotient_is_empty2 [iff]: "{} = A//r \<longleftrightarrow> A = {}" by (simp add: quotient_def) lemma singleton_quotient: "{x}//r = {r `` {x}}" by (simp add: quotient_def) lemma quotient_diff1: "inj_on (\<lambda>a. {a}//r) A \<Longrightarrow> a \<in> A \<Longrightarrow> (A - {a})//r = A//r - {a}//r" unfolding quotient_def inj_on_def by blast subsection \<open>Refinement of one equivalence relation WRT another\<close> lemma refines_equiv_class_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> R``(S``{a}) = S``{a}" by (auto simp: equiv_class_eq_iff) lemma refines_equiv_class_eq2: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> S``(R``{a}) = S``{a}" by (auto simp: equiv_class_eq_iff) lemma refines_equiv_image_eq: "R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> (\<lambda>X. S``X) ` (A//R) = A//S" by (auto simp: quotient_def image_UN refines_equiv_class_eq2) lemma finite_refines_finite: "finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> finite (A//S)" by (erule finite_surj [where f = "\<lambda>X. S``X"]) (simp add: refines_equiv_image_eq) lemma finite_refines_card_le: "finite (A//R) \<Longrightarrow> R \<subseteq> S \<Longrightarrow> equiv A R \<Longrightarrow> equiv A S \<Longrightarrow> card (A//S) \<le> card (A//R)" by (subst refines_equiv_image_eq [of R S A, symmetric]) (auto simp: card_image_le [where f = "\<lambda>X. S``X"]) subsection \<open>Defining unary operations upon equivalence classes\<close> text \<open>A congruence-preserving function.\<close> definition congruent :: "('a \<times> 'a) set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where "congruent r f \<longleftrightarrow> (\<forall>(y, z) \<in> r. f y = f z)" lemma congruentI: "(\<And>y z. (y, z) \<in> r \<Longrightarrow> f y = f z) \<Longrightarrow> congruent r f" by (auto simp add: congruent_def) lemma congruentD: "congruent r f \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> f y = f z" by (auto simp add: congruent_def) abbreviation RESPECTS :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infixr \<open>respects\<close> 80) where "f respects r \<equiv> congruent r f" lemma UN_constant_eq: "a \<in> A \<Longrightarrow> \<forall>y \<in> A. f y = c \<Longrightarrow> (\<Union>y \<in> A. f y) = c" \<comment> \<open>lemma required to prove \<open>UN_equiv_class\<close>\<close> by auto lemma UN_equiv_class: assumes "equiv A r" "f respects r" "a \<in> A" shows "(\<Union>x \<in> r``{a}. f x) = f a" \<comment> \<open>Conversion rule\<close> proof - have \<section>: "\<forall>x\<in>r `` {a}. f x = f a" using assms unfolding equiv_def congruent_def sym_def by blast show ?thesis by (iprover intro: assms UN_constant_eq [OF equiv_class_self \<section>]) qed lemma UN_equiv_class_type: assumes r: "equiv A r" "f respects r" and X: "X \<in> A//r" and AB: "\<And>x. x \<in> A \<Longrightarrow> f x \<in> B" shows "(\<Union>x \<in> X. f x) \<in> B" using assms unfolding quotient_def by (auto simp: UN_equiv_class [OF r]) text \<open> Sufficient conditions for injectiveness. Could weaken premises! major premise could be an inclusion; \<open>bcong\<close> could be \<open>\<And>y. y \<in> A \<Longrightarrow> f y \<in> B\<close>. \<close> lemma UN_equiv_class_inject: assumes "equiv A r" "f respects r" and eq: "(\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y)" and X: "X \<in> A//r" and Y: "Y \<in> A//r" and fr: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> (x, y) \<in> r" shows "X = Y" proof - obtain a b where "a \<in> A" and a: "X = r `` {a}" and "b \<in> A" and b: "Y = r `` {b}" using assms by (auto elim!: quotientE) then have "\<Union> (f ` r `` {a}) = f a" "\<Union> (f ` r `` {b}) = f b" by (iprover intro: UN_equiv_class [OF \<open>equiv A r\<close>] assms)+ then have "f a = f b" using eq unfolding a b by (iprover intro: trans sym) then have "(a,b) \<in> r" using fr \<open>a \<in> A\<close> \<open>b \<in> A\<close> by blast then show ?thesis unfolding a b by (rule equiv_class_eq [OF \<open>equiv A r\<close>]) qed subsection \<open>Defining binary operations upon equivalence classes\<close> text \<open>A congruence-preserving function of two arguments.\<close> definition congruent2 :: "('a \<times> 'a) set \<Rightarrow> ('b \<times> 'b) set \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> bool" where "congruent2 r1 r2 f \<longleftrightarrow> (\<forall>(y1, z1) \<in> r1. \<forall>(y2, z2) \<in> r2. f y1 y2 = f z1 z2)" lemma congruent2I': assumes "\<And>y1 z1 y2 z2. (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" shows "congruent2 r1 r2 f" using assms by (auto simp add: congruent2_def) lemma congruent2D: "congruent2 r1 r2 f \<Longrightarrow> (y1, z1) \<in> r1 \<Longrightarrow> (y2, z2) \<in> r2 \<Longrightarrow> f y1 y2 = f z1 z2" by (auto simp add: congruent2_def) text \<open>Abbreviation for the common case where the relations are identical.\<close> abbreviation RESPECTS2:: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infixr \<open>respects2\<close> 80) where "f respects2 r \<equiv> congruent2 r r f" lemma congruent2_implies_congruent: "equiv A r1 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a \<in> A \<Longrightarrow> congruent r2 (f a)" unfolding congruent_def congruent2_def equiv_def refl_on_def by blast lemma congruent2_implies_congruent_UN: assumes "equiv A1 r1" "equiv A2 r2" "congruent2 r1 r2 f" "a \<in> A2" shows "congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)" unfolding congruent_def proof clarify fix c d assume cd: "(c,d) \<in> r1" then have "c \<in> A1" "d \<in> A1" using \<open>equiv A1 r1\<close> by (auto elim!: equiv_type [THEN subsetD, THEN SigmaE2]) moreover have "f c a = f d a" using assms cd unfolding congruent2_def equiv_def refl_on_def by blast ultimately show "\<Union> (f c ` r2 `` {a}) = \<Union> (f d ` r2 `` {a})" using assms by (simp add: UN_equiv_class congruent2_implies_congruent) qed lemma UN_equiv_class2: "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> a1 \<in> A1 \<Longrightarrow> a2 \<in> A2 \<Longrightarrow> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2" by (simp add: UN_equiv_class congruent2_implies_congruent congruent2_implies_congruent_UN) lemma UN_equiv_class_type2: "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> congruent2 r1 r2 f \<Longrightarrow> X1 \<in> A1//r1 \<Longrightarrow> X2 \<in> A2//r2 \<Longrightarrow> (\<And>x1 x2. x1 \<in> A1 \<Longrightarrow> x2 \<in> A2 \<Longrightarrow> f x1 x2 \<in> B) \<Longrightarrow> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B" unfolding quotient_def by (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN congruent2_implies_congruent quotientI) lemma UN_UN_split_split_eq: "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) = (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)" \<comment> \<open>Allows a natural expression of binary operators,\<close> \<comment> \<open>without explicit calls to \<open>split\<close>\<close> by auto lemma congruent2I: "equiv A1 r1 \<Longrightarrow> equiv A2 r2 \<Longrightarrow> (\<And>y z w. w \<in> A2 \<Longrightarrow> (y,z) \<in> r1 \<Longrightarrow> f y w = f z w) \<Longrightarrow> (\<And>y z w. w \<in> A1 \<Longrightarrow> (y,z) \<in> r2 \<Longrightarrow> f w y = f w z) \<Longrightarrow> congruent2 r1 r2 f" \<comment> \<open>Suggested by John Harrison -- the two subproofs may be\<close> \<comment> \<open>\<^emph>\<open>much\<close> simpler than the direct proof.\<close> unfolding congruent2_def equiv_def refl_on_def by (blast intro: trans) lemma congruent2_commuteI: assumes equivA: "equiv A r" and commute: "\<And>y z. y \<in> A \<Longrightarrow> z \<in> A \<Longrightarrow> f y z = f z y" and congt: "\<And>y z w. w \<in> A \<Longrightarrow> (y,z) \<in> r \<Longrightarrow> f w y = f w z" shows "f respects2 r" proof (rule congruent2I [OF equivA equivA]) note eqv = equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2] show "\<And>y z w. \<lbrakk>w \<in> A; (y, z) \<in> r\<rbrakk> \<Longrightarrow> f y w = f z w" by (iprover intro: commute [THEN trans] sym congt elim: eqv) show "\<And>y z w. \<lbrakk>w \<in> A; (y, z) \<in> r\<rbrakk> \<Longrightarrow> f w y = f w z" by (iprover intro: congt elim: eqv) qed subsection \<open>Quotients and finiteness\<close> text \<open>Suggested by Florian Kammüller\<close> lemma finite_quotient: assumes "finite A" "r \<subseteq> A \<times> A" shows "finite (A//r)" \<comment> \<open>recall @{thm equiv_type}\<close> proof - have "A//r \<subseteq> Pow A" using assms unfolding quotient_def by blast moreover have "finite (Pow A)" using assms by simp ultimately show ?thesis by (iprover intro: finite_subset) qed lemma finite_equiv_class: "finite A \<Longrightarrow> r \<subseteq> A \<times> A \<Longrightarrow> X \<in> A//r \<Longrightarrow> finite X" unfolding quotient_def by (erule rev_finite_subset) blast lemma equiv_imp_dvd_card: assumes "finite A" "equiv A r" "\<And>X. X \<in> A//r \<Longrightarrow> k dvd card X" shows "k dvd card A" proof (rule Union_quotient [THEN subst]) show "k dvd card (\<Union> (A // r))" apply (rule dvd_partition) using assms by (auto simp: Union_quotient dest: quotient_disj) qed (use assms in blast) subsection \<open>Projection\<close> definition proj :: "('b \<times> 'a) set \<Rightarrow> 'b \<Rightarrow> 'a set" where "proj r x = r `` {x}" lemma proj_preserves: "x \<in> A \<Longrightarrow> proj r x \<in> A//r" unfolding proj_def by (rule quotientI) lemma proj_in_iff: assumes "equiv A r" shows "proj r x \<in> A//r \<longleftrightarrow> x \<in> A" (is "?lhs \<longleftrightarrow> ?rhs") proof assume ?rhs then show ?lhs by (simp add: proj_preserves) next assume ?lhs then show ?rhs unfolding proj_def quotient_def proof safe fix y assume y: "y \<in> A" and "r `` {x} = r `` {y}" moreover have "y \<in> r `` {y}" using assms y unfolding equiv_def refl_on_def by blast ultimately have "(x, y) \<in> r" by blast then show "x \<in> A" using assms unfolding equiv_def refl_on_def by blast qed qed lemma proj_iff: "equiv A r \<Longrightarrow> {x, y} \<subseteq> A \<Longrightarrow> proj r x = proj r y \<longleftrightarrow> (x, y) \<in> r" by (simp add: proj_def eq_equiv_class_iff) (* lemma in_proj: "\<lbrakk>equiv A r; x \<in> A\<rbrakk> \<Longrightarrow> x \<in> proj r x" unfolding proj_def equiv_def refl_on_def by blast *) lemma proj_image: "proj r ` A = A//r" unfolding proj_def[abs_def] quotient_def by blast lemma in_quotient_imp_non_empty: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<noteq> {}" unfolding quotient_def using equiv_class_self by fast lemma in_quotient_imp_in_rel: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> {x, y} \<subseteq> X \<Longrightarrow> (x, y) \<in> r" using quotient_eq_iff[THEN iffD1] by fastforce lemma in_quotient_imp_closed: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> x \<in> X \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> y \<in> X" unfolding quotient_def equiv_def trans_def by blast lemma in_quotient_imp_subset: "equiv A r \<Longrightarrow> X \<in> A//r \<Longrightarrow> X \<subseteq> A" using in_quotient_imp_in_rel equiv_type by fastforce subsection \<open>Equivalence relations -- predicate version\<close> text \<open>Partial equivalences.\<close> definition part_equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> (\<forall>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y)" \<comment> \<open>John-Harrison-style characterization\<close> lemma part_equivpI: "\<exists>x. R x x \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> part_equivp R" by (auto simp add: part_equivp_def) (auto elim: sympE transpE) lemma part_equivpE: assumes "part_equivp R" obtains x where "R x x" and "symp R" and "transp R" proof - from assms have 1: "\<exists>x. R x x" and 2: "\<And>x y. R x y \<longleftrightarrow> R x x \<and> R y y \<and> R x = R y" unfolding part_equivp_def by blast+ from 1 obtain x where "R x x" .. moreover have "symp R" proof (rule sympI) fix x y assume "R x y" with 2 [of x y] show "R y x" by auto qed moreover have "transp R" proof (rule transpI) fix x y z assume "R x y" and "R y z" with 2 [of x y] 2 [of y z] show "R x z" by auto qed ultimately show thesis by (rule that) qed lemma part_equivp_refl_symp_transp: "part_equivp R \<longleftrightarrow> (\<exists>x. R x x) \<and> symp R \<and> transp R" by (auto intro: part_equivpI elim: part_equivpE) lemma part_equivp_symp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" by (erule part_equivpE, erule sympE) lemma part_equivp_transp: "part_equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" by (erule part_equivpE, erule transpE) lemma part_equivp_typedef: "part_equivp R \<Longrightarrow> \<exists>d. d \<in> {c. \<exists>x. R x x \<and> c = Collect (R x)}" by (auto elim: part_equivpE) text \<open>Total equivalences.\<close> definition equivp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" where "equivp R \<longleftrightarrow> (\<forall>x y. R x y = (R x = R y))" \<comment> \<open>John-Harrison-style characterization\<close> lemma equivpI: "reflp R \<Longrightarrow> symp R \<Longrightarrow> transp R \<Longrightarrow> equivp R" by (auto elim: reflpE sympE transpE simp add: equivp_def) lemma equivpE: assumes "equivp R" obtains "reflp R" and "symp R" and "transp R" using assms by (auto intro!: that reflpI sympI transpI simp add: equivp_def) lemma equivp_implies_part_equivp: "equivp R \<Longrightarrow> part_equivp R" by (auto intro: part_equivpI elim: equivpE reflpE) lemma equivp_equiv: "equiv UNIV A \<longleftrightarrow> equivp (\<lambda>x y. (x, y) \<in> A)" by (auto intro!: equivI equivpI [to_set] elim!: equivE equivpE [to_set]) lemma equivp_reflp_symp_transp: "equivp R \<longleftrightarrow> reflp R \<and> symp R \<and> transp R" by (auto intro: equivpI elim: equivpE) lemma identity_equivp: "equivp (=)" by (auto intro: equivpI reflpI sympI transpI) lemma equivp_reflp: "equivp R \<Longrightarrow> R x x" by (erule equivpE, erule reflpE) lemma equivp_symp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y x" by (erule equivpE, erule sympE) lemma equivp_transp: "equivp R \<Longrightarrow> R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" by (erule equivpE, erule transpE) lemma equivp_rtranclp: "symp r \<Longrightarrow> equivp r\<^sup>*\<^sup>*" by(intro equivpI reflpI sympI transpI)(auto dest: sympD[OF symp_rtranclp]) lemmas equivp_rtranclp_symclp [simp] = equivp_rtranclp[OF symp_on_symclp] lemma equivp_vimage2p: "equivp R \<Longrightarrow> equivp (vimage2p f f R)" by(auto simp add: equivp_def vimage2p_def dest: fun_cong) lemma equivp_imp_transp: "equivp R \<Longrightarrow> transp R" by(simp add: equivp_reflp_symp_transp) subsection \<open>Equivalence closure\<close> definition equivclp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" where "equivclp r = (symclp r)\<^sup>*\<^sup>*" lemma transp_equivclp [simp]: "transp (equivclp r)" by(simp add: equivclp_def) lemma reflp_equivclp [simp]: "reflp (equivclp r)" by(simp add: equivclp_def) lemma symp_equivclp [simp]: "symp (equivclp r)" by(simp add: equivclp_def) lemma equivp_evquivclp [simp]: "equivp (equivclp r)" by(simp add: equivpI) lemma tranclp_equivclp [simp]: "(equivclp r)\<^sup>+\<^sup>+ = equivclp r" by(simp add: equivclp_def) lemma rtranclp_equivclp [simp]: "(equivclp r)\<^sup>*\<^sup>* = equivclp r" by(simp add: equivclp_def) lemma symclp_equivclp [simp]: "symclp (equivclp r) = equivclp r" by(simp add: equivclp_def symp_symclp_eq) lemma equivclp_symclp [simp]: "equivclp (symclp r) = equivclp r" by(simp add: equivclp_def) lemma equivclp_conversep [simp]: "equivclp (conversep r) = equivclp r" by(simp add: equivclp_def) lemma equivclp_sym [sym]: "equivclp r x y \<Longrightarrow> equivclp r y x" by(rule sympD[OF symp_equivclp]) lemma equivclp_OO_equivclp_le_equivclp: "equivclp r OO equivclp r \<le> equivclp r" by(rule transp_relcompp_less_eq transp_equivclp)+ lemma rtranlcp_le_equivclp: "r\<^sup>*\<^sup>* \<le> equivclp r" unfolding equivclp_def by(rule rtranclp_mono)(simp add: symclp_pointfree) lemma rtranclp_conversep_le_equivclp: "r\<inverse>\<inverse>\<^sup>*\<^sup>* \<le> equivclp r" unfolding equivclp_def by(rule rtranclp_mono)(simp add: symclp_pointfree) lemma symclp_rtranclp_le_equivclp: "symclp r\<^sup>*\<^sup>* \<le> equivclp r" unfolding symclp_pointfree by(rule le_supI)(simp_all add: rtranclp_conversep[symmetric] rtranlcp_le_equivclp rtranclp_conversep_le_equivclp) lemma r_OO_conversep_into_equivclp: "r\<^sup>*\<^sup>* OO r\<inverse>\<inverse>\<^sup>*\<^sup>* \<le> equivclp r" by(blast intro: order_trans[OF _ equivclp_OO_equivclp_le_equivclp] relcompp_mono rtranlcp_le_equivclp rtranclp_conversep_le_equivclp del: predicate2I) lemma equivclp_induct [consumes 1, case_names base step, induct pred: equivclp]: assumes a: "equivclp r a b" and cases: "P a" "\<And>y z. equivclp r a y \<Longrightarrow> r y z \<or> r z y \<Longrightarrow> P y \<Longrightarrow> P z" shows "P b" using a unfolding equivclp_def by(induction rule: rtranclp_induct; fold equivclp_def; blast intro: cases elim: symclpE) lemma converse_equivclp_induct [consumes 1, case_names base step]: assumes major: "equivclp r a b" and cases: "P b" "\<And>y z. r y z \<or> r z y \<Longrightarrow> equivclp r z b \<Longrightarrow> P z \<Longrightarrow> P y" shows "P a" using major unfolding equivclp_def by(induction rule: converse_rtranclp_induct; fold equivclp_def; blast intro: cases elim: symclpE) lemma equivclp_refl [simp]: "equivclp r x x" by(rule reflpD[OF reflp_equivclp]) lemma r_into_equivclp [intro]: "r x y \<Longrightarrow> equivclp r x y" unfolding equivclp_def by(blast intro: symclpI) lemma converse_r_into_equivclp [intro]: "r y x \<Longrightarrow> equivclp r x y" unfolding equivclp_def by(blast intro: symclpI) lemma rtranclp_into_equivclp: "r\<^sup>*\<^sup>* x y \<Longrightarrow> equivclp r x y" using rtranlcp_le_equivclp[of r] by blast lemma converse_rtranclp_into_equivclp: "r\<^sup>*\<^sup>* y x \<Longrightarrow> equivclp r x y" by(blast intro: equivclp_sym rtranclp_into_equivclp) lemma equivclp_into_equivclp: "\<lbrakk> equivclp r a b; r b c \<or> r c b \<rbrakk> \<Longrightarrow> equivclp r a c" unfolding equivclp_def by(erule rtranclp.rtrancl_into_rtrancl)(auto intro: symclpI) lemma equivclp_trans [trans]: "\<lbrakk> equivclp r a b; equivclp r b c \<rbrakk> \<Longrightarrow> equivclp r a c" using equivclp_OO_equivclp_le_equivclp[of r] by blast hide_const (open) proj end