| author | wenzelm |
| Fri, 06 Dec 2024 13:33:25 +0100 | |
| changeset 81543 | fa37ee54644c |
| parent 69251 | d240598e8637 |
| child 82388 | f1ff9123c62a |
| permissions | -rw-r--r-- |
(* Title: HOL/Library/Comparator.thy Author: Florian Haftmann, TU Muenchen *) theory Comparator imports Main begin section \<open>Comparators on linear quasi-orders\<close> subsection \<open>Basic properties\<close> datatype comp = Less | Equiv | Greater locale comparator = fixes cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp" assumes refl [simp]: "\<And>a. cmp a a = Equiv" and trans_equiv: "\<And>a b c. cmp a b = Equiv \<Longrightarrow> cmp b c = Equiv \<Longrightarrow> cmp a c = Equiv" assumes trans_less: "cmp a b = Less \<Longrightarrow> cmp b c = Less \<Longrightarrow> cmp a c = Less" and greater_iff_sym_less: "\<And>b a. cmp b a = Greater \<longleftrightarrow> cmp a b = Less" begin text \<open>Dual properties\<close> lemma trans_greater: "cmp a c = Greater" if "cmp a b = Greater" "cmp b c = Greater" using that greater_iff_sym_less trans_less by blast lemma less_iff_sym_greater: "cmp b a = Less \<longleftrightarrow> cmp a b = Greater" by (simp add: greater_iff_sym_less) text \<open>The equivalence part\<close> lemma sym: "cmp b a = Equiv \<longleftrightarrow> cmp a b = Equiv" by (metis (full_types) comp.exhaust greater_iff_sym_less) lemma reflp: "reflp (\<lambda>a b. cmp a b = Equiv)" by (rule reflpI) simp lemma symp: "symp (\<lambda>a b. cmp a b = Equiv)" by (rule sympI) (simp add: sym) lemma transp: "transp (\<lambda>a b. cmp a b = Equiv)" by (rule transpI) (fact trans_equiv) lemma equivp: "equivp (\<lambda>a b. cmp a b = Equiv)" using reflp symp transp by (rule equivpI) text \<open>The strict part\<close> lemma irreflp_less: "irreflp (\<lambda>a b. cmp a b = Less)" by (rule irreflpI) simp lemma irreflp_greater: "irreflp (\<lambda>a b. cmp a b = Greater)" by (rule irreflpI) simp lemma asym_less: "cmp b a \<noteq> Less" if "cmp a b = Less" using that greater_iff_sym_less by force lemma asym_greater: "cmp b a \<noteq> Greater" if "cmp a b = Greater" using that greater_iff_sym_less by force lemma asymp_less: "asymp (\<lambda>a b. cmp a b = Less)" using irreflp_less by (auto intro: asympI dest: asym_less) lemma asymp_greater: "asymp (\<lambda>a b. cmp a b = Greater)" using irreflp_greater by (auto intro!: asympI dest: asym_greater) lemma trans_equiv_less: "cmp a c = Less" if "cmp a b = Equiv" and "cmp b c = Less" using that by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less) lemma trans_less_equiv: "cmp a c = Less" if "cmp a b = Less" and "cmp b c = Equiv" using that by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less) lemma trans_equiv_greater: "cmp a c = Greater" if "cmp a b = Equiv" and "cmp b c = Greater" using that by (simp add: sym [of a b] greater_iff_sym_less trans_less_equiv) lemma trans_greater_equiv: "cmp a c = Greater" if "cmp a b = Greater" and "cmp b c = Equiv" using that by (simp add: sym [of b c] greater_iff_sym_less trans_equiv_less) lemma transp_less: "transp (\<lambda>a b. cmp a b = Less)" by (rule transpI) (fact trans_less) lemma transp_greater: "transp (\<lambda>a b. cmp a b = Greater)" by (rule transpI) (fact trans_greater) text \<open>The reflexive part\<close> lemma reflp_not_less: "reflp (\<lambda>a b. cmp a b \<noteq> Less)" by (rule reflpI) simp lemma reflp_not_greater: "reflp (\<lambda>a b. cmp a b \<noteq> Greater)" by (rule reflpI) simp lemma quasisym_not_less: "cmp a b = Equiv" if "cmp a b \<noteq> Less" and "cmp b a \<noteq> Less" using that comp.exhaust greater_iff_sym_less by auto lemma quasisym_not_greater: "cmp a b = Equiv" if "cmp a b \<noteq> Greater" and "cmp b a \<noteq> Greater" using that comp.exhaust greater_iff_sym_less by auto lemma trans_not_less: "cmp a c \<noteq> Less" if "cmp a b \<noteq> Less" "cmp b c \<noteq> Less" using that by (metis comp.exhaust greater_iff_sym_less trans_equiv trans_less) lemma trans_not_greater: "cmp a c \<noteq> Greater" if "cmp a b \<noteq> Greater" "cmp b c \<noteq> Greater" using that greater_iff_sym_less trans_not_less by blast lemma transp_not_less: "transp (\<lambda>a b. cmp a b \<noteq> Less)" by (rule transpI) (fact trans_not_less) lemma transp_not_greater: "transp (\<lambda>a b. cmp a b \<noteq> Greater)" by (rule transpI) (fact trans_not_greater) text \<open>Substitution under equivalences\<close> lemma equiv_subst_left: "cmp z y = comp \<longleftrightarrow> cmp x y = comp" if "cmp z x = Equiv" for comp proof - from that have "cmp x z = Equiv" by (simp add: sym) with that show ?thesis by (cases comp) (auto intro: trans_equiv trans_equiv_less trans_equiv_greater) qed lemma equiv_subst_right: "cmp x z = comp \<longleftrightarrow> cmp x y = comp" if "cmp z y = Equiv" for comp proof - from that have "cmp y z = Equiv" by (simp add: sym) with that show ?thesis by (cases comp) (auto intro: trans_equiv trans_less_equiv trans_greater_equiv) qed end typedef 'a comparator = "{cmp :: 'a \<Rightarrow> 'a \<Rightarrow> comp. comparator cmp}" morphisms compare Abs_comparator proof - have "comparator (\<lambda>_ _. Equiv)" by standard simp_all then show ?thesis by auto qed setup_lifting type_definition_comparator global_interpretation compare: comparator "compare cmp" using compare [of cmp] by simp lift_definition flat :: "'a comparator" is "\<lambda>_ _. Equiv" by standard simp_all instantiation comparator :: (linorder) default begin lift_definition default_comparator :: "'a comparator" is "\<lambda>x y. if x < y then Less else if x > y then Greater else Equiv" by standard (auto split: if_splits) instance .. end text \<open>A rudimentary quickcheck setup\<close> instantiation comparator :: (enum) equal begin lift_definition equal_comparator :: "'a comparator \<Rightarrow> 'a comparator \<Rightarrow> bool" is "\<lambda>f g. \<forall>x \<in> set Enum.enum. f x = g x" . instance by (standard; transfer) (auto simp add: enum_UNIV) end lemma [code]: "HOL.equal cmp1 cmp2 \<longleftrightarrow> Enum.enum_all (\<lambda>x. compare cmp1 x = compare cmp2 x)" by transfer (simp add: enum_UNIV) lemma [code nbe]: "HOL.equal (cmp :: 'a::enum comparator) cmp \<longleftrightarrow> True" by (fact equal_refl) instantiation comparator :: ("{linorder, typerep}") full_exhaustive begin definition full_exhaustive_comparator :: "('a comparator \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option" where "full_exhaustive_comparator f s = Quickcheck_Exhaustive.orelse (f (flat, (\<lambda>u. Code_Evaluation.Const (STR ''Comparator.flat'') TYPEREP('a comparator)))) (f (default, (\<lambda>u. Code_Evaluation.Const (STR ''HOL.default_class.default'') TYPEREP('a comparator))))" instance .. end subsection \<open>Fundamental comparator combinators\<close> lift_definition reversed :: "'a comparator \<Rightarrow> 'a comparator" is "\<lambda>cmp a b. cmp b a" proof - fix cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp" assume "comparator cmp" then interpret comparator cmp . show "comparator (\<lambda>a b. cmp b a)" by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less) qed lift_definition key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a comparator \<Rightarrow> 'b comparator" is "\<lambda>f cmp a b. cmp (f a) (f b)" proof - fix cmp :: "'a \<Rightarrow> 'a \<Rightarrow> comp" and f :: "'b \<Rightarrow> 'a" assume "comparator cmp" then interpret comparator cmp . show "comparator (\<lambda>a b. cmp (f a) (f b))" by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less) qed subsection \<open>Direct implementations for linear orders on selected types\<close> definition comparator_bool :: "bool comparator" where [simp, code_abbrev]: "comparator_bool = default" lemma compare_comparator_bool [code abstract]: "compare comparator_bool = (\<lambda>p q. if p then if q then Equiv else Greater else if q then Less else Equiv)" by (auto simp add: fun_eq_iff) (transfer; simp)+ definition raw_comparator_nat :: "nat \<Rightarrow> nat \<Rightarrow> comp" where [simp]: "raw_comparator_nat = compare default" lemma default_comparator_nat [simp, code]: "raw_comparator_nat (0::nat) 0 = Equiv" "raw_comparator_nat (Suc m) 0 = Greater" "raw_comparator_nat 0 (Suc n) = Less" "raw_comparator_nat (Suc m) (Suc n) = raw_comparator_nat m n" by (transfer; simp)+ definition comparator_nat :: "nat comparator" where [simp, code_abbrev]: "comparator_nat = default" lemma compare_comparator_nat [code abstract]: "compare comparator_nat = raw_comparator_nat" by simp definition comparator_linordered_group :: "'a::linordered_ab_group_add comparator" where [simp, code_abbrev]: "comparator_linordered_group = default" lemma comparator_linordered_group [code abstract]: "compare comparator_linordered_group = (\<lambda>a b. let c = a - b in if c < 0 then Less else if c = 0 then Equiv else Greater)" proof (rule ext)+ fix a b :: 'a show "compare comparator_linordered_group a b = (let c = a - b in if c < 0 then Less else if c = 0 then Equiv else Greater)" by (simp add: Let_def not_less) (transfer; auto) qed end