| author | wenzelm |
| Fri, 06 Dec 2024 13:33:25 +0100 | |
| changeset 81543 | fa37ee54644c |
| parent 74979 | 4d77dd3019d1 |
| child 82664 | e9f3b94eb6a0 |
| permissions | -rw-r--r-- |
(* Title: HOL/Lifting_Set.thy Author: Brian Huffman and Ondrej Kuncar *) section \<open>Setup for Lifting/Transfer for the set type\<close> theory Lifting_Set imports Lifting Groups_Big begin subsection \<open>Relator and predicator properties\<close> lemma rel_setD1: "\<lbrakk> rel_set R A B; x \<in> A \<rbrakk> \<Longrightarrow> \<exists>y \<in> B. R x y" and rel_setD2: "\<lbrakk> rel_set R A B; y \<in> B \<rbrakk> \<Longrightarrow> \<exists>x \<in> A. R x y" by (simp_all add: rel_set_def) lemma rel_set_conversep [simp]: "rel_set A\<inverse>\<inverse> = (rel_set A)\<inverse>\<inverse>" unfolding rel_set_def by auto lemma rel_set_eq [relator_eq]: "rel_set (=) = (=)" unfolding rel_set_def fun_eq_iff by auto lemma rel_set_mono[relator_mono]: assumes "A \<le> B" shows "rel_set A \<le> rel_set B" using assms unfolding rel_set_def by blast lemma rel_set_OO[relator_distr]: "rel_set R OO rel_set S = rel_set (R OO S)" apply (rule sym) apply (intro ext) subgoal for X Z apply (rule iffI) apply (rule relcomppI [where b="{y. (\<exists>x\<in>X. R x y) \<and> (\<exists>z\<in>Z. S y z)}"]) apply (simp add: rel_set_def, fast)+ done done lemma Domainp_set[relator_domain]: "Domainp (rel_set T) = (\<lambda>A. Ball A (Domainp T))" unfolding rel_set_def Domainp_iff[abs_def] apply (intro ext) apply (rule iffI) apply blast subgoal for A by (rule exI [where x="{y. \<exists>x\<in>A. T x y}"]) fast done lemma left_total_rel_set[transfer_rule]: "left_total A \<Longrightarrow> left_total (rel_set A)" unfolding left_total_def rel_set_def apply safe subgoal for X by (rule exI [where x="{y. \<exists>x\<in>X. A x y}"]) fast done lemma left_unique_rel_set[transfer_rule]: "left_unique A \<Longrightarrow> left_unique (rel_set A)" unfolding left_unique_def rel_set_def by fast lemma right_total_rel_set [transfer_rule]: "right_total A \<Longrightarrow> right_total (rel_set A)" using left_total_rel_set[of "A\<inverse>\<inverse>"] by simp lemma right_unique_rel_set [transfer_rule]: "right_unique A \<Longrightarrow> right_unique (rel_set A)" unfolding right_unique_def rel_set_def by fast lemma bi_total_rel_set [transfer_rule]: "bi_total A \<Longrightarrow> bi_total (rel_set A)" by(simp add: bi_total_alt_def left_total_rel_set right_total_rel_set) lemma bi_unique_rel_set [transfer_rule]: "bi_unique A \<Longrightarrow> bi_unique (rel_set A)" unfolding bi_unique_def rel_set_def by fast lemma set_relator_eq_onp [relator_eq_onp]: "rel_set (eq_onp P) = eq_onp (\<lambda>A. Ball A P)" unfolding fun_eq_iff rel_set_def eq_onp_def Ball_def by fast lemma bi_unique_rel_set_lemma: assumes "bi_unique R" and "rel_set R X Y" obtains f where "Y = image f X" and "inj_on f X" and "\<forall>x\<in>X. R x (f x)" proof define f where "f x = (THE y. R x y)" for x { fix x assume "x \<in> X" with \<open>rel_set R X Y\<close> \<open>bi_unique R\<close> have "R x (f x)" by (simp add: bi_unique_def rel_set_def f_def) (metis theI) with assms \<open>x \<in> X\<close> have "R x (f x)" "\<forall>x'\<in>X. R x' (f x) \<longrightarrow> x = x'" "\<forall>y\<in>Y. R x y \<longrightarrow> y = f x" "f x \<in> Y" by (fastforce simp add: bi_unique_def rel_set_def)+ } note * = this moreover { fix y assume "y \<in> Y" with \<open>rel_set R X Y\<close> *(3) \<open>y \<in> Y\<close> have "\<exists>x\<in>X. y = f x" by (fastforce simp: rel_set_def) } ultimately show "\<forall>x\<in>X. R x (f x)" "Y = image f X" "inj_on f X" by (auto simp: inj_on_def image_iff) qed subsection \<open>Quotient theorem for the Lifting package\<close> lemma Quotient_set[quot_map]: assumes "Quotient R Abs Rep T" shows "Quotient (rel_set R) (image Abs) (image Rep) (rel_set T)" using assms unfolding Quotient_alt_def4 apply (simp add: rel_set_OO[symmetric]) apply (simp add: rel_set_def) apply fast done subsection \<open>Transfer rules for the Transfer package\<close> subsubsection \<open>Unconditional transfer rules\<close> context includes lifting_syntax begin lemma empty_transfer [transfer_rule]: "(rel_set A) {} {}" unfolding rel_set_def by simp lemma insert_transfer [transfer_rule]: "(A ===> rel_set A ===> rel_set A) insert insert" unfolding rel_fun_def rel_set_def by auto lemma union_transfer [transfer_rule]: "(rel_set A ===> rel_set A ===> rel_set A) union union" unfolding rel_fun_def rel_set_def by auto lemma Union_transfer [transfer_rule]: "(rel_set (rel_set A) ===> rel_set A) Union Union" unfolding rel_fun_def rel_set_def by simp fast lemma image_transfer [transfer_rule]: "((A ===> B) ===> rel_set A ===> rel_set B) image image" unfolding rel_fun_def rel_set_def by simp fast lemma UNION_transfer [transfer_rule]: \<comment> \<open>TODO deletion candidate\<close> "(rel_set A ===> (A ===> rel_set B) ===> rel_set B) (\<lambda>A f. \<Union>(f ` A)) (\<lambda>A f. \<Union>(f ` A))" by transfer_prover lemma Ball_transfer [transfer_rule]: "(rel_set A ===> (A ===> (=)) ===> (=)) Ball Ball" unfolding rel_set_def rel_fun_def by fast lemma Bex_transfer [transfer_rule]: "(rel_set A ===> (A ===> (=)) ===> (=)) Bex Bex" unfolding rel_set_def rel_fun_def by fast lemma Pow_transfer [transfer_rule]: "(rel_set A ===> rel_set (rel_set A)) Pow Pow" apply (rule rel_funI) apply (rule rel_setI) subgoal for X Y X' apply (rule rev_bexI [where x="{y\<in>Y. \<exists>x\<in>X'. A x y}"]) apply clarsimp apply (simp add: rel_set_def) apply fast done subgoal for X Y Y' apply (rule rev_bexI [where x="{x\<in>X. \<exists>y\<in>Y'. A x y}"]) apply clarsimp apply (simp add: rel_set_def) apply fast done done lemma rel_set_transfer [transfer_rule]: "((A ===> B ===> (=)) ===> rel_set A ===> rel_set B ===> (=)) rel_set rel_set" unfolding rel_fun_def rel_set_def by fast lemma bind_transfer [transfer_rule]: "(rel_set A ===> (A ===> rel_set B) ===> rel_set B) Set.bind Set.bind" unfolding bind_UNION [abs_def] by transfer_prover lemma INF_parametric [transfer_rule]: \<comment> \<open>TODO deletion candidate\<close> "(rel_set A ===> (A ===> HOL.eq) ===> HOL.eq) (\<lambda>A f. Inf (f ` A)) (\<lambda>A f. Inf (f ` A))" by transfer_prover lemma SUP_parametric [transfer_rule]: \<comment> \<open>TODO deletion candidate\<close> "(rel_set R ===> (R ===> HOL.eq) ===> HOL.eq) (\<lambda>A f. Sup (f ` A)) (\<lambda>A f. Sup (f ` A))" by transfer_prover subsubsection \<open>Rules requiring bi-unique, bi-total or right-total relations\<close> lemma member_transfer [transfer_rule]: assumes "bi_unique A" shows "(A ===> rel_set A ===> (=)) (\<in>) (\<in>)" using assms unfolding rel_fun_def rel_set_def bi_unique_def by fast lemma right_total_Collect_transfer[transfer_rule]: assumes "right_total A" shows "((A ===> (=)) ===> rel_set A) (\<lambda>P. Collect (\<lambda>x. P x \<and> Domainp A x)) Collect" using assms unfolding right_total_def rel_set_def rel_fun_def Domainp_iff by fast lemma Collect_transfer [transfer_rule]: assumes "bi_total A" shows "((A ===> (=)) ===> rel_set A) Collect Collect" using assms unfolding rel_fun_def rel_set_def bi_total_def by fast lemma inter_transfer [transfer_rule]: assumes "bi_unique A" shows "(rel_set A ===> rel_set A ===> rel_set A) inter inter" using assms unfolding rel_fun_def rel_set_def bi_unique_def by fast lemma Diff_transfer [transfer_rule]: assumes "bi_unique A" shows "(rel_set A ===> rel_set A ===> rel_set A) (-) (-)" using assms unfolding rel_fun_def rel_set_def bi_unique_def unfolding Ball_def Bex_def Diff_eq by (safe, simp, metis, simp, metis) lemma subset_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(rel_set A ===> rel_set A ===> (=)) (\<subseteq>) (\<subseteq>)" unfolding subset_eq [abs_def] by transfer_prover context includes lifting_syntax begin lemma strict_subset_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(rel_set A ===> rel_set A ===> (=)) (\<subset>) (\<subset>)" unfolding subset_not_subset_eq by transfer_prover end declare right_total_UNIV_transfer[transfer_rule] lemma UNIV_transfer [transfer_rule]: assumes "bi_total A" shows "(rel_set A) UNIV UNIV" using assms unfolding rel_set_def bi_total_def by simp lemma right_total_Compl_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A" shows "(rel_set A ===> rel_set A) (\<lambda>S. uminus S \<inter> Collect (Domainp A)) uminus" unfolding Compl_eq [abs_def] by (subst Collect_conj_eq[symmetric]) transfer_prover lemma Compl_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A" shows "(rel_set A ===> rel_set A) uminus uminus" unfolding Compl_eq [abs_def] by transfer_prover lemma right_total_Inter_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A" shows "(rel_set (rel_set A) ===> rel_set A) (\<lambda>S. \<Inter>S \<inter> Collect (Domainp A)) Inter" unfolding Inter_eq[abs_def] by (subst Collect_conj_eq[symmetric]) transfer_prover lemma Inter_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A" shows "(rel_set (rel_set A) ===> rel_set A) Inter Inter" unfolding Inter_eq [abs_def] by transfer_prover lemma filter_transfer [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "((A ===> (=)) ===> rel_set A ===> rel_set A) Set.filter Set.filter" unfolding Set.filter_def[abs_def] rel_fun_def rel_set_def by blast lemma finite_transfer [transfer_rule]: "bi_unique A \<Longrightarrow> (rel_set A ===> (=)) finite finite" by (rule rel_funI, erule (1) bi_unique_rel_set_lemma) (auto dest: finite_imageD) lemma card_transfer [transfer_rule]: "bi_unique A \<Longrightarrow> (rel_set A ===> (=)) card card" by (rule rel_funI, erule (1) bi_unique_rel_set_lemma) (simp add: card_image) context includes lifting_syntax begin lemma vimage_right_total_transfer[transfer_rule]: assumes [transfer_rule]: "bi_unique B" "right_total A" shows "((A ===> B) ===> rel_set B ===> rel_set A) (\<lambda>f X. f -` X \<inter> Collect (Domainp A)) vimage" proof - let ?vimage = "(\<lambda>f B. {x. f x \<in> B \<and> Domainp A x})" have "((A ===> B) ===> rel_set B ===> rel_set A) ?vimage vimage" unfolding vimage_def by transfer_prover also have "?vimage = (\<lambda>f X. f -` X \<inter> Collect (Domainp A))" by auto finally show ?thesis . qed end lemma vimage_parametric [transfer_rule]: assumes [transfer_rule]: "bi_total A" "bi_unique B" shows "((A ===> B) ===> rel_set B ===> rel_set A) vimage vimage" unfolding vimage_def[abs_def] by transfer_prover lemma Image_parametric [transfer_rule]: assumes "bi_unique A" shows "(rel_set (rel_prod A B) ===> rel_set A ===> rel_set B) (``) (``)" by (intro rel_funI rel_setI) (force dest: rel_setD1 bi_uniqueDr[OF assms], force dest: rel_setD2 bi_uniqueDl[OF assms]) lemma inj_on_transfer[transfer_rule]: "((A ===> B) ===> rel_set A ===> (=)) inj_on inj_on" if [transfer_rule]: "bi_unique A" "bi_unique B" unfolding inj_on_def by transfer_prover end lemma (in comm_monoid_set) F_parametric [transfer_rule]: fixes A :: "'b \<Rightarrow> 'c \<Rightarrow> bool" assumes "bi_unique A" shows "rel_fun (rel_fun A (=)) (rel_fun (rel_set A) (=)) F F" proof (rule rel_funI)+ fix f :: "'b \<Rightarrow> 'a" and g S T assume "rel_fun A (=) f g" "rel_set A S T" with \<open>bi_unique A\<close> obtain i where "bij_betw i S T" "\<And>x. x \<in> S \<Longrightarrow> f x = g (i x)" by (auto elim: bi_unique_rel_set_lemma simp: rel_fun_def bij_betw_def) then show "F f S = F g T" by (simp add: reindex_bij_betw) qed lemmas sum_parametric = sum.F_parametric lemmas prod_parametric = prod.F_parametric lemma rel_set_UNION: assumes [transfer_rule]: "rel_set Q A B" "rel_fun Q (rel_set R) f g" shows "rel_set R (\<Union>(f ` A)) (\<Union>(g ` B))" by transfer_prover context includes lifting_syntax begin lemma fold_graph_transfer[transfer_rule]: assumes "bi_unique R" "right_total R" shows "((R ===> (=) ===> (=)) ===> (=) ===> rel_set R ===> (=) ===> (=)) fold_graph fold_graph" proof(intro rel_funI) fix f1 :: "'a \<Rightarrow> 'c \<Rightarrow> 'c" and f2 :: "'b \<Rightarrow> 'c \<Rightarrow> 'c" assume rel_f: "(R ===> (=) ===> (=)) f1 f2" fix z1 z2 :: 'c assume [simp]: "z1 = z2" fix A1 A2 assume rel_A: "rel_set R A1 A2" fix y1 y2 :: 'c assume [simp]: "y1 = y2" from \<open>bi_unique R\<close> \<open>right_total R\<close> have The_y: "\<forall>y. \<exists>!x. R x y" unfolding bi_unique_def right_total_def by auto define r where "r \<equiv> \<lambda>y. THE x. R x y" from The_y have r_y: "R (r y) y" for y unfolding r_def using the_equality by fastforce with assms rel_A have "inj_on r A2" "A1 = r ` A2" unfolding r_def rel_set_def inj_on_def bi_unique_def apply(auto simp: image_iff) by metis+ with \<open>bi_unique R\<close> rel_f r_y have "(f1 o r) y = f2 y" for y unfolding bi_unique_def rel_fun_def by auto then have "(f1 o r) = f2" by blast then show "fold_graph f1 z1 A1 y1 = fold_graph f2 z2 A2 y2" by (fastforce simp: fold_graph_image[OF \<open>inj_on r A2\<close>] \<open>A1 = r ` A2\<close>) qed lemma fold_transfer[transfer_rule]: assumes [transfer_rule]: "bi_unique R" "right_total R" shows "((R ===> (=) ===> (=)) ===> (=) ===> rel_set R ===> (=)) Finite_Set.fold Finite_Set.fold" unfolding Finite_Set.fold_def by transfer_prover end end