| author | wenzelm |
| Fri, 06 Dec 2024 13:33:25 +0100 | |
| changeset 81543 | fa37ee54644c |
| parent 75669 | 43f5dfb7fa35 |
| child 82248 | e8c96013ea8a |
| permissions | -rw-r--r-- |
(* Title: HOL/Order_Relation.thy Author: Tobias Nipkow Author: Andrei Popescu, TU Muenchen *) section \<open>Orders as Relations\<close> theory Order_Relation imports Wfrec begin subsection \<open>Orders on a set\<close> definition "preorder_on A r \<equiv> refl_on A r \<and> trans r" definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r" definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r" definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r" definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)" lemmas order_on_defs = preorder_on_def partial_order_on_def linear_order_on_def strict_linear_order_on_def well_order_on_def lemma partial_order_onD: assumes "partial_order_on A r" shows "refl_on A r" and "trans r" and "antisym r" using assms unfolding partial_order_on_def preorder_on_def by auto lemma preorder_on_empty[simp]: "preorder_on {} {}" by (simp add: preorder_on_def trans_def) lemma partial_order_on_empty[simp]: "partial_order_on {} {}" by (simp add: partial_order_on_def) lemma lnear_order_on_empty[simp]: "linear_order_on {} {}" by (simp add: linear_order_on_def) lemma well_order_on_empty[simp]: "well_order_on {} {}" by (simp add: well_order_on_def) lemma preorder_on_converse[simp]: "preorder_on A (r\<inverse>) = preorder_on A r" by (simp add: preorder_on_def) lemma partial_order_on_converse[simp]: "partial_order_on A (r\<inverse>) = partial_order_on A r" by (simp add: partial_order_on_def) lemma linear_order_on_converse[simp]: "linear_order_on A (r\<inverse>) = linear_order_on A r" by (simp add: linear_order_on_def) lemma partial_order_on_acyclic: "partial_order_on A r \<Longrightarrow> acyclic (r - Id)" by (simp add: acyclic_irrefl partial_order_on_def preorder_on_def trans_diff_Id) lemma partial_order_on_well_order_on: "finite r \<Longrightarrow> partial_order_on A r \<Longrightarrow> wf (r - Id)" by (simp add: finite_acyclic_wf partial_order_on_acyclic) lemma strict_linear_order_on_diff_Id: "linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r - Id)" by (simp add: order_on_defs trans_diff_Id) lemma linear_order_on_singleton [simp]: "linear_order_on {x} {(x, x)}" by (simp add: order_on_defs) lemma linear_order_on_acyclic: assumes "linear_order_on A r" shows "acyclic (r - Id)" using strict_linear_order_on_diff_Id[OF assms] by (auto simp add: acyclic_irrefl strict_linear_order_on_def) lemma linear_order_on_well_order_on: assumes "finite r" shows "linear_order_on A r \<longleftrightarrow> well_order_on A r" unfolding well_order_on_def using assms finite_acyclic_wf[OF _ linear_order_on_acyclic, of r] by blast subsection \<open>Orders on the field\<close> abbreviation "Refl r \<equiv> refl_on (Field r) r" abbreviation "Preorder r \<equiv> preorder_on (Field r) r" abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r" abbreviation "Total r \<equiv> total_on (Field r) r" abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r" abbreviation "Well_order r \<equiv> well_order_on (Field r) r" lemma subset_Image_Image_iff: "Preorder r \<Longrightarrow> A \<subseteq> Field r \<Longrightarrow> B \<subseteq> Field r \<Longrightarrow> r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b, a) \<in> r)" apply (simp add: preorder_on_def refl_on_def Image_def subset_eq) apply (simp only: trans_def) apply fast done lemma subset_Image1_Image1_iff: "Preorder r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b, a) \<in> r" by (simp add: subset_Image_Image_iff) lemma Refl_antisym_eq_Image1_Image1_iff: assumes "Refl r" and as: "antisym r" and abf: "a \<in> Field r" "b \<in> Field r" shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b" (is "?lhs \<longleftrightarrow> ?rhs") proof assume ?lhs then have *: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r" by (simp add: set_eq_iff) have "(a, a) \<in> r" "(b, b) \<in> r" using \<open>Refl r\<close> abf by (simp_all add: refl_on_def) then have "(a, b) \<in> r" "(b, a) \<in> r" using *[of a] *[of b] by simp_all then show ?rhs using \<open>antisym r\<close>[unfolded antisym_def] by blast next assume ?rhs then show ?lhs by fast qed lemma Partial_order_eq_Image1_Image1_iff: "Partial_order r \<Longrightarrow> a \<in> Field r \<Longrightarrow> b \<in> Field r \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a = b" by (auto simp: order_on_defs Refl_antisym_eq_Image1_Image1_iff) lemma Total_Id_Field: assumes "Total r" and not_Id: "\<not> r \<subseteq> Id" shows "Field r = Field (r - Id)" proof - have "Field r \<subseteq> Field (r - Id)" proof (rule subsetI) fix a assume *: "a \<in> Field r" from not_Id have "r \<noteq> {}" by fast with not_Id obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" by auto then have "b \<noteq> c \<and> {b, c} \<subseteq> Field r" by (auto simp: Field_def) with * obtain d where "d \<in> Field r" "d \<noteq> a" by auto with * \<open>Total r\<close> have "(a, d) \<in> r \<or> (d, a) \<in> r" by (simp add: total_on_def) with \<open>d \<noteq> a\<close> show "a \<in> Field (r - Id)" unfolding Field_def by blast qed then show ?thesis using mono_Field[of "r - Id" r] Diff_subset[of r Id] by auto qed subsection\<open>Relations given by a predicate and the field\<close> definition relation_of :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set" where "relation_of P A \<equiv> { (a, b) \<in> A \<times> A. P a b }" lemma Field_relation_of: assumes "refl_on A (relation_of P A)" shows "Field (relation_of P A) = A" using assms unfolding refl_on_def Field_def by auto lemma partial_order_on_relation_ofI: assumes refl: "\<And>a. a \<in> A \<Longrightarrow> P a a" and trans: "\<And>a b c. \<lbrakk> a \<in> A; b \<in> A; c \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b c \<Longrightarrow> P a c" and antisym: "\<And>a b. \<lbrakk> a \<in> A; b \<in> A \<rbrakk> \<Longrightarrow> P a b \<Longrightarrow> P b a \<Longrightarrow> a = b" shows "partial_order_on A (relation_of P A)" proof - from refl have "refl_on A (relation_of P A)" unfolding refl_on_def relation_of_def by auto moreover have "trans (relation_of P A)" and "antisym (relation_of P A)" unfolding relation_of_def by (auto intro: transI dest: trans, auto intro: antisymI dest: antisym) ultimately show ?thesis unfolding partial_order_on_def preorder_on_def by simp qed lemma Partial_order_relation_ofI: assumes "partial_order_on A (relation_of P A)" shows "Partial_order (relation_of P A)" using Field_relation_of assms partial_order_on_def preorder_on_def by fastforce subsection \<open>Orders on a type\<close> abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV" abbreviation "linear_order \<equiv> linear_order_on UNIV" abbreviation "well_order \<equiv> well_order_on UNIV" subsection \<open>Order-like relations\<close> text \<open> In this subsection, we develop basic concepts and results pertaining to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or total relations. We also further define upper and lower bounds operators. \<close> subsubsection \<open>Auxiliaries\<close> lemma refl_on_domain: "refl_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" by (auto simp add: refl_on_def) corollary well_order_on_domain: "well_order_on A r \<Longrightarrow> (a, b) \<in> r \<Longrightarrow> a \<in> A \<and> b \<in> A" by (auto simp add: refl_on_domain order_on_defs) lemma well_order_on_Field: "well_order_on A r \<Longrightarrow> A = Field r" by (auto simp add: refl_on_def Field_def order_on_defs) lemma well_order_on_Well_order: "well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r" using well_order_on_Field [of A] by auto lemma Total_subset_Id: assumes "Total r" and "r \<subseteq> Id" shows "r = {} \<or> (\<exists>a. r = {(a, a)})" proof - have "\<exists>a. r = {(a, a)}" if "r \<noteq> {}" proof - from that obtain a b where ab: "(a, b) \<in> r" by fast with \<open>r \<subseteq> Id\<close> have "a = b" by blast with ab have aa: "(a, a) \<in> r" by simp have "a = c \<and> a = d" if "(c, d) \<in> r" for c d proof - from that have "{a, c, d} \<subseteq> Field r" using ab unfolding Field_def by blast then have "((a, c) \<in> r \<or> (c, a) \<in> r \<or> a = c) \<and> ((a, d) \<in> r \<or> (d, a) \<in> r \<or> a = d)" using \<open>Total r\<close> unfolding total_on_def by blast with \<open>r \<subseteq> Id\<close> show ?thesis by blast qed then have "r \<subseteq> {(a, a)}" by auto with aa show ?thesis by blast qed then show ?thesis by blast qed lemma Linear_order_in_diff_Id: assumes "Linear_order r" and "a \<in> Field r" and "b \<in> Field r" shows "(a, b) \<in> r \<longleftrightarrow> (b, a) \<notin> r - Id" using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force subsubsection \<open>The upper and lower bounds operators\<close> text \<open> Here we define upper (``above") and lower (``below") bounds operators. We think of \<open>r\<close> as a \<^emph>\<open>non-strict\<close> relation. The suffix \<open>S\<close> at the names of some operators indicates that the bounds are strict -- e.g., \<open>underS a\<close> is the set of all strict lower bounds of \<open>a\<close> (w.r.t. \<open>r\<close>). Capitalization of the first letter in the name reminds that the operator acts on sets, rather than on individual elements. \<close> definition under :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" where "under r a \<equiv> {b. (b, a) \<in> r}" definition underS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" where "underS r a \<equiv> {b. b \<noteq> a \<and> (b, a) \<in> r}" definition Under :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b, a) \<in> r}" definition UnderS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b, a) \<in> r}" definition above :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" where "above r a \<equiv> {b. (a, b) \<in> r}" definition aboveS :: "'a rel \<Rightarrow> 'a \<Rightarrow> 'a set" where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a, b) \<in> r}" definition Above :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a, b) \<in> r}" definition AboveS :: "'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set" where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a, b) \<in> r}" definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where "ofilter r A \<equiv> A \<subseteq> Field r \<and> (\<forall>a \<in> A. under r a \<subseteq> A)" text \<open> Note: In the definitions of \<open>Above[S]\<close> and \<open>Under[S]\<close>, we bounded comprehension by \<open>Field r\<close> in order to properly cover the case of \<open>A\<close> being empty. \<close> lemma underS_subset_under: "underS r a \<subseteq> under r a" by (auto simp add: underS_def under_def) lemma underS_notIn: "a \<notin> underS r a" by (simp add: underS_def) lemma Refl_under_in: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> a \<in> under r a" by (simp add: refl_on_def under_def) lemma AboveS_disjoint: "A \<inter> (AboveS r A) = {}" by (auto simp add: AboveS_def) lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)" by (auto simp add: AboveS_def underS_def) lemma Refl_under_underS: "Refl r \<Longrightarrow> a \<in> Field r \<Longrightarrow> under r a = underS r a \<union> {a}" unfolding under_def underS_def using refl_on_def[of _ r] by fastforce lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}" by (auto simp: Field_def underS_def) lemma under_Field: "under r a \<subseteq> Field r" by (auto simp: under_def Field_def) lemma underS_Field: "underS r a \<subseteq> Field r" by (auto simp: underS_def Field_def) lemma underS_Field2: "a \<in> Field r \<Longrightarrow> underS r a \<subset> Field r" using underS_notIn underS_Field by fast lemma underS_Field3: "Field r \<noteq> {} \<Longrightarrow> underS r a \<subset> Field r" by (cases "a \<in> Field r") (auto simp: underS_Field2 underS_empty) lemma AboveS_Field: "AboveS r A \<subseteq> Field r" by (auto simp: AboveS_def Field_def) lemma under_incr: assumes "trans r" and "(a, b) \<in> r" shows "under r a \<subseteq> under r b" unfolding under_def proof safe fix x assume "(x, a) \<in> r" with assms trans_def[of r] show "(x, b) \<in> r" by blast qed lemma underS_incr: assumes "trans r" and "antisym r" and ab: "(a, b) \<in> r" shows "underS r a \<subseteq> underS r b" unfolding underS_def proof safe assume *: "b \<noteq> a" and **: "(b, a) \<in> r" with \<open>antisym r\<close> antisym_def[of r] ab show False by blast next fix x assume "x \<noteq> a" "(x, a) \<in> r" with ab \<open>trans r\<close> trans_def[of r] show "(x, b) \<in> r" by blast qed lemma underS_incl_iff: assumes LO: "Linear_order r" and INa: "a \<in> Field r" and INb: "b \<in> Field r" shows "underS r a \<subseteq> underS r b \<longleftrightarrow> (a, b) \<in> r" (is "?lhs \<longleftrightarrow> ?rhs") proof assume ?rhs with \<open>Linear_order r\<close> show ?lhs by (simp add: order_on_defs underS_incr) next assume *: ?lhs have "(a, b) \<in> r" if "a = b" using assms that by (simp add: order_on_defs refl_on_def) moreover have False if "a \<noteq> b" "(b, a) \<in> r" proof - from that have "b \<in> underS r a" unfolding underS_def by blast with * have "b \<in> underS r b" by blast then show ?thesis by (simp add: underS_notIn) qed ultimately show "(a,b) \<in> r" using assms order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast qed lemma finite_Partial_order_induct[consumes 3, case_names step]: assumes "Partial_order r" and "x \<in> Field r" and "finite r" and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x" shows "P x" using assms(2) proof (induct rule: wf_induct[of "r\<inverse> - Id"]) case 1 from assms(1,3) show "wf (r\<inverse> - Id)" using partial_order_on_well_order_on partial_order_on_converse by blast next case prems: (2 x) show ?case by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>) qed lemma finite_Linear_order_induct[consumes 3, case_names step]: assumes "Linear_order r" and "x \<in> Field r" and "finite r" and step: "\<And>x. x \<in> Field r \<Longrightarrow> (\<And>y. y \<in> aboveS r x \<Longrightarrow> P y) \<Longrightarrow> P x" shows "P x" using assms(2) proof (induct rule: wf_induct[of "r\<inverse> - Id"]) case 1 from assms(1,3) show "wf (r\<inverse> - Id)" using linear_order_on_well_order_on linear_order_on_converse unfolding well_order_on_def by blast next case prems: (2 x) show ?case by (rule step) (use prems in \<open>auto simp: aboveS_def intro: FieldI2\<close>) qed subsection \<open>Variations on Well-Founded Relations\<close> text \<open> This subsection contains some variations of the results from \<^theory>\<open>HOL.Wellfounded\<close>: \<^item> means for slightly more direct definitions by well-founded recursion; \<^item> variations of well-founded induction; \<^item> means for proving a linear order to be a well-order. \<close> subsubsection \<open>Characterizations of well-foundedness\<close> text \<open> A transitive relation is well-founded iff it is ``locally'' well-founded, i.e., iff its restriction to the lower bounds of of any element is well-founded. \<close> lemma trans_wf_iff: assumes "trans r" shows "wf r \<longleftrightarrow> (\<forall>a. wf (r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})))" proof - define R where "R a = r \<inter> (r\<inverse>``{a} \<times> r\<inverse>``{a})" for a have "wf (R a)" if "wf r" for a using that R_def wf_subset[of r "R a"] by auto moreover have "wf r" if *: "\<forall>a. wf(R a)" unfolding wf_def proof clarify fix phi a assume **: "\<forall>a. (\<forall>b. (b, a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a" define chi where "chi b \<longleftrightarrow> (b, a) \<in> r \<longrightarrow> phi b" for b with * have "wf (R a)" by auto then have "(\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)" unfolding wf_def by blast also have "\<forall>b. (\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b" proof safe fix b assume "\<forall>c. (c, b) \<in> R a \<longrightarrow> chi c" moreover have "(b, a) \<in> r \<Longrightarrow> \<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c \<Longrightarrow> phi b" proof - assume "(b, a) \<in> r" and "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c" then have "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c" using assms trans_def[of r] by blast with ** show "phi b" by blast qed ultimately show "chi b" by (auto simp add: chi_def R_def) qed finally have "\<forall>b. chi b" . with ** chi_def show "phi a" by blast qed ultimately show ?thesis unfolding R_def by blast qed text\<open>A transitive relation is well-founded if all initial segments are finite.\<close> corollary wf_finite_segments: assumes "irrefl r" and "trans r" and "\<And>x. finite {y. (y, x) \<in> r}" shows "wf r" proof - have "\<And>a. acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})" proof - fix a have "trans (r \<inter> ({x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r}))" using assms unfolding trans_def Field_def by blast then show "acyclic (r \<inter> {x. (x, a) \<in> r} \<times> {x. (x, a) \<in> r})" using assms acyclic_def assms irrefl_def by fastforce qed then show ?thesis by (clarsimp simp: trans_wf_iff wf_iff_acyclic_if_finite converse_def assms) qed text \<open>The next lemma is a variation of \<open>wf_eq_minimal\<close> from Wellfounded, allowing one to assume the set included in the field.\<close> lemma wf_eq_minimal2: "wf r \<longleftrightarrow> (\<forall>A. A \<subseteq> Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r))" proof- let ?phi = "\<lambda>A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r)" have "wf r \<longleftrightarrow> (\<forall>A. ?phi A)" proof assume "wf r" show "\<forall>A. ?phi A" proof clarify fix A:: "'a set" assume "A \<noteq> {}" then obtain x where "x \<in> A" by auto show "\<exists>a\<in>A. \<forall>a'\<in>A. (a', a) \<notin> r" apply (rule wfE_min[of r x A]) apply fact+ by blast qed next assume *: "\<forall>A. ?phi A" then show "wf r" apply (clarsimp simp: ex_in_conv [THEN sym]) apply (rule wfI_min) by fast qed also have "(\<forall>A. ?phi A) \<longleftrightarrow> (\<forall>B \<subseteq> Field r. ?phi B)" proof assume "\<forall>A. ?phi A" then show "\<forall>B \<subseteq> Field r. ?phi B" by simp next assume *: "\<forall>B \<subseteq> Field r. ?phi B" show "\<forall>A. ?phi A" proof clarify fix A :: "'a set" assume **: "A \<noteq> {}" define B where "B = A \<inter> Field r" show "\<exists>a \<in> A. \<forall>a' \<in> A. (a', a) \<notin> r" proof (cases "B = {}") case True with ** obtain a where a: "a \<in> A" "a \<notin> Field r" unfolding B_def by blast with a have "\<forall>a' \<in> A. (a',a) \<notin> r" unfolding Field_def by blast with a show ?thesis by blast next case False have "B \<subseteq> Field r" unfolding B_def by blast with False * obtain a where a: "a \<in> B" "\<forall>a' \<in> B. (a', a) \<notin> r" by blast have "(a', a) \<notin> r" if "a' \<in> A" for a' proof assume a'a: "(a', a) \<in> r" with that have "a' \<in> B" unfolding B_def Field_def by blast with a a'a show False by blast qed with a show ?thesis unfolding B_def by blast qed qed qed finally show ?thesis by blast qed subsubsection \<open>Characterizations of well-foundedness\<close> text \<open> The next lemma and its corollary enable one to prove that a linear order is a well-order in a way which is more standard than via well-foundedness of the strict version of the relation. \<close> lemma Linear_order_wf_diff_Id: assumes "Linear_order r" shows "wf (r - Id) \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))" proof (cases "r \<subseteq> Id") case True then have *: "r - Id = {}" by blast have "wf (r - Id)" by (simp add: *) moreover have "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" if *: "A \<subseteq> Field r" and **: "A \<noteq> {}" for A proof - from \<open>Linear_order r\<close> True obtain a where a: "r = {} \<or> r = {(a, a)}" unfolding order_on_defs using Total_subset_Id [of r] by blast with * ** have "A = {a} \<and> r = {(a, a)}" unfolding Field_def by blast with a show ?thesis by blast qed ultimately show ?thesis by blast next case False with \<open>Linear_order r\<close> have Field: "Field r = Field (r - Id)" unfolding order_on_defs using Total_Id_Field [of r] by blast show ?thesis proof assume *: "wf (r - Id)" show "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)" proof clarify fix A assume **: "A \<subseteq> Field r" and ***: "A \<noteq> {}" then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" using Field * unfolding wf_eq_minimal2 by simp moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** by blast ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r" by blast qed next assume *: "\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r)" show "wf (r - Id)" unfolding wf_eq_minimal2 proof clarify fix A assume **: "A \<subseteq> Field(r - Id)" and ***: "A \<noteq> {}" then have "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" using Field * by simp moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r \<longleftrightarrow> (a', a) \<notin> r - Id" using Linear_order_in_diff_Id [OF \<open>Linear_order r\<close>] ** mono_Field[of "r - Id" r] by blast ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" by blast qed qed qed corollary Linear_order_Well_order_iff: "Linear_order r \<Longrightarrow> Well_order r \<longleftrightarrow> (\<forall>A \<subseteq> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a, a') \<in> r))" unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast end