| author | wenzelm |
| Fri, 06 Dec 2024 13:33:25 +0100 | |
| changeset 81543 | fa37ee54644c |
| parent 81124 | 6ce0c8d59f5a |
| child 82310 | 41f5266e5595 |
| permissions | -rw-r--r-- |
(* Title: HOL/Rat.thy Author: Markus Wenzel, TU Muenchen *) section \<open>Rational numbers\<close> theory Rat imports Archimedean_Field begin subsection \<open>Rational numbers as quotient\<close> subsubsection \<open>Construction of the type of rational numbers\<close> definition ratrel :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool" where "ratrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)" lemma ratrel_iff [simp]: "ratrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x" by (simp add: ratrel_def) lemma exists_ratrel_refl: "\<exists>x. ratrel x x" by (auto intro!: one_neq_zero) lemma symp_ratrel: "symp ratrel" by (simp add: ratrel_def symp_def) lemma transp_ratrel: "transp ratrel" proof (rule transpI, unfold split_paired_all) fix a b a' b' a'' b'' :: int assume *: "ratrel (a, b) (a', b')" assume **: "ratrel (a', b') (a'', b'')" have "b' * (a * b'') = b'' * (a * b')" by simp also from * have "a * b' = a' * b" by auto also have "b'' * (a' * b) = b * (a' * b'')" by simp also from ** have "a' * b'' = a'' * b'" by auto also have "b * (a'' * b') = b' * (a'' * b)" by simp finally have "b' * (a * b'') = b' * (a'' * b)" . moreover from ** have "b' \<noteq> 0" by auto ultimately have "a * b'' = a'' * b" by simp with * ** show "ratrel (a, b) (a'', b'')" by auto qed lemma part_equivp_ratrel: "part_equivp ratrel" by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel]) quotient_type rat = "int \<times> int" / partial: "ratrel" morphisms Rep_Rat Abs_Rat by (rule part_equivp_ratrel) lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp pcr_rat = (\<lambda>x. snd x \<noteq> 0)" by (simp add: rat.domain_eq) subsubsection \<open>Representation and basic operations\<close> lift_definition Fract :: "int \<Rightarrow> int \<Rightarrow> rat" is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)" by simp lemma eq_rat: "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b" "\<And>a. Fract a 0 = Fract 0 1" "\<And>a c. Fract 0 a = Fract 0 c" by (transfer, simp)+ lemma Rat_cases [case_names Fract, cases type: rat]: assumes that: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C" shows C proof - obtain a b :: int where q: "q = Fract a b" and b: "b \<noteq> 0" by transfer simp let ?a = "a div gcd a b" let ?b = "b div gcd a b" from b have "?b * gcd a b = b" by simp with b have "?b \<noteq> 0" by fastforce with q b have q2: "q = Fract ?a ?b" by (simp add: eq_rat dvd_div_mult mult.commute [of a]) from b have coprime: "coprime ?a ?b" by (auto intro: div_gcd_coprime) show C proof (cases "b > 0") case True then have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff) from q2 this coprime show C by (rule that) next case False have "q = Fract (- ?a) (- ?b)" unfolding q2 by transfer simp moreover from False b have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff) moreover from coprime have "coprime (- ?a) (- ?b)" by simp ultimately show C by (rule that) qed qed lemma Rat_induct [case_names Fract, induct type: rat]: assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)" shows "P q" using assms by (cases q) simp instantiation rat :: field begin lift_definition zero_rat :: "rat" is "(0, 1)" by simp lift_definition one_rat :: "rat" is "(1, 1)" by simp lemma Zero_rat_def: "0 = Fract 0 1" by transfer simp lemma One_rat_def: "1 = Fract 1 1" by transfer simp lift_definition plus_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" is "\<lambda>x y. (fst x * snd y + fst y * snd x, snd x * snd y)" by (auto simp: distrib_right) (simp add: ac_simps) lemma add_rat [simp]: assumes "b \<noteq> 0" and "d \<noteq> 0" shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)" using assms by transfer simp lift_definition uminus_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. (- fst x, snd x)" by simp lemma minus_rat [simp]: "- Fract a b = Fract (- a) b" by transfer simp lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b" by (cases "b = 0") (simp_all add: eq_rat) definition diff_rat_def: "q - r = q + - r" for q r :: rat lemma diff_rat [simp]: "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b - Fract c d = Fract (a * d - c * b) (b * d)" by (simp add: diff_rat_def) lift_definition times_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" is "\<lambda>x y. (fst x * fst y, snd x * snd y)" by (simp add: ac_simps) lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)" by transfer simp lemma mult_rat_cancel: "c \<noteq> 0 \<Longrightarrow> Fract (c * a) (c * b) = Fract a b" by transfer simp lift_definition inverse_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)" by (auto simp add: mult.commute) lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a" by transfer simp definition divide_rat_def: "q div r = q * inverse r" for q r :: rat lemma divide_rat [simp]: "Fract a b div Fract c d = Fract (a * d) (b * c)" by (simp add: divide_rat_def) instance proof fix q r s :: rat show "(q * r) * s = q * (r * s)" by transfer simp show "q * r = r * q" by transfer simp show "1 * q = q" by transfer simp show "(q + r) + s = q + (r + s)" by transfer (simp add: algebra_simps) show "q + r = r + q" by transfer simp show "0 + q = q" by transfer simp show "- q + q = 0" by transfer simp show "q - r = q + - r" by (fact diff_rat_def) show "(q + r) * s = q * s + r * s" by transfer (simp add: algebra_simps) show "(0::rat) \<noteq> 1" by transfer simp show "inverse q * q = 1" if "q \<noteq> 0" using that by transfer simp show "q div r = q * inverse r" by (fact divide_rat_def) show "inverse 0 = (0::rat)" by transfer simp qed end (* We cannot state these two rules earlier because of pending sort hypotheses *) lemma div_add_self1_no_field [simp]: assumes "NO_MATCH (x :: 'b :: field) b" "(b :: 'a :: euclidean_semiring_cancel) \<noteq> 0" shows "(b + a) div b = a div b + 1" using assms(2) by (fact div_add_self1) lemma div_add_self2_no_field [simp]: assumes "NO_MATCH (x :: 'b :: field) b" "(b :: 'a :: euclidean_semiring_cancel) \<noteq> 0" shows "(a + b) div b = a div b + 1" using assms(2) by (fact div_add_self2) lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1" by (induct k) (simp_all add: Zero_rat_def One_rat_def) lemma of_int_rat: "of_int k = Fract k 1" by (cases k rule: int_diff_cases) (simp add: of_nat_rat) lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k" by (rule of_nat_rat [symmetric]) lemma Fract_of_int_eq: "Fract k 1 = of_int k" by (rule of_int_rat [symmetric]) lemma rat_number_collapse: "Fract 0 k = 0" "Fract 1 1 = 1" "Fract (numeral w) 1 = numeral w" "Fract (- numeral w) 1 = - numeral w" "Fract (- 1) 1 = - 1" "Fract k 0 = 0" using Fract_of_int_eq [of "numeral w"] and Fract_of_int_eq [of "- numeral w"] by (simp_all add: Zero_rat_def One_rat_def eq_rat) lemma rat_number_expand: "0 = Fract 0 1" "1 = Fract 1 1" "numeral k = Fract (numeral k) 1" "- 1 = Fract (- 1) 1" "- numeral k = Fract (- numeral k) 1" by (simp_all add: rat_number_collapse) lemma Rat_cases_nonzero [case_names Fract 0]: assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C" and 0: "q = 0 \<Longrightarrow> C" shows C proof (cases "q = 0") case True then show C using 0 by auto next case False then obtain a b where *: "q = Fract a b" "b > 0" "coprime a b" by (cases q) auto with False have "0 \<noteq> Fract a b" by simp with \<open>b > 0\<close> have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat) with Fract * show C by blast qed subsubsection \<open>Function \<open>normalize\<close>\<close> lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b" proof (cases "b = 0") case True then show ?thesis by (simp add: eq_rat) next case False moreover have "b div gcd a b * gcd a b = b" by (rule dvd_div_mult_self) simp ultimately have "b div gcd a b * gcd a b \<noteq> 0" by simp then have "b div gcd a b \<noteq> 0" by fastforce with False show ?thesis by (simp add: eq_rat dvd_div_mult mult.commute [of a]) qed definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a)) else if snd p = 0 then (0, 1) else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))" lemma normalize_crossproduct: assumes "q \<noteq> 0" "s \<noteq> 0" assumes "normalize (p, q) = normalize (r, s)" shows "p * s = r * q" proof - have *: "p * s = q * r" if "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q" proof - from that have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp with assms show ?thesis by (auto simp add: ac_simps sgn_mult sgn_0_0) qed from assms show ?thesis by (auto simp: normalize_def Let_def dvd_div_div_eq_mult mult.commute sgn_mult split: if_splits intro: *) qed lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b" by (auto simp: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse split: if_split_asm) lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0" by (auto simp: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff split: if_split_asm) lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q" by (auto simp: normalize_def Let_def dvd_div_neg div_gcd_coprime split: if_split_asm) lemma normalize_stable [simp]: "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)" by (simp add: normalize_def) lemma normalize_denom_zero [simp]: "normalize (p, 0) = (0, 1)" by (simp add: normalize_def) lemma normalize_negative [simp]: "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)" by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div) text\<open> Decompose a fraction into normalized, i.e. coprime numerator and denominator: \<close> definition quotient_of :: "rat \<Rightarrow> int \<times> int" where "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) \<and> snd pair > 0 \<and> coprime (fst pair) (snd pair))" lemma quotient_of_unique: "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)" proof (cases r) case (Fract a b) then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto then show ?thesis proof (rule ex1I) fix p assume r: "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)" obtain c d where p: "p = (c, d)" by (cases p) with r have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all have "(c, d) = (a, b)" proof (cases "a = 0") case True with Fract Fract' show ?thesis by (simp add: eq_rat) next case False with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat) then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto with \<open>b > 0\<close> \<open>d > 0\<close> have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff) with \<open>a \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have sgn: "sgn a = sgn c" by (auto simp add: not_less) from \<open>coprime a b\<close> \<open>coprime c d\<close> have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>" by (simp add: coprime_crossproduct_int) with \<open>b > 0\<close> \<open>d > 0\<close> have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn) with sgn * show ?thesis by (auto simp add: sgn_0_0) qed with p show "p = (a, b)" by simp qed qed lemma quotient_of_Fract [code]: "quotient_of (Fract a b) = normalize (a, b)" proof - have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract) by (rule sym) (auto intro: normalize_eq) moreover have "0 < snd (normalize (a, b))" (is ?denom_pos) by (cases "normalize (a, b)") (rule normalize_denom_pos, simp) moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime) by (rule normalize_coprime) simp ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast then have "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)" by (rule the1_equality [OF quotient_of_unique]) then show ?thesis by (simp add: quotient_of_def) qed lemma quotient_of_number [simp]: "quotient_of 0 = (0, 1)" "quotient_of 1 = (1, 1)" "quotient_of (numeral k) = (numeral k, 1)" "quotient_of (- 1) = (- 1, 1)" "quotient_of (- numeral k) = (- numeral k, 1)" by (simp_all add: rat_number_expand quotient_of_Fract) lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b" by (simp add: quotient_of_Fract normalize_eq) lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0" by (cases r) (simp add: quotient_of_Fract normalize_denom_pos) lemma quotient_of_denom_pos': "snd (quotient_of r) > 0" using quotient_of_denom_pos [of r] by (simp add: prod_eq_iff) lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q" by (cases r) (simp add: quotient_of_Fract normalize_coprime) lemma quotient_of_inject: assumes "quotient_of a = quotient_of b" shows "a = b" proof - obtain p q r s where a: "a = Fract p q" and b: "b = Fract r s" and "q > 0" and "s > 0" by (cases a, cases b) with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct) qed lemma quotient_of_inject_eq: "quotient_of a = quotient_of b \<longleftrightarrow> a = b" by (auto simp add: quotient_of_inject) subsubsection \<open>Various\<close> lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l" by (simp add: Fract_of_int_eq [symmetric]) lemma Fract_add_one: "n \<noteq> 0 \<Longrightarrow> Fract (m + n) n = Fract m n + 1" by (simp add: rat_number_expand) lemma quotient_of_div: assumes r: "quotient_of r = (n,d)" shows "r = of_int n / of_int d" proof - from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]] have "r = Fract n d" by simp then show ?thesis using Fract_of_int_quotient by simp qed subsubsection \<open>The ordered field of rational numbers\<close> lift_definition positive :: "rat \<Rightarrow> bool" is "\<lambda>x. 0 < fst x * snd x" proof clarsimp fix a b c d :: int assume "b \<noteq> 0" and "d \<noteq> 0" and "a * d = c * b" then have "a * d * b * d = c * b * b * d" by simp then have "a * b * d\<^sup>2 = c * d * b\<^sup>2" unfolding power2_eq_square by (simp add: ac_simps) then have "0 < a * b * d\<^sup>2 \<longleftrightarrow> 0 < c * d * b\<^sup>2" by simp then show "0 < a * b \<longleftrightarrow> 0 < c * d" using \<open>b \<noteq> 0\<close> and \<open>d \<noteq> 0\<close> by (simp add: zero_less_mult_iff) qed lemma positive_zero: "\<not> positive 0" by transfer simp lemma positive_add: "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)" apply transfer apply (auto simp add: zero_less_mult_iff add_pos_pos add_neg_neg mult_pos_neg mult_neg_pos mult_neg_neg) done lemma positive_mult: "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)" apply transfer by (metis fst_conv mult.commute mult_pos_neg2 snd_conv zero_less_mult_iff) lemma positive_minus: "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)" by transfer (auto simp: neq_iff zero_less_mult_iff mult_less_0_iff) instantiation rat :: linordered_field begin definition "x < y \<longleftrightarrow> positive (y - x)" definition "x \<le> y \<longleftrightarrow> x < y \<or> x = y" for x y :: rat definition "\<bar>a\<bar> = (if a < 0 then - a else a)" for a :: rat definition "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" for a :: rat instance proof fix a b c :: rat show "\<bar>a\<bar> = (if a < 0 then - a else a)" by (rule abs_rat_def) show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" unfolding less_eq_rat_def less_rat_def using positive_add positive_zero by force show "a \<le> a" unfolding less_eq_rat_def by simp show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" unfolding less_eq_rat_def less_rat_def using positive_add by fastforce show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b" unfolding less_eq_rat_def less_rat_def using positive_add positive_zero by fastforce show "a \<le> b \<Longrightarrow> c + a \<le> c + b" unfolding less_eq_rat_def less_rat_def by auto show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" by (rule sgn_rat_def) show "a \<le> b \<or> b \<le> a" unfolding less_eq_rat_def less_rat_def by (auto dest!: positive_minus) show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" unfolding less_rat_def by (metis diff_zero positive_mult right_diff_distrib') qed end instantiation rat :: distrib_lattice begin definition "(inf :: rat \<Rightarrow> rat \<Rightarrow> rat) = min" definition "(sup :: rat \<Rightarrow> rat \<Rightarrow> rat) = max" instance by standard (auto simp add: inf_rat_def sup_rat_def max_min_distrib2) end lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b" by transfer simp lemma less_rat [simp]: "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)" by (simp add: less_rat_def positive_rat algebra_simps) lemma le_rat [simp]: "b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)" by (simp add: le_less eq_rat) lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>" by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff) lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)" unfolding Fract_of_int_eq by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat) (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff) lemma Rat_induct_pos [case_names Fract, induct type: rat]: assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)" shows "P q" proof (cases q) case (Fract a b) have step': "P (Fract a b)" if b: "b < 0" for a b :: int proof - from b have "0 < - b" by simp then have "P (Fract (- a) (- b))" by (rule step) then show "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b]) qed from Fract show "P q" by (auto simp add: linorder_neq_iff step step') qed lemma zero_less_Fract_iff: "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a" by (simp add: Zero_rat_def zero_less_mult_iff) lemma Fract_less_zero_iff: "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0" by (simp add: Zero_rat_def mult_less_0_iff) lemma zero_le_Fract_iff: "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a" by (simp add: Zero_rat_def zero_le_mult_iff) lemma Fract_le_zero_iff: "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0" by (simp add: Zero_rat_def mult_le_0_iff) lemma one_less_Fract_iff: "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a" by (simp add: One_rat_def mult_less_cancel_right_disj) lemma Fract_less_one_iff: "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b" by (simp add: One_rat_def mult_less_cancel_right_disj) lemma one_le_Fract_iff: "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a" by (simp add: One_rat_def mult_le_cancel_right) lemma Fract_le_one_iff: "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b" by (simp add: One_rat_def mult_le_cancel_right) subsubsection \<open>Rationals are an Archimedean field\<close> lemma rat_floor_lemma: "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)" proof - have "Fract a b = of_int (a div b) + Fract (a mod b) b" by (cases "b = 0") (simp, simp add: of_int_rat) moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1" unfolding Fract_of_int_quotient by (rule linorder_cases [of b 0]) (simp_all add: divide_nonpos_neg) ultimately show ?thesis by simp qed instance rat :: archimedean_field proof show "\<exists>z. r \<le> of_int z" for r :: rat proof (induct r) case (Fract a b) have "Fract a b \<le> of_int (a div b + 1)" using rat_floor_lemma [of a b] by simp then show "\<exists>z. Fract a b \<le> of_int z" .. qed qed instantiation rat :: floor_ceiling begin definition floor_rat :: "rat \<Rightarrow> int" where"\<lfloor>x\<rfloor> = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" for x :: rat instance proof show "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" for x :: rat unfolding floor_rat_def using floor_exists1 by (rule theI') qed end lemma floor_Fract [simp]: "\<lfloor>Fract a b\<rfloor> = a div b" by (simp add: Fract_of_int_quotient floor_divide_of_int_eq) subsection \<open>Linear arithmetic setup\<close> declaration \<open> K (Lin_Arith.add_inj_thms @{thms of_int_le_iff [THEN iffD2] of_int_eq_iff [THEN iffD2]} (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *) #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_nat\<close>, \<^typ>\<open>nat \<Rightarrow> rat\<close>) #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_int\<close>, \<^typ>\<open>int \<Rightarrow> rat\<close>)) \<close> subsection \<open>Embedding from Rationals to other Fields\<close> context field_char_0 begin lift_definition of_rat :: "rat \<Rightarrow> 'a" is "\<lambda>x. of_int (fst x) / of_int (snd x)" by (auto simp: nonzero_divide_eq_eq nonzero_eq_divide_eq) (simp only: of_int_mult [symmetric]) end lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b" by transfer simp lemma of_rat_0 [simp]: "of_rat 0 = 0" by transfer simp lemma of_rat_1 [simp]: "of_rat 1 = 1" by transfer simp lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b" by transfer (simp add: add_frac_eq) lemma of_rat_minus: "of_rat (- a) = - of_rat a" by transfer simp lemma of_rat_neg_one [simp]: "of_rat (- 1) = - 1" by (simp add: of_rat_minus) lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b" using of_rat_add [of a "- b"] by (simp add: of_rat_minus) lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b" by transfer (simp add: divide_inverse nonzero_inverse_mult_distrib ac_simps) lemma of_rat_sum: "of_rat (\<Sum>a\<in>A. f a) = (\<Sum>a\<in>A. of_rat (f a))" by (induct rule: infinite_finite_induct) (auto simp: of_rat_add) lemma of_rat_prod: "of_rat (\<Prod>a\<in>A. f a) = (\<Prod>a\<in>A. of_rat (f a))" by (induct rule: infinite_finite_induct) (auto simp: of_rat_mult) lemma nonzero_of_rat_inverse: "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)" by (rule inverse_unique [symmetric]) (simp add: of_rat_mult [symmetric]) lemma of_rat_inverse: "(of_rat (inverse a) :: 'a::field_char_0) = inverse (of_rat a)" by (cases "a = 0") (simp_all add: nonzero_of_rat_inverse) lemma nonzero_of_rat_divide: "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b" by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse) lemma of_rat_divide: "(of_rat (a / b) :: 'a::field_char_0) = of_rat a / of_rat b" by (cases "b = 0") (simp_all add: nonzero_of_rat_divide) lemma of_rat_power: "(of_rat (a ^ n) :: 'a::field_char_0) = of_rat a ^ n" by (induct n) (simp_all add: of_rat_mult) lemma of_rat_eq_iff [simp]: "of_rat a = of_rat b \<longleftrightarrow> a = b" apply transfer apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq flip: of_int_mult) done lemma of_rat_eq_0_iff [simp]: "of_rat a = 0 \<longleftrightarrow> a = 0" using of_rat_eq_iff [of _ 0] by simp lemma zero_eq_of_rat_iff [simp]: "0 = of_rat a \<longleftrightarrow> 0 = a" by simp lemma of_rat_eq_1_iff [simp]: "of_rat a = 1 \<longleftrightarrow> a = 1" using of_rat_eq_iff [of _ 1] by simp lemma one_eq_of_rat_iff [simp]: "1 = of_rat a \<longleftrightarrow> 1 = a" by simp lemma of_rat_less: "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s" proof (induct r, induct s) fix a b c d :: int assume not_zero: "b > 0" "d > 0" then have "b * d > 0" by simp have of_int_divide_less_eq: "(of_int a :: 'a) / of_int b < of_int c / of_int d \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b" using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq) show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d) \<longleftrightarrow> Fract a b < Fract c d" using not_zero \<open>b * d > 0\<close> by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult) qed lemma of_rat_less_eq: "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s" unfolding le_less by (auto simp add: of_rat_less) lemma of_rat_le_0_iff [simp]: "(of_rat r :: 'a::linordered_field) \<le> 0 \<longleftrightarrow> r \<le> 0" using of_rat_less_eq [of r 0, where 'a = 'a] by simp lemma zero_le_of_rat_iff [simp]: "0 \<le> (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 0 \<le> r" using of_rat_less_eq [of 0 r, where 'a = 'a] by simp lemma of_rat_le_1_iff [simp]: "(of_rat r :: 'a::linordered_field) \<le> 1 \<longleftrightarrow> r \<le> 1" using of_rat_less_eq [of r 1] by simp lemma one_le_of_rat_iff [simp]: "1 \<le> (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 1 \<le> r" using of_rat_less_eq [of 1 r] by simp lemma of_rat_less_0_iff [simp]: "(of_rat r :: 'a::linordered_field) < 0 \<longleftrightarrow> r < 0" using of_rat_less [of r 0, where 'a = 'a] by simp lemma zero_less_of_rat_iff [simp]: "0 < (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 0 < r" using of_rat_less [of 0 r, where 'a = 'a] by simp lemma of_rat_less_1_iff [simp]: "(of_rat r :: 'a::linordered_field) < 1 \<longleftrightarrow> r < 1" using of_rat_less [of r 1] by simp lemma one_less_of_rat_iff [simp]: "1 < (of_rat r :: 'a::linordered_field) \<longleftrightarrow> 1 < r" using of_rat_less [of 1 r] by simp lemma of_rat_eq_id [simp]: "of_rat = id" proof show "of_rat a = id a" for a by (induct a) (simp add: of_rat_rat Fract_of_int_eq [symmetric]) qed lemma abs_of_rat [simp]: "\<bar>of_rat r\<bar> = (of_rat \<bar>r\<bar> :: 'a :: linordered_field)" by (cases "r \<ge> 0") (simp_all add: not_le of_rat_minus) text \<open>Collapse nested embeddings.\<close> lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n" by (induct n) (simp_all add: of_rat_add) lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z" by (cases z rule: int_diff_cases) (simp add: of_rat_diff) lemma of_rat_numeral_eq [simp]: "of_rat (numeral w) = numeral w" using of_rat_of_int_eq [of "numeral w"] by simp lemma of_rat_neg_numeral_eq [simp]: "of_rat (- numeral w) = - numeral w" using of_rat_of_int_eq [of "- numeral w"] by simp lemma of_rat_floor [simp]: "\<lfloor>of_rat r\<rfloor> = \<lfloor>r\<rfloor>" by (cases r) (simp add: Fract_of_int_quotient of_rat_divide floor_divide_of_int_eq) lemma of_rat_ceiling [simp]: "\<lceil>of_rat r\<rceil> = \<lceil>r\<rceil>" using of_rat_floor [of "- r"] by (simp add: of_rat_minus ceiling_def) lemmas zero_rat = Zero_rat_def lemmas one_rat = One_rat_def abbreviation rat_of_nat :: "nat \<Rightarrow> rat" where "rat_of_nat \<equiv> of_nat" abbreviation rat_of_int :: "int \<Rightarrow> rat" where "rat_of_int \<equiv> of_int" subsection \<open>The Set of Rational Numbers\<close> context field_char_0 begin definition Rats :: "'a set" (\<open>\<rat>\<close>) where "\<rat> = range of_rat" end lemma Rats_cases [cases set: Rats]: assumes "q \<in> \<rat>" obtains (of_rat) r where "q = of_rat r" proof - from \<open>q \<in> \<rat>\<close> have "q \<in> range of_rat" by (simp only: Rats_def) then obtain r where "q = of_rat r" .. then show thesis .. qed lemma Rats_cases': assumes "(x :: 'a :: field_char_0) \<in> \<rat>" obtains a b where "b > 0" "coprime a b" "x = of_int a / of_int b" proof - from assms obtain r where "x = of_rat r" by (auto simp: Rats_def) obtain a b where quot: "quotient_of r = (a,b)" by force have "b > 0" using quotient_of_denom_pos[OF quot] . moreover have "coprime a b" using quotient_of_coprime[OF quot] . moreover have "x = of_int a / of_int b" unfolding \<open>x = of_rat r\<close> quotient_of_div[OF quot] by (simp add: of_rat_divide) ultimately show ?thesis using that by blast qed lemma Rats_of_rat [simp]: "of_rat r \<in> \<rat>" by (simp add: Rats_def) lemma Rats_of_int [simp]: "of_int z \<in> \<rat>" by (subst of_rat_of_int_eq [symmetric]) (rule Rats_of_rat) lemma Ints_subset_Rats: "\<int> \<subseteq> \<rat>" using Ints_cases Rats_of_int by blast lemma Rats_of_nat [simp]: "of_nat n \<in> \<rat>" by (subst of_rat_of_nat_eq [symmetric]) (rule Rats_of_rat) lemma Nats_subset_Rats: "\<nat> \<subseteq> \<rat>" using Ints_subset_Rats Nats_subset_Ints by blast lemma Rats_number_of [simp]: "numeral w \<in> \<rat>" by (subst of_rat_numeral_eq [symmetric]) (rule Rats_of_rat) lemma Rats_0 [simp]: "0 \<in> \<rat>" unfolding Rats_def by (rule range_eqI) (rule of_rat_0 [symmetric]) lemma Rats_1 [simp]: "1 \<in> \<rat>" unfolding Rats_def by (rule range_eqI) (rule of_rat_1 [symmetric]) lemma Rats_add [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a + b \<in> \<rat>" by (metis Rats_cases Rats_of_rat of_rat_add) lemma Rats_minus_iff [simp]: "- a \<in> \<rat> \<longleftrightarrow> a \<in> \<rat>" by (metis Rats_cases Rats_of_rat add.inverse_inverse of_rat_minus) lemma Rats_diff [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a - b \<in> \<rat>" by (metis Rats_add Rats_minus_iff diff_conv_add_uminus) lemma Rats_mult [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a * b \<in> \<rat>" by (metis Rats_cases Rats_of_rat of_rat_mult) lemma Rats_inverse [simp]: "a \<in> \<rat> \<Longrightarrow> inverse a \<in> \<rat>" for a :: "'a::field_char_0" by (metis Rats_cases Rats_of_rat of_rat_inverse) lemma Rats_divide [simp]: "a \<in> \<rat> \<Longrightarrow> b \<in> \<rat> \<Longrightarrow> a / b \<in> \<rat>" for a b :: "'a::field_char_0" by (simp add: divide_inverse) lemma Rats_power [simp]: "a \<in> \<rat> \<Longrightarrow> a ^ n \<in> \<rat>" for a :: "'a::field_char_0" by (metis Rats_cases Rats_of_rat of_rat_power) lemma Rats_sum [intro]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<rat>) \<Longrightarrow> sum f A \<in> \<rat>" by (induction A rule: infinite_finite_induct) auto lemma Rats_prod [intro]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<rat>) \<Longrightarrow> prod f A \<in> \<rat>" by (induction A rule: infinite_finite_induct) auto lemma Rats_induct [case_names of_rat, induct set: Rats]: "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q" by (rule Rats_cases) auto lemma Rats_infinite: "\<not> finite \<rat>" by (auto dest!: finite_imageD simp: inj_on_def infinite_UNIV_char_0 Rats_def) lemma Rats_add_iff: "a \<in> \<rat> \<or> b \<in> \<rat> \<Longrightarrow> a+b \<in> \<rat> \<longleftrightarrow> a \<in> \<rat> \<and> b \<in> \<rat>" by (metis Rats_add Rats_diff add_diff_cancel add_diff_cancel_left') lemma Rats_diff_iff: "a \<in> \<rat> \<or> b \<in> \<rat> \<Longrightarrow> a-b \<in> \<rat> \<longleftrightarrow> a \<in> \<rat> \<and> b \<in> \<rat>" by (metis Rats_add_iff diff_add_cancel) lemma Rats_mult_iff: "a \<in> \<rat>-{0} \<or> b \<in> \<rat>-{0} \<Longrightarrow> a*b \<in> \<rat> \<longleftrightarrow> a \<in> \<rat> \<and> b \<in> \<rat>" by (metis Diff_iff Rats_divide Rats_mult insertI1 mult.commute nonzero_divide_eq_eq) lemma Rats_inverse_iff [simp]: "inverse a \<in> \<rat> \<longleftrightarrow> a \<in> \<rat>" using Rats_inverse by force lemma Rats_divide_iff: "a \<in> \<rat>-{0} \<or> b \<in> \<rat>-{0} \<Longrightarrow> a/b \<in> \<rat> \<longleftrightarrow> a \<in> \<rat> \<and> b \<in> \<rat>" by (metis Rats_divide Rats_mult_iff divide_eq_0_iff divide_inverse nonzero_mult_div_cancel_right) subsection \<open>Implementation of rational numbers as pairs of integers\<close> text \<open>Formal constructor\<close> definition Frct :: "int \<times> int \<Rightarrow> rat" where [simp]: "Frct p = Fract (fst p) (snd p)" lemma [code abstype]: "Frct (quotient_of q) = q" by (cases q) (auto intro: quotient_of_eq) text \<open>Numerals\<close> declare quotient_of_Fract [code abstract] definition of_int :: "int \<Rightarrow> rat" where [code_abbrev]: "of_int = Int.of_int" hide_const (open) of_int lemma quotient_of_int [code abstract]: "quotient_of (Rat.of_int a) = (a, 1)" by (simp add: of_int_def of_int_rat quotient_of_Fract) lemma [code_unfold]: "numeral k = Rat.of_int (numeral k)" by (simp add: Rat.of_int_def) lemma [code_unfold]: "- numeral k = Rat.of_int (- numeral k)" by (simp add: Rat.of_int_def) lemma Frct_code_post [code_post]: "Frct (0, a) = 0" "Frct (a, 0) = 0" "Frct (1, 1) = 1" "Frct (numeral k, 1) = numeral k" "Frct (1, numeral k) = 1 / numeral k" "Frct (numeral k, numeral l) = numeral k / numeral l" "Frct (- a, b) = - Frct (a, b)" "Frct (a, - b) = - Frct (a, b)" "- (- Frct q) = Frct q" by (simp_all add: Fract_of_int_quotient) text \<open>Operations\<close> lemma rat_zero_code [code abstract]: "quotient_of 0 = (0, 1)" by (simp add: Zero_rat_def quotient_of_Fract normalize_def) lemma rat_one_code [code abstract]: "quotient_of 1 = (1, 1)" by (simp add: One_rat_def quotient_of_Fract normalize_def) lemma rat_plus_code [code abstract]: "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q in normalize (a * d + b * c, c * d))" by (cases p, cases q) (simp add: quotient_of_Fract) lemma rat_uminus_code [code abstract]: "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))" by (cases p) (simp add: quotient_of_Fract) lemma rat_minus_code [code abstract]: "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q in normalize (a * d - b * c, c * d))" by (cases p, cases q) (simp add: quotient_of_Fract) lemma rat_times_code [code abstract]: "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q in normalize (a * b, c * d))" by (cases p, cases q) (simp add: quotient_of_Fract) lemma rat_inverse_code [code abstract]: "quotient_of (inverse p) = (let (a, b) = quotient_of p in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))" proof (cases p) case (Fract a b) then show ?thesis by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract ac_simps) qed lemma rat_divide_code [code abstract]: "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q in normalize (a * d, c * b))" by (cases p, cases q) (simp add: quotient_of_Fract) lemma rat_abs_code [code abstract]: "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))" by (cases p) (simp add: quotient_of_Fract) lemma rat_sgn_code [code abstract]: "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)" proof (cases p) case (Fract a b) then show ?thesis by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract) qed lemma rat_floor_code [code]: "\<lfloor>p\<rfloor> = (let (a, b) = quotient_of p in a div b)" by (cases p) (simp add: quotient_of_Fract floor_Fract) instantiation rat :: equal begin definition [code]: "HOL.equal a b \<longleftrightarrow> quotient_of a = quotient_of b" instance by standard (simp add: equal_rat_def quotient_of_inject_eq) lemma rat_eq_refl [code nbe]: "HOL.equal (r::rat) r \<longleftrightarrow> True" by (rule equal_refl) end lemma rat_less_eq_code [code]: "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)" by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) lemma rat_less_code [code]: "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)" by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) lemma [code]: "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)" by (cases p) (simp add: quotient_of_Fract of_rat_rat) text \<open>Quickcheck\<close> context includes term_syntax begin definition valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l" end instantiation rat :: random begin context includes state_combinator_syntax begin definition "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair (let j = int_of_integer (integer_of_natural (denom + 1)) in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))" instance .. end end instantiation rat :: exhaustive begin definition "exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive (\<lambda>l. Quickcheck_Exhaustive.exhaustive (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d" instance .. end instantiation rat :: full_exhaustive begin definition "full_exhaustive_rat f d = Quickcheck_Exhaustive.full_exhaustive (\<lambda>(l, _). Quickcheck_Exhaustive.full_exhaustive (\<lambda>k. f (let j = int_of_integer (integer_of_natural l) + 1 in valterm_fract k (j, \<lambda>_. Code_Evaluation.term_of j))) d) d" instance .. end instance rat :: partial_term_of .. lemma [code]: "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) \<equiv> Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])" "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) \<equiv> Code_Evaluation.App (Code_Evaluation.Const (STR ''Rat.Frct'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []], Typerep.Typerep (STR ''Rat.rat'') []])) (Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.Const (STR ''Product_Type.Pair'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]])) (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))" by (rule partial_term_of_anything)+ instantiation rat :: narrowing begin definition "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons (\<lambda>nom denom. Fract nom denom)) narrowing) narrowing" instance .. end subsection \<open>Setup for Nitpick\<close> declaration \<open> Nitpick_HOL.register_frac_type \<^type_name>\<open>rat\<close> [(\<^const_name>\<open>Abs_Rat\<close>, \<^const_name>\<open>Nitpick.Abs_Frac\<close>), (\<^const_name>\<open>zero_rat_inst.zero_rat\<close>, \<^const_name>\<open>Nitpick.zero_frac\<close>), (\<^const_name>\<open>one_rat_inst.one_rat\<close>, \<^const_name>\<open>Nitpick.one_frac\<close>), (\<^const_name>\<open>plus_rat_inst.plus_rat\<close>, \<^const_name>\<open>Nitpick.plus_frac\<close>), (\<^const_name>\<open>times_rat_inst.times_rat\<close>, \<^const_name>\<open>Nitpick.times_frac\<close>), (\<^const_name>\<open>uminus_rat_inst.uminus_rat\<close>, \<^const_name>\<open>Nitpick.uminus_frac\<close>), (\<^const_name>\<open>inverse_rat_inst.inverse_rat\<close>, \<^const_name>\<open>Nitpick.inverse_frac\<close>), (\<^const_name>\<open>ord_rat_inst.less_rat\<close>, \<^const_name>\<open>Nitpick.less_frac\<close>), (\<^const_name>\<open>ord_rat_inst.less_eq_rat\<close>, \<^const_name>\<open>Nitpick.less_eq_frac\<close>), (\<^const_name>\<open>field_char_0_class.of_rat\<close>, \<^const_name>\<open>Nitpick.of_frac\<close>)] \<close> lemmas [nitpick_unfold] = inverse_rat_inst.inverse_rat one_rat_inst.one_rat ord_rat_inst.less_rat ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat subsection \<open>Float syntax\<close> syntax "_Float" :: "float_const \<Rightarrow> 'a" (\<open>(\<open>open_block notation=\<open>literal number\<close>\<close>_)\<close>) parse_translation \<open> let fun mk_frac str = let val {mant = i, exp = n} = Lexicon.read_float str; val exp = Syntax.const \<^const_syntax>\<open>Power.power\<close>; val ten = Numeral.mk_number_syntax 10; val exp10 = if n = 1 then ten else exp $ ten $ Numeral.mk_number_syntax n; in Syntax.const \<^const_syntax>\<open>Fields.inverse_divide\<close> $ Numeral.mk_number_syntax i $ exp10 end; fun float_tr [(c as Const (\<^syntax_const>\<open>_constrain\<close>, _)) $ t $ u] = c $ float_tr [t] $ u | float_tr [t as Const (str, _)] = mk_frac str | float_tr ts = raise TERM ("float_tr", ts); in [(\<^syntax_const>\<open>_Float\<close>, K float_tr)] end \<close> text\<open>Test:\<close> lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)" by simp subsection \<open>Hiding implementation details\<close> hide_const (open) normalize positive lifting_update rat.lifting lifting_forget rat.lifting end