| author | wenzelm |
| Fri, 06 Dec 2024 13:33:25 +0100 | |
| changeset 81543 | fa37ee54644c |
| parent 80932 | 261cd8722677 |
| child 82802 | 547335b41005 |
| permissions | -rw-r--r-- |
(* Title : Series.thy Author : Jacques D. Fleuriot Copyright : 1998 University of Cambridge Converted to Isar and polished by lcp Converted to sum and polished yet more by TNN Additional contributions by Jeremy Avigad *) section \<open>Infinite Series\<close> theory Series imports Limits Inequalities begin subsection \<open>Definition of infinite summability\<close> definition sums :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> 'a \<Rightarrow> bool" (infixr \<open>sums\<close> 80) where "f sums s \<longleftrightarrow> (\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> s" definition summable :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> bool" where "summable f \<longleftrightarrow> (\<exists>s. f sums s)" definition suminf :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> 'a" (binder \<open>\<Sum>\<close> 10) where "suminf f = (THE s. f sums s)" text\<open>Variants of the definition\<close> lemma sums_def': "f sums s \<longleftrightarrow> (\<lambda>n. \<Sum>i = 0..n. f i) \<longlonglongrightarrow> s" unfolding sums_def apply (subst filterlim_sequentially_Suc [symmetric]) apply (simp only: lessThan_Suc_atMost atLeast0AtMost) done lemma sums_def_le: "f sums s \<longleftrightarrow> (\<lambda>n. \<Sum>i\<le>n. f i) \<longlonglongrightarrow> s" by (simp add: sums_def' atMost_atLeast0) lemma bounded_imp_summable: fixes a :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder,linorder_topology,linordered_comm_semiring_strict}" assumes 0: "\<And>n. a n \<ge> 0" and bounded: "\<And>n. (\<Sum>k\<le>n. a k) \<le> B" shows "summable a" proof - have "bdd_above (range(\<lambda>n. \<Sum>k\<le>n. a k))" by (meson bdd_aboveI2 bounded) moreover have "incseq (\<lambda>n. \<Sum>k\<le>n. a k)" by (simp add: mono_def "0" sum_mono2) ultimately obtain s where "(\<lambda>n. \<Sum>k\<le>n. a k) \<longlonglongrightarrow> s" using LIMSEQ_incseq_SUP by blast then show ?thesis by (auto simp: sums_def_le summable_def) qed subsection \<open>Infinite summability on topological monoids\<close> lemma sums_subst[trans]: "f = g \<Longrightarrow> g sums z \<Longrightarrow> f sums z" by simp lemma sums_cong: "(\<And>n. f n = g n) \<Longrightarrow> f sums c \<longleftrightarrow> g sums c" by presburger lemma sums_summable: "f sums l \<Longrightarrow> summable f" by (simp add: sums_def summable_def, blast) lemma summable_iff_convergent: "summable f \<longleftrightarrow> convergent (\<lambda>n. \<Sum>i<n. f i)" by (simp add: summable_def sums_def convergent_def) lemma summable_iff_convergent': "summable f \<longleftrightarrow> convergent (\<lambda>n. sum f {..n})" by (simp add: convergent_def summable_def sums_def_le) lemma suminf_eq_lim: "suminf f = lim (\<lambda>n. \<Sum>i<n. f i)" by (simp add: suminf_def sums_def lim_def) lemma sums_zero[simp, intro]: "(\<lambda>n. 0) sums 0" unfolding sums_def by simp lemma summable_zero[simp, intro]: "summable (\<lambda>n. 0)" by (rule sums_zero [THEN sums_summable]) lemma sums_group: "f sums s \<Longrightarrow> 0 < k \<Longrightarrow> (\<lambda>n. sum f {n * k ..< n * k + k}) sums s" apply (simp only: sums_def sum.nat_group tendsto_def eventually_sequentially) apply (erule all_forward imp_forward exE| assumption)+ by (metis le_square mult.commute mult.left_neutral mult_le_cancel2 mult_le_mono) lemma suminf_cong: "(\<And>n. f n = g n) \<Longrightarrow> suminf f = suminf g" by presburger lemma summable_cong: fixes f g :: "nat \<Rightarrow> 'a::real_normed_vector" assumes "eventually (\<lambda>x. f x = g x) sequentially" shows "summable f = summable g" proof - from assms obtain N where N: "\<forall>n\<ge>N. f n = g n" by (auto simp: eventually_at_top_linorder) define C where "C = (\<Sum>k<N. f k - g k)" from eventually_ge_at_top[of N] have "eventually (\<lambda>n. sum f {..<n} = C + sum g {..<n}) sequentially" proof eventually_elim case (elim n) then have "{..<n} = {..<N} \<union> {N..<n}" by auto also have "sum f ... = sum f {..<N} + sum f {N..<n}" by (intro sum.union_disjoint) auto also from N have "sum f {N..<n} = sum g {N..<n}" by (intro sum.cong) simp_all also have "sum f {..<N} + sum g {N..<n} = C + (sum g {..<N} + sum g {N..<n})" unfolding C_def by (simp add: algebra_simps sum_subtractf) also have "sum g {..<N} + sum g {N..<n} = sum g ({..<N} \<union> {N..<n})" by (intro sum.union_disjoint [symmetric]) auto also from elim have "{..<N} \<union> {N..<n} = {..<n}" by auto finally show "sum f {..<n} = C + sum g {..<n}" . qed from convergent_cong[OF this] show ?thesis by (simp add: summable_iff_convergent convergent_add_const_iff) qed lemma sums_finite: assumes [simp]: "finite N" and f: "\<And>n. n \<notin> N \<Longrightarrow> f n = 0" shows "f sums (\<Sum>n\<in>N. f n)" proof - have eq: "sum f {..<n + Suc (Max N)} = sum f N" for n by (rule sum.mono_neutral_right) (auto simp: add_increasing less_Suc_eq_le f) show ?thesis unfolding sums_def by (rule LIMSEQ_offset[of _ "Suc (Max N)"]) (simp add: eq atLeast0LessThan del: add_Suc_right) qed corollary sums_0: "(\<And>n. f n = 0) \<Longrightarrow> (f sums 0)" by (metis (no_types) finite.emptyI sum.empty sums_finite) lemma summable_finite: "finite N \<Longrightarrow> (\<And>n. n \<notin> N \<Longrightarrow> f n = 0) \<Longrightarrow> summable f" by (rule sums_summable) (rule sums_finite) lemma sums_If_finite_set: "finite A \<Longrightarrow> (\<lambda>r. if r \<in> A then f r else 0) sums (\<Sum>r\<in>A. f r)" using sums_finite[of A "(\<lambda>r. if r \<in> A then f r else 0)"] by simp lemma summable_If_finite_set[simp, intro]: "finite A \<Longrightarrow> summable (\<lambda>r. if r \<in> A then f r else 0)" by (rule sums_summable) (rule sums_If_finite_set) lemma sums_If_finite: "finite {r. P r} \<Longrightarrow> (\<lambda>r. if P r then f r else 0) sums (\<Sum>r | P r. f r)" using sums_If_finite_set[of "{r. P r}"] by simp lemma summable_If_finite[simp, intro]: "finite {r. P r} \<Longrightarrow> summable (\<lambda>r. if P r then f r else 0)" by (rule sums_summable) (rule sums_If_finite) lemma sums_single: "(\<lambda>r. if r = i then f r else 0) sums f i" using sums_If_finite[of "\<lambda>r. r = i"] by simp lemma summable_single[simp, intro]: "summable (\<lambda>r. if r = i then f r else 0)" by (rule sums_summable) (rule sums_single) context fixes f :: "nat \<Rightarrow> 'a::{t2_space,comm_monoid_add}" begin lemma summable_sums[intro]: "summable f \<Longrightarrow> f sums (suminf f)" by (simp add: summable_def sums_def suminf_def) (metis convergent_LIMSEQ_iff convergent_def lim_def) lemma summable_LIMSEQ: "summable f \<Longrightarrow> (\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> suminf f" by (rule summable_sums [unfolded sums_def]) lemma summable_LIMSEQ': "summable f \<Longrightarrow> (\<lambda>n. \<Sum>i\<le>n. f i) \<longlonglongrightarrow> suminf f" using sums_def_le by blast lemma sums_unique: "f sums s \<Longrightarrow> s = suminf f" by (metis limI suminf_eq_lim sums_def) lemma sums_iff: "f sums x \<longleftrightarrow> summable f \<and> suminf f = x" by (metis summable_sums sums_summable sums_unique) lemma summable_sums_iff: "summable f \<longleftrightarrow> f sums suminf f" by (auto simp: sums_iff summable_sums) lemma sums_unique2: "f sums a \<Longrightarrow> f sums b \<Longrightarrow> a = b" for a b :: 'a by (simp add: sums_iff) lemma sums_Uniq: "\<exists>\<^sub>\<le>\<^sub>1a. f sums a" for a b :: 'a by (simp add: sums_unique2 Uniq_def) lemma suminf_finite: assumes N: "finite N" and f: "\<And>n. n \<notin> N \<Longrightarrow> f n = 0" shows "suminf f = (\<Sum>n\<in>N. f n)" using sums_finite[OF assms, THEN sums_unique] by simp end lemma suminf_zero[simp]: "suminf (\<lambda>n. 0::'a::{t2_space, comm_monoid_add}) = 0" by (rule sums_zero [THEN sums_unique, symmetric]) subsection \<open>Infinite summability on ordered, topological monoids\<close> lemma sums_le: "(\<And>n. f n \<le> g n) \<Longrightarrow> f sums s \<Longrightarrow> g sums t \<Longrightarrow> s \<le> t" for f g :: "nat \<Rightarrow> 'a::{ordered_comm_monoid_add,linorder_topology}" by (rule LIMSEQ_le) (auto intro: sum_mono simp: sums_def) context fixes f :: "nat \<Rightarrow> 'a::{ordered_comm_monoid_add,linorder_topology}" begin lemma suminf_le: "(\<And>n. f n \<le> g n) \<Longrightarrow> summable f \<Longrightarrow> summable g \<Longrightarrow> suminf f \<le> suminf g" using sums_le by blast lemma sum_le_suminf: shows "summable f \<Longrightarrow> finite I \<Longrightarrow> (\<And>n. n \<in>- I \<Longrightarrow> 0 \<le> f n) \<Longrightarrow> sum f I \<le> suminf f" by (rule sums_le[OF _ sums_If_finite_set summable_sums]) auto lemma suminf_nonneg: "summable f \<Longrightarrow> (\<And>n. 0 \<le> f n) \<Longrightarrow> 0 \<le> suminf f" using sum_le_suminf by force lemma suminf_le_const: "summable f \<Longrightarrow> (\<And>n. sum f {..<n} \<le> x) \<Longrightarrow> suminf f \<le> x" by (metis LIMSEQ_le_const2 summable_LIMSEQ) lemma suminf_eq_zero_iff: assumes "summable f" and pos: "\<And>n. 0 \<le> f n" shows "suminf f = 0 \<longleftrightarrow> (\<forall>n. f n = 0)" proof assume L: "suminf f = 0" then have f: "(\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> 0" using summable_LIMSEQ[of f] assms by simp then have "\<And>i. (\<Sum>n\<in>{i}. f n) \<le> 0" by (metis L \<open>summable f\<close> order_refl pos sum.infinite sum_le_suminf) with pos show "\<forall>n. f n = 0" by (simp add: order.antisym) qed (metis suminf_zero fun_eq_iff) lemma suminf_pos_iff: "summable f \<Longrightarrow> (\<And>n. 0 \<le> f n) \<Longrightarrow> 0 < suminf f \<longleftrightarrow> (\<exists>i. 0 < f i)" using sum_le_suminf[of "{}"] suminf_eq_zero_iff by (simp add: less_le) lemma suminf_pos2: assumes "summable f" "\<And>n. 0 \<le> f n" "0 < f i" shows "0 < suminf f" proof - have "0 < (\<Sum>n<Suc i. f n)" using assms by (intro sum_pos2[where i=i]) auto also have "\<dots> \<le> suminf f" using assms by (intro sum_le_suminf) auto finally show ?thesis . qed lemma suminf_pos: "summable f \<Longrightarrow> (\<And>n. 0 < f n) \<Longrightarrow> 0 < suminf f" by (intro suminf_pos2[where i=0]) (auto intro: less_imp_le) end context fixes f :: "nat \<Rightarrow> 'a::{ordered_cancel_comm_monoid_add,linorder_topology}" begin lemma sum_less_suminf2: "summable f \<Longrightarrow> (\<And>m. m\<ge>n \<Longrightarrow> 0 \<le> f m) \<Longrightarrow> n \<le> i \<Longrightarrow> 0 < f i \<Longrightarrow> sum f {..<n} < suminf f" using sum_le_suminf[of f "{..< Suc i}"] and add_strict_increasing[of "f i" "sum f {..<n}" "sum f {..<i}"] and sum_mono2[of "{..<i}" "{..<n}" f] by (auto simp: less_imp_le ac_simps) lemma sum_less_suminf: "summable f \<Longrightarrow> (\<And>m. m\<ge>n \<Longrightarrow> 0 < f m) \<Longrightarrow> sum f {..<n} < suminf f" using sum_less_suminf2[of n n] by (simp add: less_imp_le) end lemma summableI_nonneg_bounded: fixes f :: "nat \<Rightarrow> 'a::{ordered_comm_monoid_add,linorder_topology,conditionally_complete_linorder}" assumes pos[simp]: "\<And>n. 0 \<le> f n" and le: "\<And>n. (\<Sum>i<n. f i) \<le> x" shows "summable f" unfolding summable_def sums_def [abs_def] proof (rule exI LIMSEQ_incseq_SUP)+ show "bdd_above (range (\<lambda>n. sum f {..<n}))" using le by (auto simp: bdd_above_def) show "incseq (\<lambda>n. sum f {..<n})" by (auto simp: mono_def intro!: sum_mono2) qed lemma summableI[intro, simp]: "summable f" for f :: "nat \<Rightarrow> 'a::{canonically_ordered_monoid_add,linorder_topology,complete_linorder}" by (intro summableI_nonneg_bounded[where x=top] zero_le top_greatest) lemma suminf_eq_SUP_real: assumes X: "summable X" "\<And>i. 0 \<le> X i" shows "suminf X = (SUP i. \<Sum>n<i. X n::real)" by (intro LIMSEQ_unique[OF summable_LIMSEQ] X LIMSEQ_incseq_SUP) (auto intro!: bdd_aboveI2[where M="\<Sum>i. X i"] sum_le_suminf X monoI sum_mono2) subsection \<open>Infinite summability on topological monoids\<close> context fixes f g :: "nat \<Rightarrow> 'a::{t2_space,topological_comm_monoid_add}" begin lemma sums_Suc: assumes "(\<lambda>n. f (Suc n)) sums l" shows "f sums (l + f 0)" proof - have "(\<lambda>n. (\<Sum>i<n. f (Suc i)) + f 0) \<longlonglongrightarrow> l + f 0" using assms by (auto intro!: tendsto_add simp: sums_def) moreover have "(\<Sum>i<n. f (Suc i)) + f 0 = (\<Sum>i<Suc n. f i)" for n unfolding lessThan_Suc_eq_insert_0 by (simp add: ac_simps sum.atLeast1_atMost_eq image_Suc_lessThan) ultimately show ?thesis by (auto simp: sums_def simp del: sum.lessThan_Suc intro: filterlim_sequentially_Suc[THEN iffD1]) qed lemma sums_add: "f sums a \<Longrightarrow> g sums b \<Longrightarrow> (\<lambda>n. f n + g n) sums (a + b)" unfolding sums_def by (simp add: sum.distrib tendsto_add) lemma summable_add: "summable f \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. f n + g n)" unfolding summable_def by (auto intro: sums_add) lemma suminf_add: "summable f \<Longrightarrow> summable g \<Longrightarrow> suminf f + suminf g = (\<Sum>n. f n + g n)" by (intro sums_unique sums_add summable_sums) end context fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{t2_space,topological_comm_monoid_add}" and I :: "'i set" begin lemma sums_sum: "(\<And>i. i \<in> I \<Longrightarrow> (f i) sums (x i)) \<Longrightarrow> (\<lambda>n. \<Sum>i\<in>I. f i n) sums (\<Sum>i\<in>I. x i)" by (induct I rule: infinite_finite_induct) (auto intro!: sums_add) lemma suminf_sum: "(\<And>i. i \<in> I \<Longrightarrow> summable (f i)) \<Longrightarrow> (\<Sum>n. \<Sum>i\<in>I. f i n) = (\<Sum>i\<in>I. \<Sum>n. f i n)" using sums_unique[OF sums_sum, OF summable_sums] by simp lemma summable_sum: "(\<And>i. i \<in> I \<Longrightarrow> summable (f i)) \<Longrightarrow> summable (\<lambda>n. \<Sum>i\<in>I. f i n)" using sums_summable[OF sums_sum[OF summable_sums]] . end lemma sums_If_finite_set': fixes f g :: "nat \<Rightarrow> 'a::{t2_space,topological_ab_group_add}" assumes "g sums S" and "finite A" and "S' = S + (\<Sum>n\<in>A. f n - g n)" shows "(\<lambda>n. if n \<in> A then f n else g n) sums S'" proof - have "(\<lambda>n. g n + (if n \<in> A then f n - g n else 0)) sums (S + (\<Sum>n\<in>A. f n - g n))" by (intro sums_add assms sums_If_finite_set) also have "(\<lambda>n. g n + (if n \<in> A then f n - g n else 0)) = (\<lambda>n. if n \<in> A then f n else g n)" by (simp add: fun_eq_iff) finally show ?thesis using assms by simp qed subsection \<open>Infinite summability on real normed vector spaces\<close> context fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" begin lemma sums_Suc_iff: "(\<lambda>n. f (Suc n)) sums s \<longleftrightarrow> f sums (s + f 0)" proof - have "f sums (s + f 0) \<longleftrightarrow> (\<lambda>i. \<Sum>j<Suc i. f j) \<longlonglongrightarrow> s + f 0" by (subst filterlim_sequentially_Suc) (simp add: sums_def) also have "\<dots> \<longleftrightarrow> (\<lambda>i. (\<Sum>j<i. f (Suc j)) + f 0) \<longlonglongrightarrow> s + f 0" by (simp add: ac_simps lessThan_Suc_eq_insert_0 image_Suc_lessThan sum.atLeast1_atMost_eq) also have "\<dots> \<longleftrightarrow> (\<lambda>n. f (Suc n)) sums s" proof assume "(\<lambda>i. (\<Sum>j<i. f (Suc j)) + f 0) \<longlonglongrightarrow> s + f 0" with tendsto_add[OF this tendsto_const, of "- f 0"] show "(\<lambda>i. f (Suc i)) sums s" by (simp add: sums_def) qed (auto intro: tendsto_add simp: sums_def) finally show ?thesis .. qed lemma summable_Suc_iff: "summable (\<lambda>n. f (Suc n)) = summable f" proof assume "summable f" then have "f sums suminf f" by (rule summable_sums) then have "(\<lambda>n. f (Suc n)) sums (suminf f - f 0)" by (simp add: sums_Suc_iff) then show "summable (\<lambda>n. f (Suc n))" unfolding summable_def by blast qed (auto simp: sums_Suc_iff summable_def) lemma sums_Suc_imp: "f 0 = 0 \<Longrightarrow> (\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s" using sums_Suc_iff by simp end context (* Separate contexts are necessary to allow general use of the results above, here. *) fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" begin lemma sums_diff: "f sums a \<Longrightarrow> g sums b \<Longrightarrow> (\<lambda>n. f n - g n) sums (a - b)" unfolding sums_def by (simp add: sum_subtractf tendsto_diff) lemma summable_diff: "summable f \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. f n - g n)" unfolding summable_def by (auto intro: sums_diff) lemma suminf_diff: "summable f \<Longrightarrow> summable g \<Longrightarrow> suminf f - suminf g = (\<Sum>n. f n - g n)" by (intro sums_unique sums_diff summable_sums) lemma sums_minus: "f sums a \<Longrightarrow> (\<lambda>n. - f n) sums (- a)" unfolding sums_def by (simp add: sum_negf tendsto_minus) lemma summable_minus: "summable f \<Longrightarrow> summable (\<lambda>n. - f n)" unfolding summable_def by (auto intro: sums_minus) lemma suminf_minus: "summable f \<Longrightarrow> (\<Sum>n. - f n) = - (\<Sum>n. f n)" by (intro sums_unique [symmetric] sums_minus summable_sums) lemma sums_iff_shift: "(\<lambda>i. f (i + n)) sums s \<longleftrightarrow> f sums (s + (\<Sum>i<n. f i))" proof (induct n arbitrary: s) case 0 then show ?case by simp next case (Suc n) then have "(\<lambda>i. f (Suc i + n)) sums s \<longleftrightarrow> (\<lambda>i. f (i + n)) sums (s + f n)" by (subst sums_Suc_iff) simp with Suc show ?case by (simp add: ac_simps) qed corollary sums_iff_shift': "(\<lambda>i. f (i + n)) sums (s - (\<Sum>i<n. f i)) \<longleftrightarrow> f sums s" by (simp add: sums_iff_shift) lemma sums_zero_iff_shift: assumes "\<And>i. i < n \<Longrightarrow> f i = 0" shows "(\<lambda>i. f (i+n)) sums s \<longleftrightarrow> (\<lambda>i. f i) sums s" by (simp add: assms sums_iff_shift) lemma summable_iff_shift [simp]: "summable (\<lambda>n. f (n + k)) \<longleftrightarrow> summable f" by (metis diff_add_cancel summable_def sums_iff_shift [abs_def]) lemma sums_split_initial_segment: "f sums s \<Longrightarrow> (\<lambda>i. f (i + n)) sums (s - (\<Sum>i<n. f i))" by (simp add: sums_iff_shift) lemma summable_ignore_initial_segment: "summable f \<Longrightarrow> summable (\<lambda>n. f(n + k))" by (simp add: summable_iff_shift) lemma suminf_minus_initial_segment: "summable f \<Longrightarrow> (\<Sum>n. f (n + k)) = (\<Sum>n. f n) - (\<Sum>i<k. f i)" by (rule sums_unique[symmetric]) (auto simp: sums_iff_shift) lemma suminf_split_initial_segment: "summable f \<Longrightarrow> suminf f = (\<Sum>n. f(n + k)) + (\<Sum>i<k. f i)" by (auto simp add: suminf_minus_initial_segment) lemma suminf_split_head: "summable f \<Longrightarrow> (\<Sum>n. f (Suc n)) = suminf f - f 0" using suminf_split_initial_segment[of 1] by simp lemma suminf_exist_split: fixes r :: real assumes "0 < r" and "summable f" shows "\<exists>N. \<forall>n\<ge>N. norm (\<Sum>i. f (i + n)) < r" proof - from LIMSEQ_D[OF summable_LIMSEQ[OF \<open>summable f\<close>] \<open>0 < r\<close>] obtain N :: nat where "\<forall> n \<ge> N. norm (sum f {..<n} - suminf f) < r" by auto then show ?thesis by (auto simp: norm_minus_commute suminf_minus_initial_segment[OF \<open>summable f\<close>]) qed lemma summable_LIMSEQ_zero: assumes "summable f" shows "f \<longlonglongrightarrow> 0" proof - have "Cauchy (\<lambda>n. sum f {..<n})" using LIMSEQ_imp_Cauchy assms summable_LIMSEQ by blast then show ?thesis unfolding Cauchy_iff LIMSEQ_iff by (metis add.commute add_diff_cancel_right' diff_zero le_SucI sum.lessThan_Suc) qed lemma summable_imp_convergent: "summable f \<Longrightarrow> convergent f" by (force dest!: summable_LIMSEQ_zero simp: convergent_def) lemma summable_imp_Bseq: "summable f \<Longrightarrow> Bseq f" by (simp add: convergent_imp_Bseq summable_imp_convergent) end lemma summable_minus_iff: "summable (\<lambda>n. - f n) \<longleftrightarrow> summable f" for f :: "nat \<Rightarrow> 'a::real_normed_vector" by (auto dest: summable_minus) (* used two ways, hence must be outside the context above *) lemma (in bounded_linear) sums: "(\<lambda>n. X n) sums a \<Longrightarrow> (\<lambda>n. f (X n)) sums (f a)" unfolding sums_def by (drule tendsto) (simp only: sum) lemma (in bounded_linear) summable: "summable (\<lambda>n. X n) \<Longrightarrow> summable (\<lambda>n. f (X n))" unfolding summable_def by (auto intro: sums) lemma (in bounded_linear) suminf: "summable (\<lambda>n. X n) \<Longrightarrow> f (\<Sum>n. X n) = (\<Sum>n. f (X n))" by (intro sums_unique sums summable_sums) lemmas sums_of_real = bounded_linear.sums [OF bounded_linear_of_real] lemmas summable_of_real = bounded_linear.summable [OF bounded_linear_of_real] lemmas suminf_of_real = bounded_linear.suminf [OF bounded_linear_of_real] lemmas sums_scaleR_left = bounded_linear.sums[OF bounded_linear_scaleR_left] lemmas summable_scaleR_left = bounded_linear.summable[OF bounded_linear_scaleR_left] lemmas suminf_scaleR_left = bounded_linear.suminf[OF bounded_linear_scaleR_left] lemmas sums_scaleR_right = bounded_linear.sums[OF bounded_linear_scaleR_right] lemmas summable_scaleR_right = bounded_linear.summable[OF bounded_linear_scaleR_right] lemmas suminf_scaleR_right = bounded_linear.suminf[OF bounded_linear_scaleR_right] lemma summable_const_iff: "summable (\<lambda>_. c) \<longleftrightarrow> c = 0" for c :: "'a::real_normed_vector" proof - have "\<not> summable (\<lambda>_. c)" if "c \<noteq> 0" proof - from that have "filterlim (\<lambda>n. of_nat n * norm c) at_top sequentially" by (subst mult.commute) (auto intro!: filterlim_tendsto_pos_mult_at_top filterlim_real_sequentially) then have "\<not> convergent (\<lambda>n. norm (\<Sum>k<n. c))" by (intro filterlim_at_infinity_imp_not_convergent filterlim_at_top_imp_at_infinity) (simp_all add: sum_constant_scaleR) then show ?thesis unfolding summable_iff_convergent using convergent_norm by blast qed then show ?thesis by auto qed subsection \<open>Infinite summability on real normed algebras\<close> context fixes f :: "nat \<Rightarrow> 'a::real_normed_algebra" begin lemma sums_mult: "f sums a \<Longrightarrow> (\<lambda>n. c * f n) sums (c * a)" by (rule bounded_linear.sums [OF bounded_linear_mult_right]) lemma summable_mult: "summable f \<Longrightarrow> summable (\<lambda>n. c * f n)" by (rule bounded_linear.summable [OF bounded_linear_mult_right]) lemma suminf_mult: "summable f \<Longrightarrow> suminf (\<lambda>n. c * f n) = c * suminf f" by (rule bounded_linear.suminf [OF bounded_linear_mult_right, symmetric]) lemma sums_mult2: "f sums a \<Longrightarrow> (\<lambda>n. f n * c) sums (a * c)" by (rule bounded_linear.sums [OF bounded_linear_mult_left]) lemma summable_mult2: "summable f \<Longrightarrow> summable (\<lambda>n. f n * c)" by (rule bounded_linear.summable [OF bounded_linear_mult_left]) lemma suminf_mult2: "summable f \<Longrightarrow> suminf f * c = (\<Sum>n. f n * c)" by (rule bounded_linear.suminf [OF bounded_linear_mult_left]) end lemma sums_mult_iff: fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. c * f n) sums (c * d) \<longleftrightarrow> f sums d" using sums_mult[of f d c] sums_mult[of "\<lambda>n. c * f n" "c * d" "inverse c"] by (force simp: field_simps assms) lemma sums_mult2_iff: fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra,field}" assumes "c \<noteq> 0" shows "(\<lambda>n. f n * c) sums (d * c) \<longleftrightarrow> f sums d" using sums_mult_iff[OF assms, of f d] by (simp add: mult.commute) lemma sums_of_real_iff: "(\<lambda>n. of_real (f n) :: 'a::real_normed_div_algebra) sums of_real c \<longleftrightarrow> f sums c" by (simp add: sums_def of_real_sum[symmetric] tendsto_of_real_iff del: of_real_sum) subsection \<open>Infinite summability on real normed fields\<close> context fixes c :: "'a::real_normed_field" begin lemma sums_divide: "f sums a \<Longrightarrow> (\<lambda>n. f n / c) sums (a / c)" by (rule bounded_linear.sums [OF bounded_linear_divide]) lemma summable_divide: "summable f \<Longrightarrow> summable (\<lambda>n. f n / c)" by (rule bounded_linear.summable [OF bounded_linear_divide]) lemma suminf_divide: "summable f \<Longrightarrow> suminf (\<lambda>n. f n / c) = suminf f / c" by (rule bounded_linear.suminf [OF bounded_linear_divide, symmetric]) lemma summable_inverse_divide: "summable (inverse \<circ> f) \<Longrightarrow> summable (\<lambda>n. c / f n)" by (auto dest: summable_mult [of _ c] simp: field_simps) lemma sums_mult_D: "(\<lambda>n. c * f n) sums a \<Longrightarrow> c \<noteq> 0 \<Longrightarrow> f sums (a/c)" using sums_mult_iff by fastforce lemma summable_mult_D: "summable (\<lambda>n. c * f n) \<Longrightarrow> c \<noteq> 0 \<Longrightarrow> summable f" by (auto dest: summable_divide) text \<open>Sum of a geometric progression.\<close> lemma geometric_sums: assumes "norm c < 1" shows "(\<lambda>n. c^n) sums (1 / (1 - c))" proof - have neq_0: "c - 1 \<noteq> 0" using assms by auto then have "(\<lambda>n. c ^ n / (c - 1) - 1 / (c - 1)) \<longlonglongrightarrow> 0 / (c - 1) - 1 / (c - 1)" by (intro tendsto_intros assms) then have "(\<lambda>n. (c ^ n - 1) / (c - 1)) \<longlonglongrightarrow> 1 / (1 - c)" by (simp add: nonzero_minus_divide_right [OF neq_0] diff_divide_distrib) with neq_0 show "(\<lambda>n. c ^ n) sums (1 / (1 - c))" by (simp add: sums_def geometric_sum) qed lemma summable_geometric: "norm c < 1 \<Longrightarrow> summable (\<lambda>n. c^n)" by (rule geometric_sums [THEN sums_summable]) lemma suminf_geometric: "norm c < 1 \<Longrightarrow> suminf (\<lambda>n. c^n) = 1 / (1 - c)" by (rule sums_unique[symmetric]) (rule geometric_sums) lemma summable_geometric_iff [simp]: "summable (\<lambda>n. c ^ n) \<longleftrightarrow> norm c < 1" proof assume "summable (\<lambda>n. c ^ n :: 'a :: real_normed_field)" then have "(\<lambda>n. norm c ^ n) \<longlonglongrightarrow> 0" by (simp add: norm_power [symmetric] tendsto_norm_zero_iff summable_LIMSEQ_zero) from order_tendstoD(2)[OF this zero_less_one] obtain n where "norm c ^ n < 1" by (auto simp: eventually_at_top_linorder) then show "norm c < 1" using one_le_power[of "norm c" n] by (cases "norm c \<ge> 1") (linarith, simp) qed (rule summable_geometric) end text \<open>Biconditional versions for constant factors\<close> context fixes c :: "'a::real_normed_field" begin lemma summable_cmult_iff [simp]: "summable (\<lambda>n. c * f n) \<longleftrightarrow> c=0 \<or> summable f" proof - have "\<lbrakk>summable (\<lambda>n. c * f n); c \<noteq> 0\<rbrakk> \<Longrightarrow> summable f" using summable_mult_D by blast then show ?thesis by (auto simp: summable_mult) qed lemma summable_divide_iff [simp]: "summable (\<lambda>n. f n / c) \<longleftrightarrow> c=0 \<or> summable f" proof - have "\<lbrakk>summable (\<lambda>n. f n / c); c \<noteq> 0\<rbrakk> \<Longrightarrow> summable f" by (auto dest: summable_divide [where c = "1/c"]) then show ?thesis by (auto simp: summable_divide) qed end lemma power_half_series: "(\<lambda>n. (1/2::real)^Suc n) sums 1" proof - have 2: "(\<lambda>n. (1/2::real)^n) sums 2" using geometric_sums [of "1/2::real"] by auto have "(\<lambda>n. (1/2::real)^Suc n) = (\<lambda>n. (1 / 2) ^ n / 2)" by (simp add: mult.commute) then show ?thesis using sums_divide [OF 2, of 2] by simp qed subsection \<open>Telescoping\<close> lemma telescope_sums: fixes c :: "'a::real_normed_vector" assumes "f \<longlonglongrightarrow> c" shows "(\<lambda>n. f (Suc n) - f n) sums (c - f 0)" unfolding sums_def proof (subst filterlim_sequentially_Suc [symmetric]) have "(\<lambda>n. \<Sum>k<Suc n. f (Suc k) - f k) = (\<lambda>n. f (Suc n) - f 0)" by (simp add: lessThan_Suc_atMost atLeast0AtMost [symmetric] sum_Suc_diff) also have "\<dots> \<longlonglongrightarrow> c - f 0" by (intro tendsto_diff LIMSEQ_Suc[OF assms] tendsto_const) finally show "(\<lambda>n. \<Sum>n<Suc n. f (Suc n) - f n) \<longlonglongrightarrow> c - f 0" . qed lemma telescope_sums': fixes c :: "'a::real_normed_vector" assumes "f \<longlonglongrightarrow> c" shows "(\<lambda>n. f n - f (Suc n)) sums (f 0 - c)" using sums_minus[OF telescope_sums[OF assms]] by (simp add: algebra_simps) lemma telescope_summable: fixes c :: "'a::real_normed_vector" assumes "f \<longlonglongrightarrow> c" shows "summable (\<lambda>n. f (Suc n) - f n)" using telescope_sums[OF assms] by (simp add: sums_iff) lemma telescope_summable': fixes c :: "'a::real_normed_vector" assumes "f \<longlonglongrightarrow> c" shows "summable (\<lambda>n. f n - f (Suc n))" using summable_minus[OF telescope_summable[OF assms]] by (simp add: algebra_simps) subsection \<open>Infinite summability on Banach spaces\<close> text \<open>Cauchy-type criterion for convergence of series (c.f. Harrison).\<close> lemma summable_Cauchy: "summable f \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>m\<ge>N. \<forall>n. norm (sum f {m..<n}) < e)" (is "_ = ?rhs") for f :: "nat \<Rightarrow> 'a::banach" proof assume f: "summable f" show ?rhs proof clarify fix e :: real assume "0 < e" then obtain M where M: "\<And>m n. \<lbrakk>m\<ge>M; n\<ge>M\<rbrakk> \<Longrightarrow> norm (sum f {..<m} - sum f {..<n}) < e" using f by (force simp add: summable_iff_convergent Cauchy_convergent_iff [symmetric] Cauchy_iff) have "norm (sum f {m..<n}) < e" if "m \<ge> M" for m n proof (cases m n rule: linorder_class.le_cases) assume "m \<le> n" then show ?thesis by (metis (mono_tags, opaque_lifting) M atLeast0LessThan order_trans sum_diff_nat_ivl that zero_le) next assume "n \<le> m" then show ?thesis by (simp add: \<open>0 < e\<close>) qed then show "\<exists>N. \<forall>m\<ge>N. \<forall>n. norm (sum f {m..<n}) < e" by blast qed next assume r: ?rhs then show "summable f" unfolding summable_iff_convergent Cauchy_convergent_iff [symmetric] Cauchy_iff proof clarify fix e :: real assume "0 < e" with r obtain N where N: "\<And>m n. m \<ge> N \<Longrightarrow> norm (sum f {m..<n}) < e" by blast have "norm (sum f {..<m} - sum f {..<n}) < e" if "m\<ge>N" "n\<ge>N" for m n proof (cases m n rule: linorder_class.le_cases) assume "m \<le> n" then show ?thesis by (metis N finite_lessThan lessThan_minus_lessThan lessThan_subset_iff norm_minus_commute sum_diff \<open>m\<ge>N\<close>) next assume "n \<le> m" then show ?thesis by (metis N finite_lessThan lessThan_minus_lessThan lessThan_subset_iff sum_diff \<open>n\<ge>N\<close>) qed then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (sum f {..<m} - sum f {..<n}) < e" by blast qed qed lemma summable_Cauchy': fixes f :: "nat \<Rightarrow> 'a :: banach" assumes ev: "eventually (\<lambda>m. \<forall>n\<ge>m. norm (sum f {m..<n}) \<le> g m) sequentially" assumes g0: "g \<longlonglongrightarrow> 0" shows "summable f" proof (subst summable_Cauchy, intro allI impI, goal_cases) case (1 e) then have "\<forall>\<^sub>F x in sequentially. g x < e" using g0 order_tendstoD(2) by blast with ev have "eventually (\<lambda>m. \<forall>n. norm (sum f {m..<n}) < e) at_top" proof eventually_elim case (elim m) show ?case proof fix n from elim show "norm (sum f {m..<n}) < e" by (cases "n \<ge> m") auto qed qed thus ?case by (auto simp: eventually_at_top_linorder) qed context fixes f :: "nat \<Rightarrow> 'a::banach" begin text \<open>Absolute convergence imples normal convergence.\<close> lemma summable_norm_cancel: "summable (\<lambda>n. norm (f n)) \<Longrightarrow> summable f" unfolding summable_Cauchy apply (erule all_forward imp_forward ex_forward | assumption)+ apply (fastforce simp add: order_le_less_trans [OF norm_sum] order_le_less_trans [OF abs_ge_self]) done lemma summable_norm: "summable (\<lambda>n. norm (f n)) \<Longrightarrow> norm (suminf f) \<le> (\<Sum>n. norm (f n))" by (auto intro: LIMSEQ_le tendsto_norm summable_norm_cancel summable_LIMSEQ norm_sum) text \<open>Comparison tests.\<close> lemma summable_comparison_test: assumes fg: "\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n" and g: "summable g" shows "summable f" proof - obtain N where N: "\<And>n. n\<ge>N \<Longrightarrow> norm (f n) \<le> g n" using assms by blast show ?thesis proof (clarsimp simp add: summable_Cauchy) fix e :: real assume "0 < e" then obtain Ng where Ng: "\<And>m n. m \<ge> Ng \<Longrightarrow> norm (sum g {m..<n}) < e" using g by (fastforce simp: summable_Cauchy) with N have "norm (sum f {m..<n}) < e" if "m\<ge>max N Ng" for m n proof - have "norm (sum f {m..<n}) \<le> sum g {m..<n}" using N that by (force intro: sum_norm_le) also have "... \<le> norm (sum g {m..<n})" by simp also have "... < e" using Ng that by auto finally show ?thesis . qed then show "\<exists>N. \<forall>m\<ge>N. \<forall>n. norm (sum f {m..<n}) < e" by blast qed qed lemma summable_comparison_test_ev: "eventually (\<lambda>n. norm (f n) \<le> g n) sequentially \<Longrightarrow> summable g \<Longrightarrow> summable f" by (rule summable_comparison_test) (auto simp: eventually_at_top_linorder) text \<open>A better argument order.\<close> lemma summable_comparison_test': "summable g \<Longrightarrow> (\<And>n. n \<ge> N \<Longrightarrow> norm (f n) \<le> g n) \<Longrightarrow> summable f" by (rule summable_comparison_test) auto subsection \<open>The Ratio Test\<close> lemma summable_ratio_test: assumes "c < 1" "\<And>n. n \<ge> N \<Longrightarrow> norm (f (Suc n)) \<le> c * norm (f n)" shows "summable f" proof (cases "0 < c") case True show "summable f" proof (rule summable_comparison_test) show "\<exists>N'. \<forall>n\<ge>N'. norm (f n) \<le> (norm (f N) / (c ^ N)) * c ^ n" proof (intro exI allI impI) fix n assume "N \<le> n" then show "norm (f n) \<le> (norm (f N) / (c ^ N)) * c ^ n" proof (induct rule: inc_induct) case base with True show ?case by simp next case (step m) have "norm (f (Suc m)) / c ^ Suc m * c ^ n \<le> norm (f m) / c ^ m * c ^ n" using \<open>0 < c\<close> \<open>c < 1\<close> assms(2)[OF \<open>N \<le> m\<close>] by (simp add: field_simps) with step show ?case by simp qed qed show "summable (\<lambda>n. norm (f N) / c ^ N * c ^ n)" using \<open>0 < c\<close> \<open>c < 1\<close> by (intro summable_mult summable_geometric) simp qed next case False have "f (Suc n) = 0" if "n \<ge> N" for n proof - from that have "norm (f (Suc n)) \<le> c * norm (f n)" by (rule assms(2)) also have "\<dots> \<le> 0" using False by (simp add: not_less mult_nonpos_nonneg) finally show ?thesis by auto qed then show "summable f" by (intro sums_summable[OF sums_finite, of "{.. Suc N}"]) (auto simp: not_le Suc_less_eq2) qed end text \<open>Application to convergence of the log function\<close> lemma norm_summable_ln_series: fixes z :: "'a :: {real_normed_field, banach}" assumes "norm z < 1" shows "summable (\<lambda>n. norm (z ^ n / of_nat n))" proof (rule summable_comparison_test) show "summable (\<lambda>n. norm (z ^ n))" using assms unfolding norm_power by (intro summable_geometric) auto have "norm z ^ n / real n \<le> norm z ^ n" for n proof (cases "n = 0") case False hence "norm z ^ n * 1 \<le> norm z ^ n * real n" by (intro mult_left_mono) auto thus ?thesis using False by (simp add: field_simps) qed auto thus "\<exists>N. \<forall>n\<ge>N. norm (norm (z ^ n / of_nat n)) \<le> norm (z ^ n)" by (intro exI[of _ 0]) (auto simp: norm_power norm_divide) qed text \<open>Relations among convergence and absolute convergence for power series.\<close> lemma Abel_lemma: fixes a :: "nat \<Rightarrow> 'a::real_normed_vector" assumes r: "0 \<le> r" and r0: "r < r0" and M: "\<And>n. norm (a n) * r0^n \<le> M" shows "summable (\<lambda>n. norm (a n) * r^n)" proof (rule summable_comparison_test') show "summable (\<lambda>n. M * (r / r0) ^ n)" using assms by (auto simp add: summable_mult summable_geometric) show "norm (norm (a n) * r ^ n) \<le> M * (r / r0) ^ n" for n using r r0 M [of n] dual_order.order_iff_strict by (fastforce simp add: abs_mult field_simps) qed text \<open>Summability of geometric series for real algebras.\<close> lemma complete_algebra_summable_geometric: fixes x :: "'a::{real_normed_algebra_1,banach}" assumes "norm x < 1" shows "summable (\<lambda>n. x ^ n)" proof (rule summable_comparison_test) show "\<exists>N. \<forall>n\<ge>N. norm (x ^ n) \<le> norm x ^ n" by (simp add: norm_power_ineq) from assms show "summable (\<lambda>n. norm x ^ n)" by (simp add: summable_geometric) qed subsection \<open>Cauchy Product Formula\<close> text \<open> Proof based on Analysis WebNotes: Chapter 07, Class 41 \<^url>\<open>http://www.math.unl.edu/~webnotes/classes/class41/prp77.htm\<close> \<close> lemma Cauchy_product_sums: fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}" assumes a: "summable (\<lambda>k. norm (a k))" and b: "summable (\<lambda>k. norm (b k))" shows "(\<lambda>k. \<Sum>i\<le>k. a i * b (k - i)) sums ((\<Sum>k. a k) * (\<Sum>k. b k))" proof - let ?S1 = "\<lambda>n::nat. {..<n} \<times> {..<n}" let ?S2 = "\<lambda>n::nat. {(i,j). i + j < n}" have S1_mono: "\<And>m n. m \<le> n \<Longrightarrow> ?S1 m \<subseteq> ?S1 n" by auto have S2_le_S1: "\<And>n. ?S2 n \<subseteq> ?S1 n" by auto have S1_le_S2: "\<And>n. ?S1 (n div 2) \<subseteq> ?S2 n" by auto have finite_S1: "\<And>n. finite (?S1 n)" by simp with S2_le_S1 have finite_S2: "\<And>n. finite (?S2 n)" by (rule finite_subset) let ?g = "\<lambda>(i,j). a i * b j" let ?f = "\<lambda>(i,j). norm (a i) * norm (b j)" have f_nonneg: "\<And>x. 0 \<le> ?f x" by auto then have norm_sum_f: "\<And>A. norm (sum ?f A) = sum ?f A" unfolding real_norm_def by (simp only: abs_of_nonneg sum_nonneg [rule_format]) have "(\<lambda>n. (\<Sum>k<n. a k) * (\<Sum>k<n. b k)) \<longlonglongrightarrow> (\<Sum>k. a k) * (\<Sum>k. b k)" by (intro tendsto_mult summable_LIMSEQ summable_norm_cancel [OF a] summable_norm_cancel [OF b]) then have 1: "(\<lambda>n. sum ?g (?S1 n)) \<longlonglongrightarrow> (\<Sum>k. a k) * (\<Sum>k. b k)" by (simp only: sum_product sum.Sigma [rule_format] finite_lessThan) have "(\<lambda>n. (\<Sum>k<n. norm (a k)) * (\<Sum>k<n. norm (b k))) \<longlonglongrightarrow> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))" using a b by (intro tendsto_mult summable_LIMSEQ) then have "(\<lambda>n. sum ?f (?S1 n)) \<longlonglongrightarrow> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))" by (simp only: sum_product sum.Sigma [rule_format] finite_lessThan) then have "convergent (\<lambda>n. sum ?f (?S1 n))" by (rule convergentI) then have Cauchy: "Cauchy (\<lambda>n. sum ?f (?S1 n))" by (rule convergent_Cauchy) have "Zfun (\<lambda>n. sum ?f (?S1 n - ?S2 n)) sequentially" proof (rule ZfunI, simp only: eventually_sequentially norm_sum_f) fix r :: real assume r: "0 < r" from CauchyD [OF Cauchy r] obtain N where "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (sum ?f (?S1 m) - sum ?f (?S1 n)) < r" .. then have "\<And>m n. N \<le> n \<Longrightarrow> n \<le> m \<Longrightarrow> norm (sum ?f (?S1 m - ?S1 n)) < r" by (simp only: sum_diff finite_S1 S1_mono) then have N: "\<And>m n. N \<le> n \<Longrightarrow> n \<le> m \<Longrightarrow> sum ?f (?S1 m - ?S1 n) < r" by (simp only: norm_sum_f) show "\<exists>N. \<forall>n\<ge>N. sum ?f (?S1 n - ?S2 n) < r" proof (intro exI allI impI) fix n assume "2 * N \<le> n" then have n: "N \<le> n div 2" by simp have "sum ?f (?S1 n - ?S2 n) \<le> sum ?f (?S1 n - ?S1 (n div 2))" by (intro sum_mono2 finite_Diff finite_S1 f_nonneg Diff_mono subset_refl S1_le_S2) also have "\<dots> < r" using n div_le_dividend by (rule N) finally show "sum ?f (?S1 n - ?S2 n) < r" . qed qed then have "Zfun (\<lambda>n. sum ?g (?S1 n - ?S2 n)) sequentially" apply (rule Zfun_le [rule_format]) apply (simp only: norm_sum_f) apply (rule order_trans [OF norm_sum sum_mono]) apply (auto simp add: norm_mult_ineq) done then have 2: "(\<lambda>n. sum ?g (?S1 n) - sum ?g (?S2 n)) \<longlonglongrightarrow> 0" unfolding tendsto_Zfun_iff diff_0_right by (simp only: sum_diff finite_S1 S2_le_S1) with 1 have "(\<lambda>n. sum ?g (?S2 n)) \<longlonglongrightarrow> (\<Sum>k. a k) * (\<Sum>k. b k)" by (rule Lim_transform2) then show ?thesis by (simp only: sums_def sum.triangle_reindex) qed lemma Cauchy_product: fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}" assumes "summable (\<lambda>k. norm (a k))" and "summable (\<lambda>k. norm (b k))" shows "(\<Sum>k. a k) * (\<Sum>k. b k) = (\<Sum>k. \<Sum>i\<le>k. a i * b (k - i))" using assms by (rule Cauchy_product_sums [THEN sums_unique]) lemma summable_Cauchy_product: fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}" assumes "summable (\<lambda>k. norm (a k))" and "summable (\<lambda>k. norm (b k))" shows "summable (\<lambda>k. \<Sum>i\<le>k. a i * b (k - i))" using Cauchy_product_sums[OF assms] by (simp add: sums_iff) subsection \<open>Series on \<^typ>\<open>real\<close>s\<close> lemma summable_norm_comparison_test: "\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. norm (f n))" by (rule summable_comparison_test) auto lemma summable_rabs_comparison_test: "\<exists>N. \<forall>n\<ge>N. \<bar>f n\<bar> \<le> g n \<Longrightarrow> summable g \<Longrightarrow> summable (\<lambda>n. \<bar>f n\<bar>)" for f :: "nat \<Rightarrow> real" by (rule summable_comparison_test) auto lemma summable_rabs_cancel: "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> summable f" for f :: "nat \<Rightarrow> real" by (rule summable_norm_cancel) simp lemma summable_rabs: "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> \<bar>suminf f\<bar> \<le> (\<Sum>n. \<bar>f n\<bar>)" for f :: "nat \<Rightarrow> real" by (fold real_norm_def) (rule summable_norm) lemma norm_suminf_le: assumes "\<And>n. norm (f n :: 'a :: banach) \<le> g n" "summable g" shows "norm (suminf f) \<le> suminf g" proof - have *: "summable (\<lambda>n. norm (f n))" using assms summable_norm_comparison_test by blast hence "norm (suminf f) \<le> (\<Sum>n. norm (f n))" by (intro summable_norm) auto also have "\<dots> \<le> suminf g" by (intro suminf_le * assms allI) finally show ?thesis . qed lemma summable_zero_power [simp]: "summable (\<lambda>n. 0 ^ n :: 'a::{comm_ring_1,topological_space})" proof - have "(\<lambda>n. 0 ^ n :: 'a) = (\<lambda>n. if n = 0 then 0^0 else 0)" by (intro ext) (simp add: zero_power) moreover have "summable \<dots>" by simp ultimately show ?thesis by simp qed lemma summable_zero_power' [simp]: "summable (\<lambda>n. f n * 0 ^ n :: 'a::{ring_1,topological_space})" proof - have "(\<lambda>n. f n * 0 ^ n :: 'a) = (\<lambda>n. if n = 0 then f 0 * 0^0 else 0)" by (intro ext) (simp add: zero_power) moreover have "summable \<dots>" by simp ultimately show ?thesis by simp qed lemma summable_power_series: fixes z :: real assumes le_1: "\<And>i. f i \<le> 1" and nonneg: "\<And>i. 0 \<le> f i" and z: "0 \<le> z" "z < 1" shows "summable (\<lambda>i. f i * z^i)" proof (rule summable_comparison_test[OF _ summable_geometric]) show "norm z < 1" using z by (auto simp: less_imp_le) show "\<And>n. \<exists>N. \<forall>na\<ge>N. norm (f na * z ^ na) \<le> z ^ na" using z by (auto intro!: exI[of _ 0] mult_left_le_one_le simp: abs_mult nonneg power_abs less_imp_le le_1) qed lemma summable_0_powser: "summable (\<lambda>n. f n * 0 ^ n :: 'a::real_normed_div_algebra)" by simp lemma summable_powser_split_head: "summable (\<lambda>n. f (Suc n) * z ^ n :: 'a::real_normed_div_algebra) = summable (\<lambda>n. f n * z ^ n)" proof - have "summable (\<lambda>n. f (Suc n) * z ^ n) \<longleftrightarrow> summable (\<lambda>n. f (Suc n) * z ^ Suc n)" (is "?lhs \<longleftrightarrow> ?rhs") proof show ?rhs if ?lhs using summable_mult2[OF that, of z] by (simp add: power_commutes algebra_simps) show ?lhs if ?rhs using summable_mult2[OF that, of "inverse z"] by (cases "z \<noteq> 0", subst (asm) power_Suc2) (simp_all add: algebra_simps) qed also have "\<dots> \<longleftrightarrow> summable (\<lambda>n. f n * z ^ n)" by (rule summable_Suc_iff) finally show ?thesis . qed lemma summable_powser_ignore_initial_segment: fixes f :: "nat \<Rightarrow> 'a :: real_normed_div_algebra" shows "summable (\<lambda>n. f (n + m) * z ^ n) \<longleftrightarrow> summable (\<lambda>n. f n * z ^ n)" proof (induction m) case (Suc m) have "summable (\<lambda>n. f (n + Suc m) * z ^ n) = summable (\<lambda>n. f (Suc n + m) * z ^ n)" by simp also have "\<dots> = summable (\<lambda>n. f (n + m) * z ^ n)" by (rule summable_powser_split_head) also have "\<dots> = summable (\<lambda>n. f n * z ^ n)" by (rule Suc.IH) finally show ?case . qed simp_all lemma powser_split_head: fixes f :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}" assumes "summable (\<lambda>n. f n * z ^ n)" shows "suminf (\<lambda>n. f n * z ^ n) = f 0 + suminf (\<lambda>n. f (Suc n) * z ^ n) * z" and "suminf (\<lambda>n. f (Suc n) * z ^ n) * z = suminf (\<lambda>n. f n * z ^ n) - f 0" and "summable (\<lambda>n. f (Suc n) * z ^ n)" proof - from assms show "summable (\<lambda>n. f (Suc n) * z ^ n)" by (subst summable_powser_split_head) from suminf_mult2[OF this, of z] have "(\<Sum>n. f (Suc n) * z ^ n) * z = (\<Sum>n. f (Suc n) * z ^ Suc n)" by (simp add: power_commutes algebra_simps) also from assms have "\<dots> = suminf (\<lambda>n. f n * z ^ n) - f 0" by (subst suminf_split_head) simp_all finally show "suminf (\<lambda>n. f n * z ^ n) = f 0 + suminf (\<lambda>n. f (Suc n) * z ^ n) * z" by simp then show "suminf (\<lambda>n. f (Suc n) * z ^ n) * z = suminf (\<lambda>n. f n * z ^ n) - f 0" by simp qed lemma summable_partial_sum_bound: fixes f :: "nat \<Rightarrow> 'a :: banach" and e :: real assumes summable: "summable f" and e: "e > 0" obtains N where "\<And>m n. m \<ge> N \<Longrightarrow> norm (\<Sum>k=m..n. f k) < e" proof - from summable have "Cauchy (\<lambda>n. \<Sum>k<n. f k)" by (simp add: Cauchy_convergent_iff summable_iff_convergent) from CauchyD [OF this e] obtain N where N: "\<And>m n. m \<ge> N \<Longrightarrow> n \<ge> N \<Longrightarrow> norm ((\<Sum>k<m. f k) - (\<Sum>k<n. f k)) < e" by blast have "norm (\<Sum>k=m..n. f k) < e" if m: "m \<ge> N" for m n proof (cases "n \<ge> m") case True with m have "norm ((\<Sum>k<Suc n. f k) - (\<Sum>k<m. f k)) < e" by (intro N) simp_all also from True have "(\<Sum>k<Suc n. f k) - (\<Sum>k<m. f k) = (\<Sum>k=m..n. f k)" by (subst sum_diff [symmetric]) (simp_all add: sum.last_plus) finally show ?thesis . next case False with e show ?thesis by simp_all qed then show ?thesis by (rule that) qed lemma powser_sums_if: "(\<lambda>n. (if n = m then (1 :: 'a::{ring_1,topological_space}) else 0) * z^n) sums z^m" proof - have "(\<lambda>n. (if n = m then 1 else 0) * z^n) = (\<lambda>n. if n = m then z^n else 0)" by (intro ext) auto then show ?thesis by (simp add: sums_single) qed lemma fixes f :: "nat \<Rightarrow> real" assumes "summable f" and "inj g" and pos: "\<And>x. 0 \<le> f x" shows summable_reindex: "summable (f \<circ> g)" and suminf_reindex_mono: "suminf (f \<circ> g) \<le> suminf f" and suminf_reindex: "(\<And>x. x \<notin> range g \<Longrightarrow> f x = 0) \<Longrightarrow> suminf (f \<circ> g) = suminf f" proof - from \<open>inj g\<close> have [simp]: "\<And>A. inj_on g A" by (rule subset_inj_on) simp have smaller: "\<forall>n. (\<Sum>i<n. (f \<circ> g) i) \<le> suminf f" proof fix n have "\<forall> n' \<in> (g ` {..<n}). n' < Suc (Max (g ` {..<n}))" by (metis Max_ge finite_imageI finite_lessThan not_le not_less_eq) then obtain m where n: "\<And>n'. n' < n \<Longrightarrow> g n' < m" by blast have "(\<Sum>i<n. f (g i)) = sum f (g ` {..<n})" by (simp add: sum.reindex) also have "\<dots> \<le> (\<Sum>i<m. f i)" by (rule sum_mono2) (auto simp add: pos n[rule_format]) also have "\<dots> \<le> suminf f" using \<open>summable f\<close> by (rule sum_le_suminf) (simp_all add: pos) finally show "(\<Sum>i<n. (f \<circ> g) i) \<le> suminf f" by simp qed have "incseq (\<lambda>n. \<Sum>i<n. (f \<circ> g) i)" by (rule incseq_SucI) (auto simp add: pos) then obtain L where L: "(\<lambda> n. \<Sum>i<n. (f \<circ> g) i) \<longlonglongrightarrow> L" using smaller by(rule incseq_convergent) then have "(f \<circ> g) sums L" by (simp add: sums_def) then show "summable (f \<circ> g)" by (auto simp add: sums_iff) then have "(\<lambda>n. \<Sum>i<n. (f \<circ> g) i) \<longlonglongrightarrow> suminf (f \<circ> g)" by (rule summable_LIMSEQ) then show le: "suminf (f \<circ> g) \<le> suminf f" by(rule LIMSEQ_le_const2)(blast intro: smaller[rule_format]) assume f: "\<And>x. x \<notin> range g \<Longrightarrow> f x = 0" from \<open>summable f\<close> have "suminf f \<le> suminf (f \<circ> g)" proof (rule suminf_le_const) fix n have "\<forall> n' \<in> (g -` {..<n}). n' < Suc (Max (g -` {..<n}))" by(auto intro: Max_ge simp add: finite_vimageI less_Suc_eq_le) then obtain m where n: "\<And>n'. g n' < n \<Longrightarrow> n' < m" by blast have "(\<Sum>i<n. f i) = (\<Sum>i\<in>{..<n} \<inter> range g. f i)" using f by(auto intro: sum.mono_neutral_cong_right) also have "\<dots> = (\<Sum>i\<in>g -` {..<n}. (f \<circ> g) i)" by (rule sum.reindex_cong[where l=g])(auto) also have "\<dots> \<le> (\<Sum>i<m. (f \<circ> g) i)" by (rule sum_mono2)(auto simp add: pos n) also have "\<dots> \<le> suminf (f \<circ> g)" using \<open>summable (f \<circ> g)\<close> by (rule sum_le_suminf) (simp_all add: pos) finally show "sum f {..<n} \<le> suminf (f \<circ> g)" . qed with le show "suminf (f \<circ> g) = suminf f" by (rule antisym) qed lemma sums_mono_reindex: assumes subseq: "strict_mono g" and zero: "\<And>n. n \<notin> range g \<Longrightarrow> f n = 0" shows "(\<lambda>n. f (g n)) sums c \<longleftrightarrow> f sums c" unfolding sums_def proof assume lim: "(\<lambda>n. \<Sum>k<n. f k) \<longlonglongrightarrow> c" have "(\<lambda>n. \<Sum>k<n. f (g k)) = (\<lambda>n. \<Sum>k<g n. f k)" proof fix n :: nat from subseq have "(\<Sum>k<n. f (g k)) = (\<Sum>k\<in>g`{..<n}. f k)" by (subst sum.reindex) (auto intro: strict_mono_imp_inj_on) also from subseq have "\<dots> = (\<Sum>k<g n. f k)" by (intro sum.mono_neutral_left ballI zero) (auto simp: strict_mono_less strict_mono_less_eq) finally show "(\<Sum>k<n. f (g k)) = (\<Sum>k<g n. f k)" . qed also from LIMSEQ_subseq_LIMSEQ[OF lim subseq] have "\<dots> \<longlonglongrightarrow> c" by (simp only: o_def) finally show "(\<lambda>n. \<Sum>k<n. f (g k)) \<longlonglongrightarrow> c" . next assume lim: "(\<lambda>n. \<Sum>k<n. f (g k)) \<longlonglongrightarrow> c" define g_inv where "g_inv n = (LEAST m. g m \<ge> n)" for n from filterlim_subseq[OF subseq] have g_inv_ex: "\<exists>m. g m \<ge> n" for n by (auto simp: filterlim_at_top eventually_at_top_linorder) then have g_inv: "g (g_inv n) \<ge> n" for n unfolding g_inv_def by (rule LeastI_ex) have g_inv_least: "m \<ge> g_inv n" if "g m \<ge> n" for m n using that unfolding g_inv_def by (rule Least_le) have g_inv_least': "g m < n" if "m < g_inv n" for m n using that g_inv_least[of n m] by linarith have "(\<lambda>n. \<Sum>k<n. f k) = (\<lambda>n. \<Sum>k<g_inv n. f (g k))" proof fix n :: nat { fix k assume k: "k \<in> {..<n} - g`{..<g_inv n}" have "k \<notin> range g" proof (rule notI, elim imageE) fix l assume l: "k = g l" have "g l < g (g_inv n)" by (rule less_le_trans[OF _ g_inv]) (use k l in simp_all) with subseq have "l < g_inv n" by (simp add: strict_mono_less) with k l show False by simp qed then have "f k = 0" by (rule zero) } with g_inv_least' g_inv have "(\<Sum>k<n. f k) = (\<Sum>k\<in>g`{..<g_inv n}. f k)" by (intro sum.mono_neutral_right) auto also from subseq have "\<dots> = (\<Sum>k<g_inv n. f (g k))" using strict_mono_imp_inj_on by (subst sum.reindex) simp_all finally show "(\<Sum>k<n. f k) = (\<Sum>k<g_inv n. f (g k))" . qed also { fix K n :: nat assume "g K \<le> n" also have "n \<le> g (g_inv n)" by (rule g_inv) finally have "K \<le> g_inv n" using subseq by (simp add: strict_mono_less_eq) } then have "filterlim g_inv at_top sequentially" by (auto simp: filterlim_at_top eventually_at_top_linorder) with lim have "(\<lambda>n. \<Sum>k<g_inv n. f (g k)) \<longlonglongrightarrow> c" by (rule filterlim_compose) finally show "(\<lambda>n. \<Sum>k<n. f k) \<longlonglongrightarrow> c" . qed lemma summable_mono_reindex: assumes subseq: "strict_mono g" and zero: "\<And>n. n \<notin> range g \<Longrightarrow> f n = 0" shows "summable (\<lambda>n. f (g n)) \<longleftrightarrow> summable f" using sums_mono_reindex[of g f, OF assms] by (simp add: summable_def) lemma suminf_mono_reindex: fixes f :: "nat \<Rightarrow> 'a::{t2_space,comm_monoid_add}" assumes "strict_mono g" "\<And>n. n \<notin> range g \<Longrightarrow> f n = 0" shows "suminf (\<lambda>n. f (g n)) = suminf f" proof (cases "summable f") case True with sums_mono_reindex [of g f, OF assms] and summable_mono_reindex [of g f, OF assms] show ?thesis by (simp add: sums_iff) next case False then have "\<not>(\<exists>c. f sums c)" unfolding summable_def by blast then have "suminf f = The (\<lambda>_. False)" by (simp add: suminf_def) moreover from False have "\<not> summable (\<lambda>n. f (g n))" using summable_mono_reindex[of g f, OF assms] by simp then have "\<not>(\<exists>c. (\<lambda>n. f (g n)) sums c)" unfolding summable_def by blast then have "suminf (\<lambda>n. f (g n)) = The (\<lambda>_. False)" by (simp add: suminf_def) ultimately show ?thesis by simp qed lemma summable_bounded_partials: fixes f :: "nat \<Rightarrow> 'a :: {real_normed_vector,complete_space}" assumes bound: "eventually (\<lambda>x0. \<forall>a\<ge>x0. \<forall>b>a. norm (sum f {a<..b}) \<le> g a) sequentially" assumes g: "g \<longlonglongrightarrow> 0" shows "summable f" unfolding summable_iff_convergent' proof (intro Cauchy_convergent CauchyI', goal_cases) case (1 \<epsilon>) with g have "eventually (\<lambda>x. \<bar>g x\<bar> < \<epsilon>) sequentially" by (auto simp: tendsto_iff) from eventually_conj[OF this bound] obtain x0 where x0: "\<And>x. x \<ge> x0 \<Longrightarrow> \<bar>g x\<bar> < \<epsilon>" "\<And>a b. x0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> norm (sum f {a<..b}) \<le> g a" unfolding eventually_at_top_linorder by auto show ?case proof (intro exI[of _ x0] allI impI) fix m n assume mn: "x0 \<le> m" "m < n" have "dist (sum f {..m}) (sum f {..n}) = norm (sum f {..n} - sum f {..m})" by (simp add: dist_norm norm_minus_commute) also have "sum f {..n} - sum f {..m} = sum f ({..n} - {..m})" using mn by (intro Groups_Big.sum_diff [symmetric]) auto also have "{..n} - {..m} = {m<..n}" using mn by auto also have "norm (sum f {m<..n}) \<le> g m" using mn by (intro x0) auto also have "\<dots> \<le> \<bar>g m\<bar>" by simp also have "\<dots> < \<epsilon>" using mn by (intro x0) auto finally show "dist (sum f {..m}) (sum f {..n}) < \<epsilon>" . qed qed end