| author | wenzelm |
| Fri, 06 Dec 2024 13:33:25 +0100 | |
| changeset 81543 | fa37ee54644c |
| parent 81542 | e2ab4147b244 |
| child 81952 | 4652c6b36ee8 |
| permissions | -rw-r--r-- |
(* Title: Pure/logic.ML Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: Makarius Abstract syntax operations of the Pure meta-logic. *) signature LOGIC = sig val all_const: typ -> term val all: term -> term -> term val dependent_all_name: string * term -> term -> term val is_all: term -> bool val dest_all_global: term -> (string * typ) * term val list_all: (string * typ) list * term -> term val all_constraint: (string -> typ option) -> string * string -> term -> term val dependent_all_constraint: (string -> typ option) -> string * string -> term -> term val mk_equals: term * term -> term val dest_equals: term -> term * term val implies: term val mk_implies: term * term -> term val dest_implies: term -> term * term val list_implies: term list * term -> term val strip_imp_prems: term -> term list val strip_imp_concl: term -> term val strip_prems: int * term list * term -> term list * term val count_prems: term -> int val no_prems: term -> bool val nth_prem: int * term -> term val close_term: (string * term) list -> term -> term val close_prop: (string * term) list -> term list -> term -> term val close_prop_constraint: (string -> typ option) -> (string * string) list -> term list -> term -> term val true_prop: term val conjunction: term val mk_conjunction: term * term -> term val mk_conjunction_list: term list -> term val mk_conjunction_balanced: term list -> term val dest_conjunction: term -> term * term val dest_conjunction_list: term -> term list val dest_conjunction_balanced: int -> term -> term list val dest_conjunctions: term -> term list val strip_horn: term -> term list * term val mk_type: typ -> term val dest_type: term -> typ val type_map: (term -> term) -> typ -> typ val class_suffix: string val const_of_class: class -> string val class_of_const: string -> class val mk_of_class: typ * class -> term val match_of_class: term -> typ * string (*exception Match*) val dest_of_class: term -> typ * class val mk_of_sort: typ * sort -> term list val name_classrel: string * string -> string val mk_classrel: class * class -> term val dest_classrel: term -> class * class val name_arities: arity -> string list val name_arity: string * sort list * class -> string val mk_arities: arity -> term list val mk_arity: string * sort list * class -> term val dest_arity: term -> string * sort list * class val present_sorts: sort Ord_List.T -> Types.set -> {present: (typ * sort) list, extra: sort Ord_List.T} val dummy_tfree: sort -> typ type unconstrain_context = {typ_operation: {strip_sorts: bool} -> typ Same.operation, constraints: ((typ * class) * term) list, outer_constraints: (typ * class) list} val unconstrain_context: sort Ord_List.T -> Types.set -> unconstrain_context val unconstrainT: sort Ord_List.T -> term -> unconstrain_context * term val protectC: term val protect: term -> term val unprotect: term -> term val mk_term: term -> term val dest_term: term -> term val occs: term * term -> bool val close_form: term -> term val combound: term * int * int -> term val rlist_abs: (string * typ) list * term -> term val incr_tvar_same: int -> typ Same.operation val incr_tvar: int -> typ -> typ val incr_indexes_operation: {fixed: string list, Ts: typ list, inc: int, level: int} -> term Same.operation val incr_indexes: typ list * int -> term -> term val lift_abs: int -> term -> term -> term val lift_all: int -> term -> term -> term val strip_assums_hyp: term -> term list val strip_assums_concl: term -> term val strip_params: term -> (string * typ) list val has_meta_prems: term -> bool val flatten_params: int -> term -> term val list_rename_params: string list -> term -> term val assum_pairs: int * term -> (term * term) list val assum_problems: int * term -> (term -> term) * term list * term val bad_schematic: indexname -> string val bad_fixed: string -> string val varifyT_global: typ -> typ val unvarifyT_global: typ -> typ val varify_types_global: term -> term val unvarify_types_global: term -> term val varify_global: term -> term val unvarify_global: term -> term val get_goal: term -> int -> term val goal_params: term -> int -> term * term list val prems_of_goal: term -> int -> term list val concl_of_goal: term -> int -> term end; structure Logic : LOGIC = struct (*** Abstract syntax operations on the meta-connectives ***) (** all **) fun all_const T = Const ("Pure.all", (T --> propT) --> propT); fun all v t = all_const (Term.fastype_of v) $ lambda v t; fun dependent_all_name (x, v) t = let val x' = if x = "" then Term.term_name v else x; val T = Term.fastype_of v; val t' = Term.abstract_over (v, t); in if Term.is_dependent t' then all_const T $ Abs (x', T, t') else t end; fun is_all (Const ("Pure.all", _) $ Abs _) = true | is_all _ = false; fun dest_all_global t = (case t of Const ("Pure.all", _) $ (u as Abs _) => Term.dest_abs_global u | _ => raise TERM ("dest_all", [t])); fun list_all ([], t) = t | list_all ((a, T) :: vars, t) = all_const T $ Abs (a, T, list_all (vars, t)); (* operations before type-inference *) local fun abs_body default_type z tm = let fun abs lev (Abs (x, T, b)) = Abs (x, T, abs (lev + 1) b) | abs lev (t $ u) = abs lev t $ abs lev u | abs lev (a as Free (x, T)) = if x = z then Type.constraint (the_default dummyT (default_type x)) (Type.constraint T (Bound lev)) else a | abs _ a = a; in abs 0 (Term.incr_boundvars 1 tm) end; in fun all_constraint default_type (y, z) t = all_const dummyT $ Abs (y, dummyT, abs_body default_type z t); fun dependent_all_constraint default_type (y, z) t = let val t' = abs_body default_type z t in if Term.is_dependent t' then all_const dummyT $ Abs (y, dummyT, t') else t end; end; (** equality **) fun mk_equals (t, u) = let val T = Term.fastype_of t in Const ("Pure.eq", T --> T --> propT) $ t $ u end; fun dest_equals (Const ("Pure.eq", _) $ t $ u) = (t, u) | dest_equals t = raise TERM ("dest_equals", [t]); (** implies **) val implies = Const ("Pure.imp", propT --> propT --> propT); fun mk_implies (A, B) = implies $ A $ B; fun dest_implies (Const ("Pure.imp", _) $ A $ B) = (A, B) | dest_implies A = raise TERM ("dest_implies", [A]); (** nested implications **) (* [A1,...,An], B goes to A1\<Longrightarrow>...An\<Longrightarrow>B *) fun list_implies ([], B) = B | list_implies (A::As, B) = implies $ A $ list_implies(As,B); (* A1\<Longrightarrow>...An\<Longrightarrow>B goes to [A1,...,An], where B is not an implication *) fun strip_imp_prems (Const("Pure.imp", _) $ A $ B) = A :: strip_imp_prems B | strip_imp_prems _ = []; (* A1\<Longrightarrow>...An\<Longrightarrow>B goes to B, where B is not an implication *) fun strip_imp_concl (Const("Pure.imp", _) $ A $ B) = strip_imp_concl B | strip_imp_concl A = A : term; (*Strip and return premises: (i, [], A1\<Longrightarrow>...Ai\<Longrightarrow>B) goes to ([Ai, A(i-1),...,A1] , B) (REVERSED) if i<0 or else i too big then raises TERM*) fun strip_prems (0, As, B) = (As, B) | strip_prems (i, As, Const("Pure.imp", _) $ A $ B) = strip_prems (i-1, A::As, B) | strip_prems (_, As, A) = raise TERM("strip_prems", A::As); (*Count premises -- quicker than (length o strip_prems) *) fun count_prems (Const ("Pure.imp", _) $ _ $ B) = 1 + count_prems B | count_prems _ = 0; fun no_prems (Const ("Pure.imp", _) $ _ $ _) = false | no_prems _ = true; (*Select Ai from A1\<Longrightarrow>...Ai\<Longrightarrow>B*) fun nth_prem (1, Const ("Pure.imp", _) $ A $ _) = A | nth_prem (i, Const ("Pure.imp", _) $ _ $ B) = nth_prem (i - 1, B) | nth_prem (_, A) = raise TERM ("nth_prem", [A]); (*strip a proof state (Horn clause): B1 \<Longrightarrow> ... Bn \<Longrightarrow> C goes to ([B1, ..., Bn], C) *) fun strip_horn A = (strip_imp_prems A, strip_imp_concl A); (* close -- omit vacuous quantifiers *) val close_term = fold_rev Term.dependent_lambda_name; fun close_prop xs As B = fold_rev dependent_all_name xs (list_implies (As, B)); fun close_prop_constraint default_type xs As B = fold_rev (dependent_all_constraint default_type) xs (list_implies (As, B)); (** conjunction **) val true_prop = all_const propT $ Abs ("dummy", propT, mk_implies (Bound 0, Bound 0)); val conjunction = Const ("Pure.conjunction", propT --> propT --> propT); (*A &&& B*) fun mk_conjunction (A, B) = conjunction $ A $ B; (*A &&& B &&& C -- improper*) fun mk_conjunction_list [] = true_prop | mk_conjunction_list ts = foldr1 mk_conjunction ts; (*(A &&& B) &&& (C &&& D) -- balanced*) fun mk_conjunction_balanced [] = true_prop | mk_conjunction_balanced ts = Balanced_Tree.make mk_conjunction ts; (*A &&& B*) fun dest_conjunction (Const ("Pure.conjunction", _) $ A $ B) = (A, B) | dest_conjunction t = raise TERM ("dest_conjunction", [t]); (*A &&& B &&& C -- improper*) fun dest_conjunction_list t = (case try dest_conjunction t of NONE => [t] | SOME (A, B) => A :: dest_conjunction_list B); (*(A &&& B) &&& (C &&& D) -- balanced*) fun dest_conjunction_balanced 0 _ = [] | dest_conjunction_balanced n t = Balanced_Tree.dest dest_conjunction n t; (*((A &&& B) &&& C) &&& D &&& E -- flat*) fun dest_conjunctions t = (case try dest_conjunction t of NONE => [t] | SOME (A, B) => dest_conjunctions A @ dest_conjunctions B); (** types as terms **) fun mk_type ty = Const ("Pure.type", Term.itselfT ty); fun dest_type (Const ("Pure.type", Type ("itself", [ty]))) = ty | dest_type t = raise TERM ("dest_type", [t]); fun type_map f = dest_type o f o mk_type; (** type classes **) (* const names *) val class_suffix = "_class"; val const_of_class = suffix class_suffix; fun class_of_const c = unsuffix class_suffix c handle Fail _ => raise TERM ("class_of_const: bad name " ^ quote c, []); (* class/sort membership *) fun mk_of_class (ty, c) = Const (const_of_class c, Term.itselfT ty --> propT) $ mk_type ty; fun match_of_class (Const (c, _) $ Const ("Pure.type", Type ("itself", [ty]))) = if String.isSuffix class_suffix c then (ty, class_of_const c) else raise Match; fun dest_of_class (Const (c_class, _) $ ty) = (dest_type ty, class_of_const c_class) | dest_of_class t = raise TERM ("dest_of_class", [t]); fun mk_of_sort (ty, S) = map (fn c => mk_of_class (ty, c)) S; (* class relations *) fun name_classrel (c1, c2) = Long_Name.base_name c1 ^ "_" ^ Long_Name.base_name c2; fun mk_classrel (c1, c2) = mk_of_class (Term.aT [c1], c2); fun dest_classrel tm = (case dest_of_class tm of (TVar (_, [c1]), c2) => (c1, c2) | _ => raise TERM ("dest_classrel", [tm])); (* type arities *) fun name_arities (t, _, S) = let val b = Long_Name.base_name t in S |> map (fn c => Long_Name.base_name c ^ "_" ^ b) end; fun name_arity (t, dom, c) = hd (name_arities (t, dom, [c])); fun mk_arities (t, Ss, S) = let val T = Type (t, map TFree (Name.invent_types_global Ss)) in map (fn c => mk_of_class (T, c)) S end; fun mk_arity (t, Ss, c) = the_single (mk_arities (t, Ss, [c])); fun dest_arity tm = let fun err () = raise TERM ("dest_arity", [tm]); val (ty, c) = dest_of_class tm; val (t, tvars) = (case ty of Type (t, tys) => (t, map dest_TVar tys handle TYPE _ => err ()) | _ => err ()); val Ss = if has_duplicates (eq_fst (op =)) tvars then err () else map snd tvars; in (t, Ss, c) end; (* sort constraints within the logic *) fun dummy_tfree S = TFree ("'dummy", S); fun present_sorts shyps present_set = let val present = map (fn T => (T, Type.sort_of_atyp T)) (Types.list_set present_set); val extra = fold (Sorts.remove_sort o #2) present shyps; in {present = present, extra = extra} end; type unconstrain_context = {typ_operation: {strip_sorts: bool} -> typ Same.operation, constraints: ((typ * class) * term) list, outer_constraints: (typ * class) list}; fun unconstrain_context shyps present_set = let val {present, extra} = present_sorts shyps present_set; val n = Types.size present_set; val (names1, names2) = Name.invent_global_types (n + length extra) |> chop n; val present_map = map2 (fn (T, S) => fn a => (T, TVar ((a, 0), S))) present names1; val constraints_map = map (fn (_, V) => (Type.sort_of_atyp V, V)) present_map @ map2 (fn S => fn a => (S, TVar ((a, 0), S))) extra names2; fun atyp_operation {strip_sorts} = Same.function_eq (op =) (fn T => (case AList.lookup (op =) present_map T of SOME T' => T' |> strip_sorts ? Term.strip_sortsT | NONE => (case AList.lookup (op =) constraints_map (Type.sort_of_atyp T) of SOME T' => T' |> strip_sorts ? Term.strip_sortsT | NONE => raise TYPE ("Dangling type variable ", [T], [])))); val typ_operation = Term.map_atyps_same o atyp_operation; val constraints = constraints_map |> maps (fn (_, T as TVar (ai, S)) => map (fn c => ((T, c), mk_of_class (TVar (ai, []), c))) S); val outer_constraints = maps (fn (T, S) => map (pair T) S) (present @ map (`dummy_tfree) extra); in {typ_operation = typ_operation, constraints = constraints, outer_constraints = outer_constraints} end; fun unconstrainT shyps prop = let val ucontext = unconstrain_context shyps (Types.build (prop |> Types.add_atyps)); val prop' = prop |> Term.map_types (#typ_operation ucontext {strip_sorts = true}) |> curry list_implies (map #2 (#constraints ucontext)); in (ucontext, prop') end; (** protected propositions and embedded terms **) val protectC = Const ("Pure.prop", propT --> propT); fun protect t = protectC $ t; fun unprotect (Const ("Pure.prop", _) $ t) = t | unprotect t = raise TERM ("unprotect", [t]); fun mk_term t = Const ("Pure.term", Term.fastype_of t --> propT) $ t; fun dest_term (Const ("Pure.term", _) $ t) = t | dest_term t = raise TERM ("dest_term", [t]); (*** Low-level term operations ***) (*Does t occur in u? Or is alpha-convertible to u? The term t must contain no loose bound variables*) fun occs (t, u) = exists_subterm (fn s => t aconv s) u; (*Close up a formula over all free variables by quantification*) fun close_form A = fold_rev (all o Free) (Frees.build (Frees.add_frees A) |> Frees.list_set) A; (*** Specialized operations for resolution... ***) (*computes t(Bound(n+k-1),...,Bound(n)) *) fun combound (t, n, k) = if k>0 then combound (t,n+1,k-1) $ (Bound n) else t; (* ([xn,...,x1], t) goes to \<lambda>x1 ... xn. t *) fun rlist_abs ([], body) = body | rlist_abs ((a,T)::pairs, body) = rlist_abs(pairs, Abs(a, T, body)); fun incr_tvar_same 0 = Same.same | incr_tvar_same inc = Term.map_atyps_same (fn TVar ((a, i), S) => TVar ((a, i + inc), S) | _ => raise Same.SAME); fun incr_tvar inc = Same.commit (incr_tvar_same inc); (*For all variables in the term, increment indexnames and lift over the Us result is ?Gidx(B.(lev+n-1),...,B.lev) where lev is abstraction level *) fun incr_indexes_operation {fixed, Ts, inc, level} = if null fixed andalso null Ts andalso inc = 0 then Same.same else let val n = length Ts; val incrT = incr_tvar_same inc; fun incr lev (Var ((x, i), T)) = combound (Var ((x, i + inc), Ts ---> Same.commit incrT T), lev, n) | incr lev (Free (x, T)) = if member (op =) fixed x then combound (Free (x, Ts ---> Same.commit incrT T), lev, n) else Free (x, incrT T) | incr lev (Abs (x, T, t)) = (Abs (x, incrT T, Same.commit (incr (lev + 1)) t) handle Same.SAME => Abs (x, T, incr (lev + 1) t)) | incr lev (t $ u) = (incr lev t $ Same.commit (incr lev) u handle Same.SAME => t $ incr lev u) | incr _ (Const (c, T)) = Const (c, incrT T) | incr _ (Bound _) = raise Same.SAME; in incr level end; fun incr_indexes (Ts, inc) = if null Ts andalso inc = 0 then I else Same.commit (incr_indexes_operation {fixed = [], Ts = Ts, inc = inc, level = 0}); (* Lifting functions from subgoal and increment: lift_abs operates on terms lift_all operates on propositions *) fun lift_abs inc = let fun lift Ts (Const ("Pure.imp", _) $ _ $ B) t = lift Ts B t | lift Ts (Const ("Pure.all", _) $ Abs (a, T, B)) t = Abs (a, T, lift (T :: Ts) B t) | lift Ts _ t = incr_indexes (rev Ts, inc) t; in lift [] end; fun lift_all inc = let fun lift Ts ((c as Const ("Pure.imp", _)) $ A $ B) t = c $ A $ lift Ts B t | lift Ts ((c as Const ("Pure.all", _)) $ Abs (a, T, B)) t = c $ Abs (a, T, lift (T :: Ts) B t) | lift Ts _ t = incr_indexes (rev Ts, inc) t; in lift [] end; (*Strips assumptions in goal, yielding list of hypotheses. *) fun strip_assums_hyp B = let fun strip Hs (Const ("Pure.imp", _) $ H $ B) = strip (H :: Hs) B | strip Hs (Const ("Pure.all", _) $ Abs (a, T, t)) = strip (map (incr_boundvars 1) Hs) t | strip Hs B = rev Hs in strip [] B end; (*Strips assumptions in goal, yielding conclusion. *) fun strip_assums_concl (Const("Pure.imp", _) $ H $ B) = strip_assums_concl B | strip_assums_concl (Const("Pure.all", _) $ Abs (a, T, t)) = strip_assums_concl t | strip_assums_concl B = B; (*Make a list of all the parameters in a subgoal, even if nested*) fun strip_params (Const("Pure.imp", _) $ H $ B) = strip_params B | strip_params (Const("Pure.all", _) $ Abs (a, T, t)) = (a, T) :: strip_params t | strip_params B = []; (*test for nested meta connectives in prems*) val has_meta_prems = let fun is_meta (Const ("Pure.eq", _) $ _ $ _) = true | is_meta (Const ("Pure.imp", _) $ _ $ _) = true | is_meta (Const ("Pure.all", _) $ _) = true | is_meta _ = false; fun ex_meta (Const ("Pure.imp", _) $ A $ B) = is_meta A orelse ex_meta B | ex_meta (Const ("Pure.all", _) $ Abs (_, _, B)) = ex_meta B | ex_meta _ = false; in ex_meta end; (*Removes the parameters from a subgoal and renumber bvars in hypotheses, where j is the total number of parameters (precomputed) If n>0 then deletes assumption n. *) fun remove_params j n A = if j=0 andalso n<=0 then A (*nothing left to do...*) else case A of Const("Pure.imp", _) $ H $ B => if n=1 then (remove_params j (n-1) B) else implies $ (incr_boundvars j H) $ (remove_params j (n-1) B) | Const("Pure.all",_)$Abs(a,T,t) => remove_params (j-1) n t | _ => if n>0 then raise TERM("remove_params", [A]) else A; (*Move all parameters to the front of the subgoal, renaming them apart; if n>0 then deletes assumption n. *) fun flatten_params n A = let val params = strip_params A; val vars = ListPair.zip (Name.variant_list [] (map #1 params), map #2 params) in list_all (vars, remove_params (length vars) n A) end; (*Makes parameters in a goal have the names supplied by the list cs.*) fun list_rename_params cs (Const ("Pure.imp", _) $ A $ B) = implies $ A $ list_rename_params cs B | list_rename_params (c :: cs) ((a as Const ("Pure.all", _)) $ Abs (_, T, t)) = a $ Abs (c, T, list_rename_params cs t) | list_rename_params cs B = B; (*** Treatment of "assume", "erule", etc. ***) (*Strips assumptions in goal yielding HS = [Hn,...,H1], params = [xm,...,x1], and B, where x1...xm are the parameters. This version (21.1.2005) REQUIRES the the parameters to be flattened, but it allows erule to work on assumptions of the form \<And>x. phi. Any \<And> after the outermost string will be regarded as belonging to the conclusion, and left untouched. Used ONLY by assum_pairs. Unless nasms<0, it can terminate the recursion early; that allows erule to work on assumptions of the form P\<Longrightarrow>Q.*) fun strip_assums_imp (0, Hs, B) = (Hs, B) (*recursion terminated by nasms*) | strip_assums_imp (nasms, Hs, Const("Pure.imp", _) $ H $ B) = strip_assums_imp (nasms-1, H::Hs, B) | strip_assums_imp (_, Hs, B) = (Hs, B); (*recursion terminated by B*) (*Strips OUTER parameters only.*) fun strip_assums_all (params, Const("Pure.all",_)$Abs(a,T,t)) = strip_assums_all ((a,T)::params, t) | strip_assums_all (params, B) = (params, B); (*Produces disagreement pairs, one for each assumption proof, in order. A is the first premise of the lifted rule, and thus has the form H1 \<Longrightarrow> ... Hk \<Longrightarrow> B and the pairs are (H1,B),...,(Hk,B). nasms is the number of assumptions in the original subgoal, needed when B has the form B1 \<Longrightarrow> B2: it stops B1 from being taken as an assumption. *) fun assum_pairs(nasms,A) = let val (params, A') = strip_assums_all ([],A) val (Hs,B) = strip_assums_imp (nasms,[],A') fun abspar t = rlist_abs(params, t) val D = abspar B fun pairrev ([], pairs) = pairs | pairrev (H::Hs, pairs) = pairrev(Hs, (abspar H, D) :: pairs) in pairrev (Hs,[]) end; fun assum_problems (nasms, A) = let val (params, A') = strip_assums_all ([], A) val (Hs, B) = strip_assums_imp (nasms, [], A') fun abspar t = rlist_abs (params, t) in (abspar, rev Hs, B) end; (* global schematic variables *) fun bad_schematic xi = "Illegal schematic variable: " ^ quote (Term.string_of_vname xi); fun bad_fixed x = "Illegal fixed variable: " ^ quote x; fun varifyT_global_same ty = ty |> Term.map_atyps_same (fn TFree (a, S) => TVar ((a, 0), S) | TVar (ai, _) => raise TYPE (bad_schematic ai, [ty], [])); fun unvarifyT_global_same ty = ty |> Term.map_atyps_same (fn TVar ((a, 0), S) => TFree (a, S) | TVar (ai, _) => raise TYPE (bad_schematic ai, [ty], []) | TFree (a, _) => raise TYPE (bad_fixed a, [ty], [])); val varifyT_global = Same.commit varifyT_global_same; val unvarifyT_global = Same.commit unvarifyT_global_same; fun varify_types_global tm = Term.map_types varifyT_global_same tm handle TYPE (msg, _, _) => raise TERM (msg, [tm]); fun unvarify_types_global tm = Term.map_types unvarifyT_global_same tm handle TYPE (msg, _, _) => raise TERM (msg, [tm]); fun varify_global tm = tm |> Term.map_aterms (fn Free (x, T) => Var ((x, 0), T) | Var (xi, _) => raise TERM (bad_schematic xi, [tm]) | _ => raise Same.SAME) |> varify_types_global; fun unvarify_global tm = tm |> Term.map_aterms (fn Var ((x, 0), T) => Free (x, T) | Var (xi, _) => raise TERM (bad_schematic xi, [tm]) | Free (x, _) => raise TERM (bad_fixed x, [tm]) | _ => raise Same.SAME) |> unvarify_types_global; (* goal states *) fun get_goal st i = nth_prem (i, st) handle TERM _ => error ("Subgoal number " ^ string_of_int i ^ " out of range (a total of " ^ string_of_int (count_prems st) ^ " subgoals)"); (*reverses parameters for substitution*) fun goal_params st i = let val gi = get_goal st i val rfrees = map Free (rev (Term.variant_bounds gi (strip_params gi))) in (gi, rfrees) end; fun concl_of_goal st i = let val (gi, rfrees) = goal_params st i val B = strip_assums_concl gi in subst_bounds (rfrees, B) end; fun prems_of_goal st i = let val (gi, rfrees) = goal_params st i val As = strip_assums_hyp gi in map (fn A => subst_bounds (rfrees, A)) As end; end;