src/HOLCF/Cprod1.ML
author paulson
Mon, 29 Jul 1996 18:31:39 +0200
changeset 1893 fa58f4a06f21
parent 1461 6bcb44e4d6e5
child 2033 639de962ded4
permissions -rw-r--r--
Works up to main theorem, then XXX...X

(*  Title:      HOLCF/cprod1.ML
    ID:         $Id$
    Author:     Franz Regensburger
    Copyright   1993  Technische Universitaet Muenchen

Lemmas for theory cprod1.thy 
*)

open Cprod1;

qed_goalw "less_cprod1b" Cprod1.thy [less_cprod_def]
 "less_cprod p1 p2 = ( fst(p1) << fst(p2) & snd(p1) << snd(p2))"
 (fn prems =>
        [
        (rtac refl 1)
        ]);

qed_goalw "less_cprod2a" Cprod1.thy [less_cprod_def]
 "less_cprod (x,y) (UU,UU) ==> x = UU & y = UU"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (etac conjE 1),
        (dtac (fst_conv RS subst) 1),
        (dtac (fst_conv RS subst) 1),
        (dtac (fst_conv RS subst) 1),
        (dtac (snd_conv RS subst) 1),
        (dtac (snd_conv RS subst) 1),
        (dtac (snd_conv RS subst) 1),
        (rtac conjI 1),
        (etac UU_I 1),
        (etac UU_I 1)
        ]);

qed_goal "less_cprod2b" Cprod1.thy 
 "less_cprod p (UU,UU) ==> p = (UU,UU)"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("p","p")] PairE 1),
        (hyp_subst_tac 1),
        (dtac less_cprod2a 1),
        (Asm_simp_tac 1)
        ]);

qed_goalw "less_cprod2c" Cprod1.thy [less_cprod_def]
 "less_cprod (x1,y1) (x2,y2) ==> x1 << x2 & y1 << y2"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (etac conjE 1),
        (dtac (fst_conv RS subst) 1),
        (dtac (fst_conv RS subst) 1),
        (dtac (fst_conv RS subst) 1),
        (dtac (snd_conv RS subst) 1),
        (dtac (snd_conv RS subst) 1),
        (dtac (snd_conv RS subst) 1),
        (rtac conjI 1),
        (atac 1),
        (atac 1)
        ]);

(* ------------------------------------------------------------------------ *)
(* less_cprod is a partial order on 'a * 'b                                 *)
(* ------------------------------------------------------------------------ *)

qed_goalw "refl_less_cprod" Cprod1.thy [less_cprod_def] "less_cprod p p"
 (fn prems => [Simp_tac 1]);

qed_goal "antisym_less_cprod" Cprod1.thy 
 "[|less_cprod p1 p2;less_cprod p2 p1|] ==> p1=p2"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("p","p1")] PairE 1),
        (hyp_subst_tac 1),
        (res_inst_tac [("p","p2")] PairE 1),
        (hyp_subst_tac 1),
        (dtac less_cprod2c 1),
        (dtac less_cprod2c 1),
        (etac conjE 1),
        (etac conjE 1),
        (rtac (Pair_eq RS ssubst) 1),
        (fast_tac (HOL_cs addSIs [antisym_less]) 1)
        ]);


qed_goal "trans_less_cprod" Cprod1.thy 
 "[|less_cprod p1 p2;less_cprod p2 p3|] ==> less_cprod p1 p3"
 (fn prems =>
        [
        (cut_facts_tac prems 1),
        (res_inst_tac [("p","p1")] PairE 1),
        (hyp_subst_tac 1),
        (res_inst_tac [("p","p3")] PairE 1),
        (hyp_subst_tac 1),
        (res_inst_tac [("p","p2")] PairE 1),
        (hyp_subst_tac 1),
        (dtac less_cprod2c 1),
        (dtac less_cprod2c 1),
        (rtac (less_cprod1b RS ssubst) 1),
        (Simp_tac 1),
        (etac conjE 1),
        (etac conjE 1),
        (rtac conjI 1),
        (etac trans_less 1),
        (atac 1),
        (etac trans_less 1),
        (atac 1)
        ]);