(* Title: HOLCF/cprod1.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for theory cprod1.thy
*)
open Cprod1;
qed_goalw "less_cprod1b" Cprod1.thy [less_cprod_def]
"less_cprod p1 p2 = ( fst(p1) << fst(p2) & snd(p1) << snd(p2))"
(fn prems =>
[
(rtac refl 1)
]);
qed_goalw "less_cprod2a" Cprod1.thy [less_cprod_def]
"less_cprod (x,y) (UU,UU) ==> x = UU & y = UU"
(fn prems =>
[
(cut_facts_tac prems 1),
(etac conjE 1),
(dtac (fst_conv RS subst) 1),
(dtac (fst_conv RS subst) 1),
(dtac (fst_conv RS subst) 1),
(dtac (snd_conv RS subst) 1),
(dtac (snd_conv RS subst) 1),
(dtac (snd_conv RS subst) 1),
(rtac conjI 1),
(etac UU_I 1),
(etac UU_I 1)
]);
qed_goal "less_cprod2b" Cprod1.thy
"less_cprod p (UU,UU) ==> p = (UU,UU)"
(fn prems =>
[
(cut_facts_tac prems 1),
(res_inst_tac [("p","p")] PairE 1),
(hyp_subst_tac 1),
(dtac less_cprod2a 1),
(Asm_simp_tac 1)
]);
qed_goalw "less_cprod2c" Cprod1.thy [less_cprod_def]
"less_cprod (x1,y1) (x2,y2) ==> x1 << x2 & y1 << y2"
(fn prems =>
[
(cut_facts_tac prems 1),
(etac conjE 1),
(dtac (fst_conv RS subst) 1),
(dtac (fst_conv RS subst) 1),
(dtac (fst_conv RS subst) 1),
(dtac (snd_conv RS subst) 1),
(dtac (snd_conv RS subst) 1),
(dtac (snd_conv RS subst) 1),
(rtac conjI 1),
(atac 1),
(atac 1)
]);
(* ------------------------------------------------------------------------ *)
(* less_cprod is a partial order on 'a * 'b *)
(* ------------------------------------------------------------------------ *)
qed_goalw "refl_less_cprod" Cprod1.thy [less_cprod_def] "less_cprod p p"
(fn prems => [Simp_tac 1]);
qed_goal "antisym_less_cprod" Cprod1.thy
"[|less_cprod p1 p2;less_cprod p2 p1|] ==> p1=p2"
(fn prems =>
[
(cut_facts_tac prems 1),
(res_inst_tac [("p","p1")] PairE 1),
(hyp_subst_tac 1),
(res_inst_tac [("p","p2")] PairE 1),
(hyp_subst_tac 1),
(dtac less_cprod2c 1),
(dtac less_cprod2c 1),
(etac conjE 1),
(etac conjE 1),
(rtac (Pair_eq RS ssubst) 1),
(fast_tac (HOL_cs addSIs [antisym_less]) 1)
]);
qed_goal "trans_less_cprod" Cprod1.thy
"[|less_cprod p1 p2;less_cprod p2 p3|] ==> less_cprod p1 p3"
(fn prems =>
[
(cut_facts_tac prems 1),
(res_inst_tac [("p","p1")] PairE 1),
(hyp_subst_tac 1),
(res_inst_tac [("p","p3")] PairE 1),
(hyp_subst_tac 1),
(res_inst_tac [("p","p2")] PairE 1),
(hyp_subst_tac 1),
(dtac less_cprod2c 1),
(dtac less_cprod2c 1),
(rtac (less_cprod1b RS ssubst) 1),
(Simp_tac 1),
(etac conjE 1),
(etac conjE 1),
(rtac conjI 1),
(etac trans_less 1),
(atac 1),
(etac trans_less 1),
(atac 1)
]);