| author | Fabian Huch <huch@in.tum.de> |
| Wed, 18 Oct 2023 20:12:07 +0200 | |
| changeset 78843 | fc3ba0a1c82f |
| parent 67613 | ce654b0e6d69 |
| permissions | -rw-r--r-- |
(*<*) theory Plus imports Main begin (*>*) text\<open>\noindent Define the following addition function\<close> primrec add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where "add m 0 = m" | "add m (Suc n) = add (Suc m) n" text\<open>\noindent and prove\<close> (*<*) lemma [simp]: "\<forall>m. add m n = m+n" apply(induct_tac n) by(auto) (*>*) lemma "add m n = m+n" (*<*) by(simp) end (*>*)