clearly separated target primitives (target_foo) from self-contained target operations (foo)
(* Title: Pure/Isar/generic_target.ML
Author: Makarius
Author: Florian Haftmann, TU Muenchen
Common target infrastructure.
*)
signature GENERIC_TARGET =
sig
(*background primitives*)
val background_foundation: ((binding * typ) * mixfix) * (binding * term) ->
term list * term list -> local_theory -> (term * thm) * local_theory
val background_declaration: declaration -> local_theory -> local_theory
val background_abbrev: binding * term -> term list -> local_theory -> (term * term) * local_theory
(*nested local theories primitives*)
val standard_const: (int * int -> bool) -> Syntax.mode -> (binding * mixfix) * term ->
local_theory -> local_theory
(*lifting target primitives to local theory operations*)
val define: (((binding * typ) * mixfix) * (binding * term) ->
term list * term list -> local_theory -> (term * thm) * local_theory) ->
bool -> (binding * mixfix) * (Attrib.binding * term) -> local_theory ->
(term * (string * thm)) * local_theory
val notes:
(string -> (Attrib.binding * (thm list * Token.src list) list) list ->
(Attrib.binding * (thm list * Token.src list) list) list -> local_theory -> local_theory) ->
string -> (Attrib.binding * (thm list * Token.src list) list) list -> local_theory ->
(string * thm list) list * local_theory
val abbrev: (Syntax.mode -> binding * mixfix -> term ->
term list * term list -> local_theory -> local_theory) ->
Syntax.mode -> (binding * mixfix) * term -> local_theory -> (term * term) * local_theory
(*theory target primitives*)
val theory_target_foundation: ((binding * typ) * mixfix) * (binding * term) ->
term list * term list -> local_theory -> (term * thm) * local_theory
val theory_target_notes: string ->
(Attrib.binding * (thm list * Token.src list) list) list ->
(Attrib.binding * (thm list * Token.src list) list) list ->
local_theory -> local_theory
val theory_target_abbrev: Syntax.mode -> (binding * mixfix) -> term -> term list * term list ->
local_theory -> local_theory
(*theory target operations*)
val theory_declaration: declaration -> local_theory -> local_theory
val theory_registration: string * morphism -> (morphism * bool) option -> morphism ->
local_theory -> local_theory
(*locale target primitives*)
val locale_target_notes: string -> string ->
(Attrib.binding * (thm list * Token.src list) list) list ->
(Attrib.binding * (thm list * Token.src list) list) list ->
local_theory -> local_theory
val locale_target_declaration: string -> bool -> declaration -> local_theory -> local_theory
val locale_target_const: string -> (morphism -> bool) -> Syntax.mode ->
(binding * mixfix) * term -> local_theory -> local_theory
(*locale operations*)
val locale_declaration: string -> {syntax: bool, pervasive: bool} -> declaration ->
local_theory -> local_theory
val locale_const: string -> Syntax.mode -> (binding * mixfix) * term ->
local_theory -> local_theory
val locale_dependency: string -> string * morphism -> (morphism * bool) option -> morphism ->
local_theory -> local_theory
end
structure Generic_Target: GENERIC_TARGET =
struct
(** consts **)
fun check_mixfix ctxt (b, extra_tfrees) mx =
if null extra_tfrees then mx
else
(if Context_Position.is_visible ctxt then
warning
("Additional type variable(s) in specification of " ^ Binding.print b ^ ": " ^
commas (map (Syntax.string_of_typ ctxt o TFree) (sort_wrt #1 extra_tfrees)) ^
(if mx = NoSyn then ""
else "\nDropping mixfix syntax " ^ Pretty.string_of (Mixfix.pretty_mixfix mx)))
else (); NoSyn);
fun check_mixfix_global (b, no_params) mx =
if no_params orelse mx = NoSyn then mx
else (warning ("Dropping global mixfix syntax: " ^ Binding.print b ^ " " ^
Pretty.string_of (Mixfix.pretty_mixfix mx)); NoSyn);
fun const_decl phi_pred prmode ((b, mx), rhs) phi context =
if phi_pred phi then
let
val b' = Morphism.binding phi b;
val rhs' = Morphism.term phi rhs;
val same_shape = Term.aconv_untyped (rhs, rhs');
val const_alias =
if same_shape then
(case rhs' of
Const (c, T) =>
let
val thy = Context.theory_of context;
val ctxt = Context.proof_of context;
in
(case Type_Infer_Context.const_type ctxt c of
SOME T' => if Sign.typ_equiv thy (T, T') then SOME c else NONE
| NONE => NONE)
end
| _ => NONE)
else NONE;
in
(case const_alias of
SOME c =>
context
|> Context.mapping (Sign.const_alias b' c) (Proof_Context.const_alias b' c)
|> Morphism.form (Proof_Context.generic_notation true prmode [(rhs', mx)])
| NONE =>
context
|> Proof_Context.generic_add_abbrev Print_Mode.internal (b', Term.close_schematic_term rhs')
|-> (fn (const as Const (c, _), _) => same_shape ?
(Proof_Context.generic_revert_abbrev (#1 prmode) c #>
Morphism.form (Proof_Context.generic_notation true prmode [(const, mx)]))))
end
else context;
(** background primitives **)
fun background_foundation (((b, U), mx), (b_def, rhs)) (type_params, term_params) lthy =
let
val params = type_params @ term_params;
val mx' = check_mixfix_global (b, null params) mx;
val (const, lthy2) = lthy
|> Local_Theory.background_theory_result (Sign.declare_const lthy ((b, U), mx'));
val lhs = Term.list_comb (const, params);
val ((_, def), lthy3) = lthy2
|> Local_Theory.background_theory_result
(Thm.add_def lthy2 false false
(Thm.def_binding_optional b b_def, Logic.mk_equals (lhs, rhs)));
in ((lhs, def), lthy3) end;
fun background_declaration decl lthy =
let
val theory_decl =
Local_Theory.standard_form lthy
(Proof_Context.init_global (Proof_Context.theory_of lthy)) decl;
in Local_Theory.background_theory (Context.theory_map theory_decl) lthy end;
fun background_abbrev (b, global_rhs) params =
Local_Theory.background_theory_result (Sign.add_abbrev Print_Mode.internal (b, global_rhs))
#>> apply2 (fn t => Term.list_comb (Logic.unvarify_global t, params))
(** nested local theories primitives **)
fun standard_facts lthy ctxt =
Attrib.transform_facts (Local_Theory.standard_morphism lthy ctxt);
fun standard_notes pred kind facts lthy =
Local_Theory.map_contexts (fn level => fn ctxt =>
if pred (Local_Theory.level lthy, level)
then Attrib.local_notes kind (standard_facts lthy ctxt facts) ctxt |> snd
else ctxt) lthy;
fun standard_declaration pred decl lthy =
Local_Theory.map_contexts (fn level => fn ctxt =>
if pred (Local_Theory.level lthy, level)
then Context.proof_map (Local_Theory.standard_form lthy ctxt decl) ctxt
else ctxt) lthy;
fun standard_const pred prmode ((b, mx), rhs) =
standard_declaration pred (const_decl (K true) prmode ((b, mx), rhs));
(** lifting target primitives to local theory operations **)
(* define *)
fun define foundation internal ((b, mx), ((b_def, atts), rhs)) lthy =
let
val thy_ctxt = Proof_Context.init_global (Proof_Context.theory_of lthy);
(*term and type parameters*)
val ((defs, _), rhs') = Thm.cterm_of lthy rhs
|> Local_Defs.export_cterm lthy thy_ctxt ||> Thm.term_of;
val xs = Variable.add_fixed lthy rhs' [];
val T = Term.fastype_of rhs;
val tfreesT = Term.add_tfreesT T (fold (Term.add_tfreesT o #2) xs []);
val extra_tfrees = rev (subtract (op =) tfreesT (Term.add_tfrees rhs []));
val mx' = check_mixfix lthy (b, extra_tfrees) mx;
val type_params = map (Logic.mk_type o TFree) extra_tfrees;
val term_params = map Free (sort (Variable.fixed_ord lthy o apply2 #1) xs);
val params = type_params @ term_params;
val U = map Term.fastype_of params ---> T;
(*foundation*)
val ((lhs', global_def), lthy2) = lthy
|> foundation (((b, U), mx'), (b_def, rhs')) (type_params, term_params);
(*local definition*)
val ((lhs, local_def), lthy3) = lthy2
|> Local_Defs.add_def ((b, NoSyn), lhs');
(*result*)
val def =
Thm.transitive local_def global_def
|> Local_Defs.contract lthy3 defs (Thm.cterm_of lthy3 (Logic.mk_equals (lhs, rhs)));
val ([(res_name, [res])], lthy4) = lthy3
|> Local_Theory.notes [((if internal then Binding.empty else b_def, atts), [([def], [])])];
in ((lhs, (res_name, res)), lthy4) end;
(* notes *)
local
fun import_export_proof ctxt (name, raw_th) =
let
val thy_ctxt = Proof_Context.init_global (Proof_Context.theory_of ctxt);
(*export assumes/defines*)
val th = Goal.norm_result ctxt raw_th;
val ((defs, asms), th') = Local_Defs.export ctxt thy_ctxt th;
val asms' = map (rewrite_rule ctxt (Drule.norm_hhf_eqs @ defs)) asms;
(*export fixes*)
val tfrees = map TFree (Thm.fold_terms Term.add_tfrees th' []);
val frees = map Free (Thm.fold_terms Term.add_frees th' []);
val (th'' :: vs) =
(th' :: map (Drule.mk_term o Thm.cterm_of ctxt) (map Logic.mk_type tfrees @ frees))
|> Variable.export ctxt thy_ctxt
|> Drule.zero_var_indexes_list;
(*thm definition*)
val result = Global_Theory.name_thm true true name th'';
(*import fixes*)
val (tvars, vars) =
chop (length tfrees) (map (Thm.term_of o Drule.dest_term) vs)
|>> map Logic.dest_type;
val instT = map_filter (fn (TVar v, T) => SOME (v, T) | _ => NONE) (tvars ~~ tfrees);
val inst = filter (is_Var o fst) (vars ~~ frees);
val cinstT = instT
|> map (apply2 (Thm.ctyp_of ctxt) o apfst TVar);
val cinst = inst
|> map (apply2 (Thm.cterm_of ctxt o Term.map_types (Term_Subst.instantiateT instT)));
val result' = Thm.instantiate (cinstT, cinst) result;
(*import assumes/defines*)
val result'' =
(fold (curry op COMP) asms' result'
handle THM _ => raise THM ("Failed to re-import result", 0, result' :: asms'))
|> Local_Defs.contract ctxt defs (Thm.cprop_of th)
|> Goal.norm_result ctxt
|> Global_Theory.name_thm false false name;
in (result'', result) end;
in
fun notes target_notes kind facts lthy =
let
val facts' = facts
|> map (fn (a, bs) => (a, Global_Theory.burrow_fact (Global_Theory.name_multi
(Local_Theory.full_name lthy (fst a))) bs))
|> Global_Theory.map_facts (import_export_proof lthy);
val local_facts = Global_Theory.map_facts #1 facts';
val global_facts = Global_Theory.map_facts #2 facts';
in
lthy
|> target_notes kind global_facts (Attrib.partial_evaluation lthy local_facts)
|> Attrib.local_notes kind local_facts
end;
end;
(* abbrev *)
fun abbrev target_abbrev prmode ((b, mx), rhs) lthy =
let
val thy_ctxt = Proof_Context.init_global (Proof_Context.theory_of lthy);
val rhs' = Assumption.export_term lthy (Local_Theory.target_of lthy) rhs;
val term_params = map Free (sort (Variable.fixed_ord lthy o apply2 #1) (Variable.add_fixed lthy rhs' []));
val u = fold_rev lambda term_params rhs';
val global_rhs = singleton (Variable.polymorphic thy_ctxt) u;
val extra_tfrees =
subtract (op =) (Term.add_tfreesT (Term.fastype_of u) []) (Term.add_tfrees u []);
val mx' = check_mixfix lthy (b, extra_tfrees) mx;
val type_params = map (Logic.mk_type o TFree) extra_tfrees;
in
lthy
|> target_abbrev prmode (b, mx') global_rhs (type_params, term_params)
|> Proof_Context.add_abbrev Print_Mode.internal (b, rhs) |> snd
|> Local_Defs.fixed_abbrev ((b, NoSyn), rhs)
end;
(** theory target primitives **)
fun theory_target_foundation (((b, U), mx), (b_def, rhs)) (type_params, term_params) =
background_foundation (((b, U), mx), (b_def, rhs)) (type_params, term_params)
#-> (fn (lhs, def) => standard_const (op <>) Syntax.mode_default ((b, mx), lhs)
#> pair (lhs, def));
fun theory_target_notes kind global_facts local_facts =
Local_Theory.background_theory (Attrib.global_notes kind global_facts #> snd)
#> standard_notes (op <>) kind local_facts;
fun theory_target_abbrev prmode (b, mx) global_rhs params =
Local_Theory.background_theory_result
(Sign.add_abbrev (#1 prmode) (b, global_rhs) #->
(fn (lhs, _) => (* FIXME type_params!? *)
Sign.notation true prmode [(lhs, check_mixfix_global (b, null (snd params)) mx)] #> pair lhs))
#-> (fn lhs => standard_const (op <>) prmode
((b, if null (snd params) then NoSyn else mx), Term.list_comb (Logic.unvarify_global lhs, snd params)));
(** theory operations **)
fun theory_declaration decl =
background_declaration decl #> standard_declaration (K true) decl;
val theory_registration =
Local_Theory.raw_theory o Context.theory_map ooo Locale.add_registration;
(** locale target primitives **)
fun locale_target_notes locale kind global_facts local_facts =
Local_Theory.background_theory
(Attrib.global_notes kind (Attrib.map_facts (K []) global_facts) #> snd) #>
(fn lthy => lthy |>
Local_Theory.target (fn ctxt => ctxt |>
Locale.add_thmss locale kind (standard_facts lthy ctxt local_facts))) #>
standard_notes (fn (this, other) => other <> 0 andalso this <> other) kind local_facts;
fun locale_target_declaration locale syntax decl lthy = lthy
|> Local_Theory.target (fn ctxt => ctxt |>
Locale.add_declaration locale syntax
(Morphism.transform (Local_Theory.standard_morphism lthy ctxt) decl));
fun locale_target_const locale phi_pred prmode ((b, mx), rhs) =
locale_target_declaration locale true (const_decl phi_pred prmode ((b, mx), rhs))
(** locale operations **)
fun locale_declaration locale {syntax, pervasive} decl =
pervasive ? background_declaration decl
#> locale_target_declaration locale syntax decl
#> standard_declaration (fn (_, other) => other <> 0) decl;
fun locale_const locale prmode ((b, mx), rhs) =
locale_target_const locale (K true) prmode ((b, mx), rhs)
#> standard_const (fn (this, other) => other <> 0 andalso this <> other) prmode ((b, mx), rhs);
fun locale_dependency locale dep_morph mixin export =
(Local_Theory.raw_theory ooo Locale.add_dependency locale) dep_morph mixin export
#> Locale.activate_fragment_nonbrittle dep_morph mixin export;
end;