src/HOL/Tools/lin_arith.ML
author haftmann
Fri, 19 Aug 2022 05:49:09 +0000
changeset 75878 fcd118d9242f
parent 74611 98e7930e6d15
child 75879 24b17460ee60
permissions -rw-r--r--
consolidated attribute name

(*  Title:      HOL/Tools/lin_arith.ML
    Author:     Tjark Weber and Tobias Nipkow, TU Muenchen

HOL setup for linear arithmetic (see Provers/Arith/fast_lin_arith.ML).
*)

signature LIN_ARITH =
sig
  val pre_tac: Proof.context -> int -> tactic
  val simple_tac: Proof.context -> int -> tactic
  val tac: Proof.context -> int -> tactic
  val simproc: Proof.context -> cterm -> thm option
  val add_inj_thms: thm list -> Context.generic -> Context.generic
  val add_lessD: thm -> Context.generic -> Context.generic
  val add_simps: thm list -> Context.generic -> Context.generic
  val add_simprocs: simproc list -> Context.generic -> Context.generic
  val add_inj_const: string * typ -> Context.generic -> Context.generic
  val add_discrete_type: string -> Context.generic -> Context.generic
  val set_number_of: (Proof.context -> typ -> int -> cterm) -> Context.generic -> Context.generic
  val global_setup: theory -> theory
  val init_arith_data: Context.generic -> Context.generic
  val split_limit: int Config.T
  val neq_limit: int Config.T
  val trace: bool Config.T
end;

structure Lin_Arith: LIN_ARITH =
struct

(* Parameters data for general linear arithmetic functor *)

structure LA_Logic: LIN_ARITH_LOGIC =
struct

val ccontr = @{thm ccontr};
val conjI = conjI;
val notI = notI;
val sym = sym;
val trueI = TrueI;
val not_lessD = @{thm linorder_not_less} RS iffD1;
val not_leD = @{thm linorder_not_le} RS iffD1;

fun mk_Eq thm = thm RS @{thm Eq_FalseI} handle THM _ => thm RS @{thm Eq_TrueI};

val mk_Trueprop = HOLogic.mk_Trueprop;

fun atomize thm = case Thm.prop_of thm of
    Const (\<^const_name>\<open>Trueprop\<close>, _) $ (Const (\<^const_name>\<open>HOL.conj\<close>, _) $ _ $ _) =>
    atomize (thm RS conjunct1) @ atomize (thm RS conjunct2)
  | _ => [thm];

fun neg_prop ((TP as Const(\<^const_name>\<open>Trueprop\<close>, _)) $ (Const (\<^const_name>\<open>Not\<close>, _) $ t)) = TP $ t
  | neg_prop ((TP as Const(\<^const_name>\<open>Trueprop\<close>, _)) $ t) = TP $ (HOLogic.Not $t)
  | neg_prop t = raise TERM ("neg_prop", [t]);

fun is_False thm =
  let val _ $ t = Thm.prop_of thm
  in t = \<^term>\<open>False\<close> end;

fun is_nat t = (fastype_of1 t = HOLogic.natT);

fun mk_nat_thm thy t =
  \<^instantiate>\<open>n = \<open>Thm.global_cterm_of thy t\<close> in
    lemma (open) \<open>0 \<le> n\<close> for n :: nat by (rule le0)\<close>;

end;


(* arith context data *)

structure Lin_Arith_Data = Generic_Data
(
  type T = {splits: thm list,
            inj_consts: (string * typ) list,
            discrete: string list};
  val empty = {splits = [], inj_consts = [], discrete = []};
  fun merge
   ({splits = splits1, inj_consts = inj_consts1, discrete = discrete1},
    {splits = splits2, inj_consts = inj_consts2, discrete = discrete2}) : T =
   {splits = Thm.merge_thms (splits1, splits2),
    inj_consts = Library.merge (op =) (inj_consts1, inj_consts2),
    discrete = Library.merge (op =) (discrete1, discrete2)};
);

val get_arith_data = Lin_Arith_Data.get o Context.Proof;

fun get_splits ctxt =
  #splits (get_arith_data ctxt)
  |> map (Thm.transfer' ctxt);

fun add_split thm = Lin_Arith_Data.map (fn {splits, inj_consts, discrete} =>
  {splits = update Thm.eq_thm_prop (Thm.trim_context thm) splits,
   inj_consts = inj_consts, discrete = discrete});

fun add_discrete_type d = Lin_Arith_Data.map (fn {splits, inj_consts, discrete} =>
  {splits = splits, inj_consts = inj_consts,
   discrete = update (op =) d discrete});

fun add_inj_const c = Lin_Arith_Data.map (fn {splits, inj_consts, discrete} =>
  {splits = splits, inj_consts = update (op =) c inj_consts,
   discrete = discrete});

val split_limit = Attrib.setup_config_int \<^binding>\<open>linarith_split_limit\<close> (K 9);
val neq_limit = Attrib.setup_config_int \<^binding>\<open>linarith_neq_limit\<close> (K 9);
val trace = Attrib.setup_config_bool \<^binding>\<open>linarith_trace\<close> (K false);


structure LA_Data: LIN_ARITH_DATA =
struct

val neq_limit = neq_limit;
val trace = trace;


(* Decomposition of terms *)

(*internal representation of linear (in-)equations*)
type decomp =
  ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat * bool);

fun nT (Type ("fun", [N, _])) = (N = HOLogic.natT)
  | nT _                      = false;

fun add_atom (t : term) (m : Rat.rat) (p : (term * Rat.rat) list, i : Rat.rat) :
             (term * Rat.rat) list * Rat.rat =
  case AList.lookup Envir.aeconv p t of
      NONE   => ((t, m) :: p, i)
    | SOME n => (AList.update Envir.aeconv (t, Rat.add n m) p, i);

(* decompose nested multiplications, bracketing them to the right and combining
   all their coefficients

   inj_consts: list of constants to be ignored when encountered
               (e.g. arithmetic type conversions that preserve value)

   m: multiplicity associated with the entire product

   returns either (SOME term, associated multiplicity) or (NONE, constant)
*)
fun of_field_sort thy U = Sign.of_sort thy (U, \<^sort>\<open>inverse\<close>);

fun demult thy (inj_consts : (string * typ) list) : term * Rat.rat -> term option * Rat.rat =
let
  fun demult ((mC as Const (\<^const_name>\<open>Groups.times\<close>, _)) $ s $ t, m) =
      (case s of Const (\<^const_name>\<open>Groups.times\<close>, _) $ s1 $ s2 =>
        (* bracketing to the right: '(s1 * s2) * t' becomes 's1 * (s2 * t)' *)
        demult (mC $ s1 $ (mC $ s2 $ t), m)
      | _ =>
        (* product 's * t', where either factor can be 'NONE' *)
        (case demult (s, m) of
          (SOME s', m') =>
            (case demult (t, m') of
              (SOME t', m'') => (SOME (mC $ s' $ t'), m'')
            | (NONE,    m'') => (SOME s', m''))
        | (NONE,    m') => demult (t, m')))
    | demult (atom as (mC as Const (\<^const_name>\<open>Rings.divide\<close>, T)) $ s $ t, m) =
      (* FIXME: Shouldn't we simplify nested quotients, e.g. '(s/t)/u' could
         become 's/(t*u)', and '(s*t)/u' could become 's*(t/u)' ?   Note that
         if we choose to do so here, the simpset used by arith must be able to
         perform the same simplifications. *)
      (* quotient 's / t', where the denominator t can be NONE *)
      (* Note: will raise Div iff m' is @0 *)
      if of_field_sort thy (domain_type T) then
        let
          val (os',m') = demult (s, m);
          val (ot',p) = demult (t, @1)
        in (case (os',ot') of
            (SOME s', SOME t') => SOME (mC $ s' $ t')
          | (SOME s', NONE) => SOME s'
          | (NONE, SOME t') =>
               SOME (mC $ Const (\<^const_name>\<open>Groups.one\<close>, domain_type (snd (dest_Const mC))) $ t')
          | (NONE, NONE) => NONE,
          Rat.mult m' (Rat.inv p))
        end
      else (SOME atom, m)
    (* terms that evaluate to numeric constants *)
    | demult (Const (\<^const_name>\<open>Groups.uminus\<close>, _) $ t, m) = demult (t, ~ m)
    | demult (Const (\<^const_name>\<open>Groups.zero\<close>, _), _) = (NONE, @0)
    | demult (Const (\<^const_name>\<open>Groups.one\<close>, _), m) = (NONE, m)
    (*Warning: in rare cases (neg_)numeral encloses a non-numeral,
      in which case dest_numeral raises TERM; hence all the handles below.
      Same for Suc-terms that turn out not to be numerals -
      although the simplifier should eliminate those anyway ...*)
    | demult (t as Const ("Num.numeral_class.numeral", _) (*DYNAMIC BINDING!*) $ n, m) =
      ((NONE, Rat.mult m (Rat.of_int (HOLogic.dest_numeral n)))
        handle TERM _ => (SOME t, m))
    | demult (t as Const (\<^const_name>\<open>Suc\<close>, _) $ _, m) =
      ((NONE, Rat.mult m (Rat.of_int (HOLogic.dest_nat t)))
        handle TERM _ => (SOME t, m))
    (* injection constants are ignored *)
    | demult (t as Const f $ x, m) =
      if member (op =) inj_consts f then demult (x, m) else (SOME t, m)
    (* everything else is considered atomic *)
    | demult (atom, m) = (SOME atom, m)
in demult end;

fun decomp0 thy (inj_consts : (string * typ) list) (rel : string, lhs : term, rhs : term) :
            ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat) option =
let
  (* Turns a term 'all' and associated multiplicity 'm' into a list 'p' of
     summands and associated multiplicities, plus a constant 'i' (with implicit
     multiplicity 1) *)
  fun poly (Const (\<^const_name>\<open>Groups.plus\<close>, _) $ s $ t,
        m : Rat.rat, pi : (term * Rat.rat) list * Rat.rat) = poly (s, m, poly (t, m, pi))
    | poly (all as Const (\<^const_name>\<open>Groups.minus\<close>, T) $ s $ t, m, pi) =
        if nT T then add_atom all m pi else poly (s, m, poly (t, ~ m, pi))
    | poly (all as Const (\<^const_name>\<open>Groups.uminus\<close>, T) $ t, m, pi) =
        if nT T then add_atom all m pi else poly (t, ~ m, pi)
    | poly (Const (\<^const_name>\<open>Groups.zero\<close>, _), _, pi) =
        pi
    | poly (Const (\<^const_name>\<open>Groups.one\<close>, _), m, (p, i)) =
        (p, Rat.add i m)
    | poly (all as Const ("Num.numeral_class.numeral", _) (*DYNAMIC BINDING!*) $ t, m, pi as (p, i)) =
        (let val k = HOLogic.dest_numeral t
        in (p, Rat.add i (Rat.mult m (Rat.of_int k))) end
        handle TERM _ => add_atom all m pi)
    | poly (Const (\<^const_name>\<open>Suc\<close>, _) $ t, m, (p, i)) =
        poly (t, m, (p, Rat.add i m))
    | poly (all as Const (\<^const_name>\<open>Groups.times\<close>, _) $ _ $ _, m, pi as (p, i)) =
        (case demult thy inj_consts (all, m) of
           (NONE,   m') => (p, Rat.add i m')
         | (SOME u, m') => add_atom u m' pi)
    | poly (all as Const (\<^const_name>\<open>Rings.divide\<close>, T) $ _ $ _, m, pi as (p, i)) =
        if of_field_sort thy (domain_type T) then 
          (case demult thy inj_consts (all, m) of
             (NONE,   m') => (p, Rat.add i m')
           | (SOME u, m') => add_atom u m' pi)
        else add_atom all m pi
    | poly (all as Const f $ x, m, pi) =
        if member (op =) inj_consts f then poly (x, m, pi) else add_atom all m pi
    | poly (all, m, pi) =
        add_atom all m pi
  val (p, i) = poly (lhs, @1, ([], @0))
  val (q, j) = poly (rhs, @1, ([], @0))
in
  case rel of
    \<^const_name>\<open>Orderings.less\<close>    => SOME (p, i, "<", q, j)
  | \<^const_name>\<open>Orderings.less_eq\<close> => SOME (p, i, "<=", q, j)
  | \<^const_name>\<open>HOL.eq\<close>            => SOME (p, i, "=", q, j)
  | _                   => NONE
end handle General.Div => NONE;

fun of_lin_arith_sort thy U =
  Sign.of_sort thy (U, \<^sort>\<open>Rings.linordered_idom\<close>);

fun allows_lin_arith thy (discrete : string list) (U as Type (D, [])) : bool * bool =
      if of_lin_arith_sort thy U then (true, member (op =) discrete D)
      else if member (op =) discrete D then (true, true) else (false, false)
  | allows_lin_arith sg _ U = (of_lin_arith_sort sg U, false);

fun decomp_typecheck thy (discrete, inj_consts) (T : typ, xxx) : decomp option =
  case T of
    Type ("fun", [U, _]) =>
      (case allows_lin_arith thy discrete U of
        (true, d) =>
          (case decomp0 thy inj_consts xxx of
            NONE                   => NONE
          | SOME (p, i, rel, q, j) => SOME (p, i, rel, q, j, d))
      | (false, _) =>
          NONE)
  | _ => NONE;

fun negate (SOME (x, i, rel, y, j, d)) = SOME (x, i, "~" ^ rel, y, j, d)
  | negate NONE                        = NONE;

fun decomp_negation thy data
      ((Const (\<^const_name>\<open>Trueprop\<close>, _)) $ (Const (rel, T) $ lhs $ rhs)) : decomp option =
      decomp_typecheck thy data (T, (rel, lhs, rhs))
  | decomp_negation thy data
      ((Const (\<^const_name>\<open>Trueprop\<close>, _)) $ (Const (\<^const_name>\<open>Not\<close>, _) $ (Const (rel, T) $ lhs $ rhs))) =
      negate (decomp_typecheck thy data (T, (rel, lhs, rhs)))
  | decomp_negation _ _ _ =
      NONE;

fun decomp ctxt : term -> decomp option =
  let
    val thy = Proof_Context.theory_of ctxt
    val {discrete, inj_consts, ...} = get_arith_data ctxt
  in decomp_negation thy (discrete, inj_consts) end;

fun domain_is_nat (_ $ (Const (_, T) $ _ $ _)) = nT T
  | domain_is_nat (_ $ (Const (\<^const_name>\<open>Not\<close>, _) $ (Const (_, T) $ _ $ _))) = nT T
  | domain_is_nat _ = false;


(* Abstraction of terms *)

(*
  Abstract terms contain only arithmetic operators and relations.

  When constructing an abstract term for an arbitrary term, non-arithmetic sub-terms
  are replaced by fresh variables which are declared in the context. Constructing
  an abstract term from an arbitrary term follows the strategy of decomp.
*)

fun apply t u = t $ u

fun with2 f c t u cx = f t cx ||>> f u |>> (fn (t, u) => c $ t $ u)

fun abstract_atom (t as Free _) cx = (t, cx)
  | abstract_atom (t as Const _) cx = (t, cx)
  | abstract_atom t (cx as (terms, ctxt)) =
      (case AList.lookup Envir.aeconv terms t of
        SOME u => (u, cx)
      | NONE =>
          let
            val (n, ctxt') = yield_singleton Variable.variant_fixes "" ctxt
            val u = Free (n, fastype_of t)
          in (u, ((t, u) :: terms, ctxt')) end)

fun abstract_num t cx = if can HOLogic.dest_number t then (t, cx) else abstract_atom t cx

fun is_field_sort (_, ctxt) T = of_field_sort (Proof_Context.theory_of ctxt) (domain_type T)

fun is_inj_const (_, ctxt) f =
  let val {inj_consts, ...} = get_arith_data ctxt
  in member (op =) inj_consts f end

fun abstract_arith ((c as Const (\<^const_name>\<open>Groups.plus\<close>, _)) $ u1 $ u2) cx =
      with2 abstract_arith c u1 u2 cx
  | abstract_arith (t as (c as Const (\<^const_name>\<open>Groups.minus\<close>, T)) $ u1 $ u2) cx =
      if nT T then abstract_atom t cx else with2 abstract_arith c u1 u2 cx
  | abstract_arith (t as (c as Const (\<^const_name>\<open>Groups.uminus\<close>, T)) $ u) cx =
      if nT T then abstract_atom t cx else abstract_arith u cx |>> apply c
  | abstract_arith ((c as Const (\<^const_name>\<open>Suc\<close>, _)) $ u) cx = abstract_arith u cx |>> apply c
  | abstract_arith ((c as Const (\<^const_name>\<open>Groups.times\<close>, _)) $ u1 $ u2) cx =
      with2 abstract_arith c u1 u2 cx
  | abstract_arith (t as (c as Const (\<^const_name>\<open>Rings.divide\<close>, T)) $ u1 $ u2) cx =
      if is_field_sort cx T then with2 abstract_arith c u1 u2 cx else abstract_atom t cx
  | abstract_arith (t as (c as Const f) $ u) cx =
      if is_inj_const cx f then abstract_arith u cx |>> apply c else abstract_num t cx
  | abstract_arith t cx = abstract_num t cx

fun is_lin_arith_rel \<^const_name>\<open>Orderings.less\<close> = true
  | is_lin_arith_rel \<^const_name>\<open>Orderings.less_eq\<close> = true
  | is_lin_arith_rel \<^const_name>\<open>HOL.eq\<close> = true
  | is_lin_arith_rel _ = false

fun is_lin_arith_type (_, ctxt) T =
  let val {discrete, ...} = get_arith_data ctxt
  in fst (allows_lin_arith (Proof_Context.theory_of ctxt) discrete T) end

fun abstract_rel (t as (r as Const (rel, Type ("fun", [U, _]))) $ lhs $ rhs) cx =
      if is_lin_arith_rel rel andalso is_lin_arith_type cx U then with2 abstract_arith r lhs rhs cx
      else abstract_atom t cx
  | abstract_rel t cx = abstract_atom t cx

fun abstract_neg ((c as Const (\<^const_name>\<open>Not\<close>, _)) $ t) cx = abstract_rel t cx |>> apply c
  | abstract_neg t cx = abstract_rel t cx

fun abstract ((c as Const (\<^const_name>\<open>Trueprop\<close>, _)) $ t) cx = abstract_neg t cx |>> apply c
  | abstract t cx = abstract_atom t cx


(*---------------------------------------------------------------------------*)
(* the following code performs splitting of certain constants (e.g., min,    *)
(* max) in a linear arithmetic problem; similar to what split_tac later does *)
(* to the proof state                                                        *)
(*---------------------------------------------------------------------------*)

(* checks if splitting with 'thm' is implemented                             *)

fun is_split_thm ctxt thm =
  (case Thm.concl_of thm of _ $ (_ $ (_ $ lhs) $ _) =>
    (* Trueprop $ ((op =) $ (?P $ lhs) $ rhs) *)
    (case head_of lhs of
      Const (a, _) =>
        member (op =)
         [\<^const_name>\<open>Orderings.max\<close>,
          \<^const_name>\<open>Orderings.min\<close>,
          \<^const_name>\<open>Groups.abs\<close>,
          \<^const_name>\<open>Groups.minus\<close>,
          "Int.nat" (*DYNAMIC BINDING!*),
          \<^const_name>\<open>Rings.modulo\<close>,
          \<^const_name>\<open>Rings.divide\<close>] a
    | _ =>
      (if Context_Position.is_visible ctxt then
        warning ("Lin. Arith.: wrong format for split rule " ^ Thm.string_of_thm ctxt thm)
       else (); false))
  | _ =>
    (if Context_Position.is_visible ctxt then
      warning ("Lin. Arith.: wrong format for split rule " ^ Thm.string_of_thm ctxt thm)
     else (); false));

(* substitute new for occurrences of old in a term, incrementing bound       *)
(* variables as needed when substituting inside an abstraction               *)

fun subst_term ([] : (term * term) list) (t : term) = t
  | subst_term pairs                     t          =
      (case AList.lookup Envir.aeconv pairs t of
        SOME new =>
          new
      | NONE     =>
          (case t of Abs (a, T, body) =>
            let val pairs' = map (apply2 (incr_boundvars 1)) pairs
            in  Abs (a, T, subst_term pairs' body)  end
          | t1 $ t2 => subst_term pairs t1 $ subst_term pairs t2
          | _ => t));

(* approximates the effect of one application of split_tac (followed by NNF  *)
(* normalization) on the subgoal represented by '(Ts, terms)'; returns a     *)
(* list of new subgoals (each again represented by a typ list for bound      *)
(* variables and a term list for premises), or NONE if split_tac would fail  *)
(* on the subgoal                                                            *)

(* FIXME: currently only the effect of certain split theorems is reproduced  *)
(*        (which is why we need 'is_split_thm').  A more canonical           *)
(*        implementation should analyze the right-hand side of the split     *)
(*        theorem that can be applied, and modify the subgoal accordingly.   *)
(*        Or even better, the splitter should be extended to provide         *)
(*        splitting on terms as well as splitting on theorems (where the     *)
(*        former can have a faster implementation as it does not need to be  *)
(*        proof-producing).                                                  *)

fun split_once_items ctxt (Ts : typ list, terms : term list) :
                     (typ list * term list) list option =
let
  val thy = Proof_Context.theory_of ctxt
  (* takes a list  [t1, ..., tn]  to the term                                *)
  (*   tn' --> ... --> t1' --> False  ,                                      *)
  (* where ti' = HOLogic.dest_Trueprop ti                                    *)
  fun REPEAT_DETERM_etac_rev_mp tms =
    fold (curry HOLogic.mk_imp) (map HOLogic.dest_Trueprop tms) \<^term>\<open>False\<close>
  val split_thms  = filter (is_split_thm ctxt) (get_splits ctxt)
  val cmap        = Splitter.cmap_of_split_thms split_thms
  val goal_tm     = REPEAT_DETERM_etac_rev_mp terms
  val splits      = Splitter.split_posns cmap thy Ts goal_tm
  val split_limit = Config.get ctxt split_limit
in
  if length splits > split_limit then (
    tracing ("linarith_split_limit exceeded (current value is " ^
      string_of_int split_limit ^ ")");
    NONE
  ) else case splits of
    [] =>
    (* split_tac would fail: no possible split *)
    NONE
  | (_, _::_, _, _, _) :: _ =>
    (* disallow a split that involves non-locally bound variables (except    *)
    (* when bound by outermost meta-quantifiers)                             *)
    NONE
  | (_, [], _, split_type, split_term) :: _ =>
    (* ignore all but the first possible split                               *)
    (case strip_comb split_term of
    (* ?P (max ?i ?j) = ((?i <= ?j --> ?P ?j) & (~ ?i <= ?j --> ?P ?i)) *)
      (Const (\<^const_name>\<open>Orderings.max\<close>, _), [t1, t2]) =>
      let
        val rev_terms     = rev terms
        val terms1        = map (subst_term [(split_term, t1)]) rev_terms
        val terms2        = map (subst_term [(split_term, t2)]) rev_terms
        val t1_leq_t2     = Const (\<^const_name>\<open>Orderings.less_eq\<close>,
                                    split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
        val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2
        val not_false     = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1      = (HOLogic.mk_Trueprop t1_leq_t2) :: terms2 @ [not_false]
        val subgoal2      = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms1 @ [not_false]
      in
        SOME [(Ts, subgoal1), (Ts, subgoal2)]
      end
    (* ?P (min ?i ?j) = ((?i <= ?j --> ?P ?i) & (~ ?i <= ?j --> ?P ?j)) *)
    | (Const (\<^const_name>\<open>Orderings.min\<close>, _), [t1, t2]) =>
      let
        val rev_terms     = rev terms
        val terms1        = map (subst_term [(split_term, t1)]) rev_terms
        val terms2        = map (subst_term [(split_term, t2)]) rev_terms
        val t1_leq_t2     = Const (\<^const_name>\<open>Orderings.less_eq\<close>,
                                    split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
        val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2
        val not_false     = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1      = (HOLogic.mk_Trueprop t1_leq_t2) :: terms1 @ [not_false]
        val subgoal2      = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (Ts, subgoal2)]
      end
    (* ?P (abs ?a) = ((0 <= ?a --> ?P ?a) & (?a < 0 --> ?P (- ?a))) *)
    | (Const (\<^const_name>\<open>Groups.abs\<close>, _), [t1]) =>
      let
        val rev_terms   = rev terms
        val terms1      = map (subst_term [(split_term, t1)]) rev_terms
        val terms2      = map (subst_term [(split_term, Const (\<^const_name>\<open>Groups.uminus\<close>,
                            split_type --> split_type) $ t1)]) rev_terms
        val zero        = Const (\<^const_name>\<open>Groups.zero\<close>, split_type)
        val zero_leq_t1 = Const (\<^const_name>\<open>Orderings.less_eq\<close>,
                            split_type --> split_type --> HOLogic.boolT) $ zero $ t1
        val t1_lt_zero  = Const (\<^const_name>\<open>Orderings.less\<close>,
                            split_type --> split_type --> HOLogic.boolT) $ t1 $ zero
        val not_false   = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1    = (HOLogic.mk_Trueprop zero_leq_t1) :: terms1 @ [not_false]
        val subgoal2    = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (Ts, subgoal2)]
      end
    (* ?P (?a - ?b) = ((?a < ?b --> ?P 0) & (ALL d. ?a = ?b + d --> ?P d)) *)
    | (Const (\<^const_name>\<open>Groups.minus\<close>, _), [t1, t2]) =>
      let
        (* "d" in the above theorem becomes a new bound variable after NNF   *)
        (* transformation, therefore some adjustment of indices is necessary *)
        val rev_terms       = rev terms
        val zero            = Const (\<^const_name>\<open>Groups.zero\<close>, split_type)
        val d               = Bound 0
        val terms1          = map (subst_term [(split_term, zero)]) rev_terms
        val terms2          = map (subst_term [(incr_boundvars 1 split_term, d)])
                                (map (incr_boundvars 1) rev_terms)
        val t1'             = incr_boundvars 1 t1
        val t2'             = incr_boundvars 1 t2
        val t1_lt_t2        = Const (\<^const_name>\<open>Orderings.less\<close>,
                                split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
        val t1_eq_t2_plus_d = Const (\<^const_name>\<open>HOL.eq\<close>, split_type --> split_type --> HOLogic.boolT) $ t1' $
                                (Const (\<^const_name>\<open>Groups.plus\<close>,
                                  split_type --> split_type --> split_type) $ t2' $ d)
        val not_false       = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1        = (HOLogic.mk_Trueprop t1_lt_t2) :: terms1 @ [not_false]
        val subgoal2        = (HOLogic.mk_Trueprop t1_eq_t2_plus_d) :: terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (split_type :: Ts, subgoal2)]
      end
    (* ?P (nat ?i) = ((ALL n. ?i = of_nat n --> ?P n) & (?i < 0 --> ?P 0)) *)
    | (Const ("Int.nat", _), (*DYNAMIC BINDING!*) [t1]) =>
      let
        val rev_terms   = rev terms
        val zero_int    = Const (\<^const_name>\<open>Groups.zero\<close>, HOLogic.intT)
        val zero_nat    = Const (\<^const_name>\<open>Groups.zero\<close>, HOLogic.natT)
        val n           = Bound 0
        val terms1      = map (subst_term [(incr_boundvars 1 split_term, n)])
                            (map (incr_boundvars 1) rev_terms)
        val terms2      = map (subst_term [(split_term, zero_nat)]) rev_terms
        val t1'         = incr_boundvars 1 t1
        val t1_eq_nat_n = Const (\<^const_name>\<open>HOL.eq\<close>, HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1' $
                            (Const (\<^const_name>\<open>of_nat\<close>, HOLogic.natT --> HOLogic.intT) $ n)
        val t1_lt_zero  = Const (\<^const_name>\<open>Orderings.less\<close>,
                            HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1 $ zero_int
        val not_false   = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1    = (HOLogic.mk_Trueprop t1_eq_nat_n) :: terms1 @ [not_false]
        val subgoal2    = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false]
      in
        SOME [(HOLogic.natT :: Ts, subgoal1), (Ts, subgoal2)]
      end
    (* ?P ((?n::nat) mod (numeral ?k)) =
         ((numeral ?k = 0 --> ?P ?n) & (~ (numeral ?k = 0) -->
           (ALL i j. j < numeral ?k --> ?n = numeral ?k * i + j --> ?P j))) *)
    | (Const (\<^const_name>\<open>Rings.modulo\<close>, Type ("fun", [\<^typ>\<open>nat\<close>, _])), [t1, t2]) =>
      let
        val rev_terms               = rev terms
        val zero                    = Const (\<^const_name>\<open>Groups.zero\<close>, split_type)
        val i                       = Bound 1
        val j                       = Bound 0
        val terms1                  = map (subst_term [(split_term, t1)]) rev_terms
        val terms2                  = map (subst_term [(incr_boundvars 2 split_term, j)])
                                        (map (incr_boundvars 2) rev_terms)
        val t1'                     = incr_boundvars 2 t1
        val t2'                     = incr_boundvars 2 t2
        val t2_eq_zero              = Const (\<^const_name>\<open>HOL.eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
        val t2_neq_zero             = HOLogic.mk_not (Const (\<^const_name>\<open>HOL.eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero)
        val j_lt_t2                 = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
        val t1_eq_t2_times_i_plus_j = Const (\<^const_name>\<open>HOL.eq\<close>, split_type --> split_type --> HOLogic.boolT) $ t1' $
                                       (Const (\<^const_name>\<open>Groups.plus\<close>, split_type --> split_type --> split_type) $
                                         (Const (\<^const_name>\<open>Groups.times\<close>,
                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
        val subgoal2                = (map HOLogic.mk_Trueprop
                                        [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j])
                                          @ terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)]
      end
    (* ?P ((?n::nat) div (numeral ?k)) =
         ((numeral ?k = 0 --> ?P 0) & (~ (numeral ?k = 0) -->
           (ALL i j. j < numeral ?k --> ?n = numeral ?k * i + j --> ?P i))) *)
    | (Const (\<^const_name>\<open>Rings.divide\<close>, Type ("fun", [\<^typ>\<open>nat\<close>, _])), [t1, t2]) =>
      let
        val rev_terms               = rev terms
        val zero                    = Const (\<^const_name>\<open>Groups.zero\<close>, split_type)
        val i                       = Bound 1
        val j                       = Bound 0
        val terms1                  = map (subst_term [(split_term, zero)]) rev_terms
        val terms2                  = map (subst_term [(incr_boundvars 2 split_term, i)])
                                        (map (incr_boundvars 2) rev_terms)
        val t1'                     = incr_boundvars 2 t1
        val t2'                     = incr_boundvars 2 t2
        val t2_eq_zero              = Const (\<^const_name>\<open>HOL.eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
        val t2_neq_zero             = HOLogic.mk_not (Const (\<^const_name>\<open>HOL.eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero)
        val j_lt_t2                 = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
        val t1_eq_t2_times_i_plus_j = Const (\<^const_name>\<open>HOL.eq\<close>, split_type --> split_type --> HOLogic.boolT) $ t1' $
                                       (Const (\<^const_name>\<open>Groups.plus\<close>, split_type --> split_type --> split_type) $
                                         (Const (\<^const_name>\<open>Groups.times\<close>,
                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
        val subgoal2                = (map HOLogic.mk_Trueprop
                                        [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j])
                                          @ terms2 @ [not_false]
      in
        SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)]
      end
    (* ?P ((?n::int) mod (numeral ?k)) =
         ((numeral ?k = 0 --> ?P ?n) &
          (0 < numeral ?k -->
            (ALL i j.
              0 <= j & j < numeral ?k & ?n = numeral ?k * i + j --> ?P j)) &
          (numeral ?k < 0 -->
            (ALL i j.
              numeral ?k < j & j <= 0 & ?n = numeral ?k * i + j --> ?P j))) *)
    | (Const (\<^const_name>\<open>Rings.modulo\<close>,
        Type ("fun", [Type ("Int.int", []), _])), (*DYNAMIC BINDING!*) [t1, t2]) =>
      let
        val rev_terms               = rev terms
        val zero                    = Const (\<^const_name>\<open>Groups.zero\<close>, split_type)
        val i                       = Bound 1
        val j                       = Bound 0
        val terms1                  = map (subst_term [(split_term, t1)]) rev_terms
        val terms2_3                = map (subst_term [(incr_boundvars 2 split_term, j)])
                                        (map (incr_boundvars 2) rev_terms)
        val t1'                     = incr_boundvars 2 t1
        val t2'                     = incr_boundvars 2 t2
        val t2_eq_zero              = Const (\<^const_name>\<open>HOL.eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
        val zero_lt_t2              = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ zero $ t2'
        val t2_lt_zero              = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero
        val zero_leq_j              = Const (\<^const_name>\<open>Orderings.less_eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ zero $ j
        val j_leq_zero              = Const (\<^const_name>\<open>Orderings.less_eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ j $ zero
        val j_lt_t2                 = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
        val t2_lt_j                 = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type--> HOLogic.boolT) $ t2' $ j
        val t1_eq_t2_times_i_plus_j = Const (\<^const_name>\<open>HOL.eq\<close>, split_type --> split_type --> HOLogic.boolT) $ t1' $
                                       (Const (\<^const_name>\<open>Groups.plus\<close>, split_type --> split_type --> split_type) $
                                         (Const (\<^const_name>\<open>Groups.times\<close>,
                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
        val subgoal2                = (map HOLogic.mk_Trueprop [zero_lt_t2, zero_leq_j])
                                        @ hd terms2_3
                                        :: (if tl terms2_3 = [] then [not_false] else [])
                                        @ (map HOLogic.mk_Trueprop [j_lt_t2, t1_eq_t2_times_i_plus_j])
                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
        val subgoal3                = (map HOLogic.mk_Trueprop [t2_lt_zero, t2_lt_j])
                                        @ hd terms2_3
                                        :: (if tl terms2_3 = [] then [not_false] else [])
                                        @ (map HOLogic.mk_Trueprop [j_leq_zero, t1_eq_t2_times_i_plus_j])
                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
        val Ts'                     = split_type :: split_type :: Ts
      in
        SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)]
      end
    (* ?P ((?n::int) div (numeral ?k)) =
         ((numeral ?k = 0 --> ?P 0) &
          (0 < numeral ?k -->
            (ALL i j.
              0 <= j & j < numeral ?k & ?n = numeral ?k * i + j --> ?P i)) &
          (numeral ?k < 0 -->
            (ALL i j.
              numeral ?k < j & j <= 0 & ?n = numeral ?k * i + j --> ?P i))) *)
    | (Const (\<^const_name>\<open>Rings.divide\<close>,
        Type ("fun", [Type ("Int.int", []), _])), (*DYNAMIC BINDING!*) [t1, t2]) =>
      let
        val rev_terms               = rev terms
        val zero                    = Const (\<^const_name>\<open>Groups.zero\<close>, split_type)
        val i                       = Bound 1
        val j                       = Bound 0
        val terms1                  = map (subst_term [(split_term, zero)]) rev_terms
        val terms2_3                = map (subst_term [(incr_boundvars 2 split_term, i)])
                                        (map (incr_boundvars 2) rev_terms)
        val t1'                     = incr_boundvars 2 t1
        val t2'                     = incr_boundvars 2 t2
        val t2_eq_zero              = Const (\<^const_name>\<open>HOL.eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
        val zero_lt_t2              = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ zero $ t2'
        val t2_lt_zero              = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero
        val zero_leq_j              = Const (\<^const_name>\<open>Orderings.less_eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ zero $ j
        val j_leq_zero              = Const (\<^const_name>\<open>Orderings.less_eq\<close>,
                                        split_type --> split_type --> HOLogic.boolT) $ j $ zero
        val j_lt_t2                 = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
        val t2_lt_j                 = Const (\<^const_name>\<open>Orderings.less\<close>,
                                        split_type --> split_type--> HOLogic.boolT) $ t2' $ j
        val t1_eq_t2_times_i_plus_j = Const (\<^const_name>\<open>HOL.eq\<close>, split_type --> split_type --> HOLogic.boolT) $ t1' $
                                       (Const (\<^const_name>\<open>Groups.plus\<close>, split_type --> split_type --> split_type) $
                                         (Const (\<^const_name>\<open>Groups.times\<close>,
                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ \<^term>\<open>False\<close>)
        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
        val subgoal2                = (map HOLogic.mk_Trueprop [zero_lt_t2, zero_leq_j])
                                        @ hd terms2_3
                                        :: (if tl terms2_3 = [] then [not_false] else [])
                                        @ (map HOLogic.mk_Trueprop [j_lt_t2, t1_eq_t2_times_i_plus_j])
                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
        val subgoal3                = (map HOLogic.mk_Trueprop [t2_lt_zero, t2_lt_j])
                                        @ hd terms2_3
                                        :: (if tl terms2_3 = [] then [not_false] else [])
                                        @ (map HOLogic.mk_Trueprop [j_leq_zero, t1_eq_t2_times_i_plus_j])
                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
        val Ts'                     = split_type :: split_type :: Ts
      in
        SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)]
      end
    (* this will only happen if a split theorem can be applied for which no  *)
    (* code exists above -- in which case either the split theorem should be *)
    (* implemented above, or 'is_split_thm' should be modified to filter it  *)
    (* out                                                                   *)
    | (t, ts) =>
      (if Context_Position.is_visible ctxt then
        warning ("Lin. Arith.: split rule for " ^ Syntax.string_of_term ctxt t ^
          " (with " ^ string_of_int (length ts) ^
          " argument(s)) not implemented; proof reconstruction is likely to fail")
       else (); NONE))
end;  (* split_once_items *)

(* remove terms that do not satisfy 'p'; change the order of the remaining   *)
(* terms in the same way as filter_prems_tac does                            *)

fun filter_prems_tac_items (p : term -> bool) (terms : term list) : term list =
  let
    fun filter_prems t (left, right) =
      if p t then (left, right @ [t]) else (left @ right, [])
    val (left, right) = fold filter_prems terms ([], [])
  in
    right @ left
  end;

(* return true iff TRY (etac notE) THEN eq_assume_tac would succeed on a     *)
(* subgoal that has 'terms' as premises                                      *)

fun negated_term_occurs_positively (terms : term list) : bool =
  exists
    (fn (Trueprop $ (Const (\<^const_name>\<open>Not\<close>, _) $ t)) =>
      member Envir.aeconv terms (Trueprop $ t)
      | _ => false)
    terms;

fun pre_decomp ctxt (Ts : typ list, terms : term list) : (typ list * term list) list =
  let
    (* repeatedly split (including newly emerging subgoals) until no further   *)
    (* splitting is possible                                                   *)
    fun split_loop ([] : (typ list * term list) list) = ([] : (typ list * term list) list)
      | split_loop (subgoal::subgoals) =
          (case split_once_items ctxt subgoal of
            SOME new_subgoals => split_loop (new_subgoals @ subgoals)
          | NONE => subgoal :: split_loop subgoals)
    fun is_relevant t  = is_some (decomp ctxt t)
    (* filter_prems_tac is_relevant: *)
    val relevant_terms = filter_prems_tac_items is_relevant terms
    (* split_tac, NNF normalization: *)
    val split_goals = split_loop [(Ts, relevant_terms)]
    (* necessary because split_once_tac may normalize terms: *)
    val beta_eta_norm = map (apsnd (map (Envir.eta_contract o Envir.beta_norm)))
      split_goals
    (* TRY (etac notE) THEN eq_assume_tac: *)
    val result = filter_out (negated_term_occurs_positively o snd) beta_eta_norm
  in
    result
  end;

(* takes the i-th subgoal  [| A1; ...; An |] ==> B  to                       *)
(* An --> ... --> A1 --> B,  performs splitting with the given 'split_thms'  *)
(* (resulting in a different subgoal P), takes  P  to  ~P ==> False,         *)
(* performs NNF-normalization of ~P, and eliminates conjunctions,            *)
(* disjunctions and existential quantifiers from the premises, possibly (in  *)
(* the case of disjunctions) resulting in several new subgoals, each of the  *)
(* general form  [| Q1; ...; Qm |] ==> False.  Fails if more than            *)
(* !split_limit splits are possible.                              *)

local
  fun nnf_simpset ctxt =
    (empty_simpset ctxt
      |> Simplifier.set_mkeqTrue mk_eq_True
      |> Simplifier.set_mksimps (mksimps mksimps_pairs))
    addsimps [@{thm imp_conv_disj}, @{thm iff_conv_conj_imp}, @{thm de_Morgan_disj},
      @{thm de_Morgan_conj}, not_all, not_ex, not_not]
  fun prem_nnf_tac ctxt = full_simp_tac (nnf_simpset ctxt)
in

fun split_once_tac ctxt split_thms =
  let
    val thy = Proof_Context.theory_of ctxt
    val cond_split_tac = SUBGOAL (fn (subgoal, i) =>
      let
        val Ts = rev (map snd (Logic.strip_params subgoal))
        val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl subgoal)
        val cmap = Splitter.cmap_of_split_thms split_thms
        val splits = Splitter.split_posns cmap thy Ts concl
      in
        if null splits orelse length splits > Config.get ctxt split_limit then
          no_tac
        else if null (#2 (hd splits)) then
          split_tac ctxt split_thms i
        else
          (* disallow a split that involves non-locally bound variables      *)
          (* (except when bound by outermost meta-quantifiers)               *)
          no_tac
      end)
  in
    EVERY' [
      REPEAT_DETERM o eresolve_tac ctxt [rev_mp],
      cond_split_tac,
      resolve_tac ctxt @{thms ccontr},
      prem_nnf_tac ctxt,
      TRY o REPEAT_ALL_NEW
        (DETERM o (eresolve_tac ctxt [conjE, exE] ORELSE' eresolve_tac ctxt [disjE]))
    ]
  end;

end;  (* local *)

(* remove irrelevant premises, then split the i-th subgoal (and all new      *)
(* subgoals) by using 'split_once_tac' repeatedly.  Beta-eta-normalize new   *)
(* subgoals and finally attempt to solve them by finding an immediate        *)
(* contradiction (i.e., a term and its negation) in their premises.          *)

fun pre_tac ctxt i =
  let
    val split_thms = filter (is_split_thm ctxt) (get_splits ctxt)
    fun is_relevant t = is_some (decomp ctxt t)
  in
    DETERM (
      TRY (filter_prems_tac ctxt is_relevant i)
        THEN (
          (TRY o REPEAT_ALL_NEW (split_once_tac ctxt split_thms))
            THEN_ALL_NEW
              (CONVERSION Drule.beta_eta_conversion
                THEN'
              (TRY o (eresolve_tac ctxt [notE] THEN' eq_assume_tac)))
        ) i
    )
  end;

end;  (* LA_Data *)


val pre_tac = LA_Data.pre_tac;

structure Fast_Arith = Fast_Lin_Arith(structure LA_Logic = LA_Logic and LA_Data = LA_Data);

val add_inj_thms = Fast_Arith.add_inj_thms;
val add_lessD = Fast_Arith.add_lessD;
val add_simps = Fast_Arith.add_simps;
val add_simprocs = Fast_Arith.add_simprocs;
val set_number_of = Fast_Arith.set_number_of;

val simple_tac = Fast_Arith.lin_arith_tac;

(* reduce contradictory <= to False.
   Most of the work is done by the cancel tactics. *)

val init_arith_data =
  Fast_Arith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, number_of, ...} =>
   {add_mono_thms =
      map Thm.trim_context @{thms add_mono_thms_linordered_semiring add_mono_thms_linordered_field}
        @ add_mono_thms,
    mult_mono_thms =
      map Thm.trim_context
        (@{thms mult_strict_left_mono mult_left_mono} @
          [@{lemma "a = b ==> c * a = c * b" by (rule arg_cong)}]) @ mult_mono_thms,
    inj_thms = inj_thms,
    lessD = lessD,
    neqE = map Thm.trim_context @{thms linorder_neqE_nat linorder_neqE_linordered_idom} @ neqE,
    simpset =
      put_simpset HOL_basic_ss \<^context> |> Simplifier.add_cong @{thm if_weak_cong} |> simpset_of,
    number_of = number_of});

(* FIXME !?? *)
fun add_arith_facts ctxt =
  Simplifier.add_prems (rev (Named_Theorems.get ctxt \<^named_theorems>\<open>arith\<close>)) ctxt;

val simproc = add_arith_facts #> Fast_Arith.lin_arith_simproc;


(* generic refutation procedure *)

(* parameters:

   test: term -> bool
   tests if a term is at all relevant to the refutation proof;
   if not, then it can be discarded. Can improve performance,
   esp. if disjunctions can be discarded (no case distinction needed!).

   prep_tac: int -> tactic
   A preparation tactic to be applied to the goal once all relevant premises
   have been moved to the conclusion.

   ref_tac: int -> tactic
   the actual refutation tactic. Should be able to deal with goals
   [| A1; ...; An |] ==> False
   where the Ai are atomic, i.e. no top-level &, | or EX
*)

local
  fun nnf_simpset ctxt =
    (empty_simpset ctxt
      |> Simplifier.set_mkeqTrue mk_eq_True
      |> Simplifier.set_mksimps (mksimps mksimps_pairs))
    addsimps [@{thm imp_conv_disj}, @{thm iff_conv_conj_imp}, @{thm de_Morgan_disj},
      @{thm de_Morgan_conj}, @{thm not_all}, @{thm not_ex}, @{thm not_not}];
  fun prem_nnf_tac ctxt = full_simp_tac (nnf_simpset ctxt);
in

fun refute_tac ctxt test prep_tac ref_tac =
  let val refute_prems_tac =
        REPEAT_DETERM
              (eresolve_tac ctxt [@{thm conjE}, @{thm exE}] 1 ORELSE
               filter_prems_tac ctxt test 1 ORELSE
               eresolve_tac ctxt @{thms disjE} 1) THEN
        (DETERM (eresolve_tac ctxt @{thms notE} 1 THEN eq_assume_tac 1) ORELSE
         ref_tac 1);
  in EVERY'[TRY o filter_prems_tac ctxt test,
            REPEAT_DETERM o eresolve_tac ctxt @{thms rev_mp}, prep_tac,
              resolve_tac ctxt @{thms ccontr}, prem_nnf_tac ctxt,
            SELECT_GOAL (DEPTH_SOLVE refute_prems_tac)]
  end;

end;


(* arith proof method *)

local

fun raw_tac ctxt =
  (* FIXME: K true should be replaced by a sensible test (perhaps "is_some o
     decomp sg"? -- but note that the test is applied to terms already before
     they are split/normalized) to speed things up in case there are lots of
     irrelevant terms involved; elimination of min/max can be optimized:
     (max m n + k <= r) = (m+k <= r & n+k <= r)
     (l <= min m n + k) = (l <= m+k & l <= n+k)
  *)
  refute_tac ctxt (K true)
    (* Splitting is also done inside simple_tac, but not completely --    *)
    (* split_tac may use split theorems that have not been implemented in *)
    (* simple_tac (cf. pre_decomp and split_once_items above), and        *)
    (* split_limit may trigger.                                           *)
    (* Therefore splitting outside of simple_tac may allow us to prove    *)
    (* some goals that simple_tac alone would fail on.                    *)
    (REPEAT_DETERM o split_tac ctxt (get_splits ctxt))
    (Fast_Arith.lin_arith_tac ctxt);

in

fun tac ctxt =
  FIRST' [simple_tac ctxt,
    Object_Logic.full_atomize_tac ctxt THEN'
    (REPEAT_DETERM o resolve_tac ctxt [impI]) THEN' raw_tac ctxt];

end;


(* context setup *)

val global_setup =
  map_theory_simpset (fn ctxt => ctxt
    addSolver (mk_solver "lin_arith" (add_arith_facts #> Fast_Arith.prems_lin_arith_tac))) #>
  Attrib.setup \<^binding>\<open>linarith_split\<close> (Scan.succeed (Thm.declaration_attribute add_split))
    "declaration of split rules for arithmetic procedure" #>
  Method.setup \<^binding>\<open>linarith\<close>
    (Scan.succeed (fn ctxt =>
      METHOD (fn facts =>
        HEADGOAL
          (Method.insert_tac ctxt
            (rev (Named_Theorems.get ctxt \<^named_theorems>\<open>arith\<close>) @ facts)
          THEN' tac ctxt)))) "linear arithmetic" #>
  Arith_Data.add_tactic "linear arithmetic" tac;

end;