src/ZF/Datatype.ML
author wenzelm
Fri, 01 Dec 2000 19:39:54 +0100
changeset 10562 fcd29e58c40c
parent 9000 c20d58286a51
child 12134 7049eead7a50
permissions -rw-r--r--
option -m;

(*  Title:      ZF/Datatype.ML
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

(Co)Datatype Definitions for Zermelo-Fraenkel Set Theory
*)


(*Typechecking rules for most datatypes involving univ*)
structure Data_Arg =
  struct
  val intrs = 
      [SigmaI, InlI, InrI,
       Pair_in_univ, Inl_in_univ, Inr_in_univ, 
       zero_in_univ, A_into_univ, nat_into_univ, UnCI];


  val elims = [make_elim InlD, make_elim InrD,   (*for mutual recursion*)
	       SigmaE, sumE];			 (*allows * and + in spec*)
  end;


structure Data_Package = 
    Add_datatype_def_Fun
      (structure Fp=Lfp and Pr=Standard_Prod and CP=Standard_CP
       and Su=Standard_Sum
       and Ind_Package = Ind_Package
       and Datatype_Arg = Data_Arg);


(*Typechecking rules for most codatatypes involving quniv*)
structure CoData_Arg =
  struct
  val intrs = 
      [QSigmaI, QInlI, QInrI,
       QPair_in_quniv, QInl_in_quniv, QInr_in_quniv, 
       zero_in_quniv, A_into_quniv, nat_into_quniv, UnCI];

  val elims = [make_elim QInlD, make_elim QInrD,   (*for mutual recursion*)
	       QSigmaE, qsumE];			   (*allows * and + in spec*)
  end;

structure CoData_Package = 
    Add_datatype_def_Fun(structure Fp=Gfp and Pr=Quine_Prod and CP=Quine_CP
                          and Su=Quine_Sum
			  and Ind_Package = CoInd_Package
			  and Datatype_Arg = CoData_Arg);



(*Simproc for freeness reasoning: compare datatype constructors for equality*)
structure DataFree =
struct
  (*prove while suppressing timing information*)
  fun prove ct = setmp Library.timing false (prove_goalw_cterm [] ct);

  val trace = ref false;

  fun mk_new ([],[]) = Const("True",FOLogic.oT)
    | mk_new (largs,rargs) =
	fold_bal FOLogic.mk_conj
		 (map FOLogic.mk_eq (ListPair.zip (largs,rargs)));


 fun proc sg _ old =
   let val _ = if !trace then writeln ("data_free: OLD = " ^ 
				       string_of_cterm (cterm_of sg old))
	       else ()
       val (lhs,rhs) = FOLogic.dest_eq old
       val (lhead, largs) = strip_comb lhs
       and (rhead, rargs) = strip_comb rhs
       val lname = #1 (dest_Const lhead)
       and rname = #1 (dest_Const rhead)
       val lcon_info = the (Symtab.lookup (ConstructorsData.get_sg sg, lname))
       and rcon_info = the (Symtab.lookup (ConstructorsData.get_sg sg, rname))
       val new = 
	   if #big_rec_name lcon_info = #big_rec_name rcon_info 
	       andalso not (null (#free_iffs lcon_info)) then
	       if lname = rname then mk_new (largs, rargs)
	       else Const("False",FOLogic.oT)
	   else raise Match
       val _ = if !trace then 
		 writeln ("NEW = " ^ string_of_cterm (Thm.cterm_of sg new))
	       else ()
       val ct = Thm.cterm_of sg (Logic.mk_equals (old, new))
       val thm = prove ct 
		   (fn _ => [rtac iff_reflection 1,
			     simp_tac (simpset_of Datatype.thy
  				          addsimps #free_iffs lcon_info) 1])
	 handle ERROR =>
	 error("data_free simproc:\nfailed to prove " ^
	       string_of_cterm ct)
   in Some thm end
   handle _ => None;


 val conv = 
     Simplifier.mk_simproc "data_free"
       [Thm.read_cterm (sign_of ZF.thy) ("(x::i) = y", FOLogic.oT)]
       proc;
end;


Addsimprocs [DataFree.conv];