(* Title: Tools/Code/code_thingol.ML
Author: Florian Haftmann, TU Muenchen
Intermediate language ("Thin-gol") representing executable code.
Representation and translation.
*)
infix 8 `%%;
infix 4 `$;
infix 4 `$$;
infixr 3 `->;
infixr 3 `|=>;
infixr 3 `|==>;
signature BASIC_CODE_THINGOL =
sig
type vname = string;
datatype dict =
Dict of (class * class) list * plain_dict
and plain_dict =
Dict_Const of (string * class) * dict list list
| Dict_Var of { var: vname, index: int, length: int, class: class, unique: bool };
datatype itype =
`%% of string * itype list
| ITyVar of vname;
type const = { sym: Code_Symbol.T, typargs: itype list, dicts: dict list list,
dom: itype list, annotation: itype option };
datatype iterm =
IConst of const
| IVar of vname option
| `$ of iterm * iterm
| `|=> of (vname option * itype) * iterm
| ICase of { term: iterm, typ: itype, clauses: (iterm * iterm) list, primitive: iterm };
val `-> : itype * itype -> itype;
val `$$ : iterm * iterm list -> iterm;
val `|==> : (vname option * itype) list * iterm -> iterm;
type typscheme = (vname * sort) list * itype;
end;
signature CODE_THINGOL =
sig
include BASIC_CODE_THINGOL
val unfoldl: ('a -> ('a * 'b) option) -> 'a -> 'a * 'b list
val unfoldr: ('a -> ('b * 'a) option) -> 'a -> 'b list * 'a
val unfold_fun: itype -> itype list * itype
val unfold_fun_n: int -> itype -> itype list * itype
val unfold_app: iterm -> iterm * iterm list
val unfold_abs: iterm -> (vname option * itype) list * iterm
val split_let: iterm -> (((iterm * itype) * iterm) * iterm) option
val split_let_no_pat: iterm -> (((string option * itype) * iterm) * iterm) option
val unfold_let: iterm -> ((iterm * itype) * iterm) list * iterm
val unfold_let_no_pat: iterm -> ((string option * itype) * iterm) list * iterm
val split_pat_abs: iterm -> ((iterm * itype) * iterm) option
val unfold_pat_abs: iterm -> (iterm * itype) list * iterm
val unfold_const_app: iterm -> (const * iterm list) option
val map_terms_bottom_up: (iterm -> iterm) -> iterm -> iterm
val is_IVar: iterm -> bool
val is_IAbs: iterm -> bool
val eta_expand: int -> const * iterm list -> iterm
val contains_dict_var: iterm -> bool
val unambiguous_dictss: dict list list -> bool
val add_constsyms: iterm -> Code_Symbol.T list -> Code_Symbol.T list
val add_tyconames: iterm -> string list -> string list
val fold_varnames: (string -> 'a -> 'a) -> iterm -> 'a -> 'a
datatype stmt =
NoStmt
| Fun of (typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option
| Datatype of vname list *
((string * vname list (*type argument wrt. canonical order*)) * itype list) list
| Datatypecons of string
| Class of vname * ((class * class) list * (string * itype) list)
| Classrel of class * class
| Classparam of class
| Classinst of { class: string, tyco: string, vs: (vname * sort) list,
superinsts: (class * dict list list) list,
inst_params: ((string * (const * int)) * (thm * bool)) list,
superinst_params: ((string * (const * int)) * (thm * bool)) list };
type program = stmt Code_Symbol.Graph.T
val unimplemented: program -> string list
val implemented_deps: program -> string list
val map_terms_stmt: (iterm -> iterm) -> stmt -> stmt
val is_constr: program -> Code_Symbol.T -> bool
val is_case: stmt -> bool
val group_stmts: Proof.context -> program
-> ((Code_Symbol.T * stmt) list * (Code_Symbol.T * stmt) list
* ((Code_Symbol.T * stmt) list * (Code_Symbol.T * stmt) list)) list
val read_const_exprs: Proof.context -> string list -> string list
val consts_program: Proof.context -> string list -> program
val dynamic_conv: Proof.context -> (program
-> typscheme * iterm -> Code_Symbol.T list -> conv)
-> conv
val dynamic_value: Proof.context -> ((term -> term) -> 'a -> 'a) -> (program
-> term -> typscheme * iterm -> Code_Symbol.T list -> 'a)
-> term -> 'a
val static_conv_thingol: { ctxt: Proof.context, consts: string list }
-> ({ program: program, deps: string list }
-> Proof.context -> typscheme * iterm -> Code_Symbol.T list -> conv)
-> Proof.context -> conv
val static_conv_isa: { ctxt: Proof.context, consts: string list }
-> (program -> Proof.context -> term -> conv)
-> Proof.context -> conv
val static_value: { ctxt: Proof.context, lift_postproc: ((term -> term) -> 'a -> 'a), consts: string list }
-> ({ program: program, deps: string list }
-> Proof.context -> term -> typscheme * iterm -> Code_Symbol.T list -> 'a)
-> Proof.context -> term -> 'a
end;
structure Code_Thingol : CODE_THINGOL =
struct
open Basic_Code_Symbol;
(** auxiliary **)
fun unfoldl dest x =
case dest x
of NONE => (x, [])
| SOME (x1, x2) =>
let val (x', xs') = unfoldl dest x1 in (x', xs' @ [x2]) end;
fun unfoldr dest x =
case dest x
of NONE => ([], x)
| SOME (x1, x2) =>
let val (xs', x') = unfoldr dest x2 in (x1 :: xs', x') end;
(** language core - types, terms **)
type vname = string;
datatype dict =
Dict of (class * class) list * plain_dict
and plain_dict =
Dict_Const of (string * class) * dict list list
| Dict_Var of { var: vname, index: int, length: int, class: class, unique: bool };
datatype itype =
`%% of string * itype list
| ITyVar of vname;
fun ty1 `-> ty2 = "fun" `%% [ty1, ty2];
val unfold_fun = unfoldr
(fn "fun" `%% [ty1, ty2] => SOME (ty1, ty2)
| _ => NONE);
fun unfold_fun_n n ty =
let
val (tys1, ty1) = unfold_fun ty;
val (tys3, tys2) = chop n tys1;
val ty3 = Library.foldr (op `->) (tys2, ty1);
in (tys3, ty3) end;
type const = { sym: Code_Symbol.T, typargs: itype list, dicts: dict list list,
dom: itype list, annotation: itype option };
datatype iterm =
IConst of const
| IVar of vname option
| `$ of iterm * iterm
| `|=> of (vname option * itype) * iterm
| ICase of { term: iterm, typ: itype, clauses: (iterm * iterm) list, primitive: iterm };
(*see also signature*)
fun is_IVar (IVar _) = true
| is_IVar _ = false;
fun is_IAbs (_ `|=> _) = true
| is_IAbs _ = false;
val op `$$ = Library.foldl (op `$);
val op `|==> = Library.foldr (op `|=>);
val unfold_app = unfoldl
(fn op `$ t => SOME t
| _ => NONE);
val unfold_abs = unfoldr
(fn op `|=> t => SOME t
| _ => NONE);
val split_let =
(fn ICase { term = t, typ = ty, clauses = [(p, body)], ... } => SOME (((p, ty), t), body)
| _ => NONE);
val split_let_no_pat =
(fn ICase { term = t, typ = ty, clauses = [(IVar v, body)], ... } => SOME (((v, ty), t), body)
| _ => NONE);
val unfold_let = unfoldr split_let;
val unfold_let_no_pat = unfoldr split_let_no_pat;
fun unfold_const_app t =
case unfold_app t
of (IConst c, ts) => SOME (c, ts)
| _ => NONE;
fun fold_constexprs f =
let
fun fold' (IConst c) = f c
| fold' (IVar _) = I
| fold' (t1 `$ t2) = fold' t1 #> fold' t2
| fold' (_ `|=> t) = fold' t
| fold' (ICase { term = t, clauses = clauses, ... }) = fold' t
#> fold (fn (p, body) => fold' p #> fold' body) clauses
in fold' end;
val add_constsyms = fold_constexprs (fn { sym, ... } => insert (op =) sym);
fun add_tycos (tyco `%% tys) = insert (op =) tyco #> fold add_tycos tys
| add_tycos (ITyVar _) = I;
val add_tyconames = fold_constexprs (fn { typargs = tys, ... } => fold add_tycos tys);
fun fold_varnames f =
let
fun fold_aux add_vars f =
let
fun fold_term _ (IConst _) = I
| fold_term vs (IVar (SOME v)) = if member (op =) vs v then I else f v
| fold_term _ (IVar NONE) = I
| fold_term vs (t1 `$ t2) = fold_term vs t1 #> fold_term vs t2
| fold_term vs ((SOME v, _) `|=> t) = fold_term (insert (op =) v vs) t
| fold_term vs ((NONE, _) `|=> t) = fold_term vs t
| fold_term vs (ICase { term = t, clauses = clauses, ... }) =
fold_term vs t #> fold (fold_clause vs) clauses
and fold_clause vs (p, t) = fold_term (add_vars p vs) t;
in fold_term [] end
fun add_vars t = fold_aux add_vars (insert (op =)) t;
in fold_aux add_vars f end;
fun exists_var t v = fold_varnames (fn w => fn b => v = w orelse b) t false;
fun split_pat_abs ((NONE, ty) `|=> t) = SOME ((IVar NONE, ty), t)
| split_pat_abs ((SOME v, ty) `|=> t) = SOME (case t
of ICase { term = IVar (SOME w), clauses = [(p, body)], ... } =>
if v = w andalso (exists_var p v orelse not (exists_var body v))
then ((p, ty), body)
else ((IVar (SOME v), ty), t)
| _ => ((IVar (SOME v), ty), t))
| split_pat_abs _ = NONE;
val unfold_pat_abs = unfoldr split_pat_abs;
fun unfold_abs_eta [] t = ([], t)
| unfold_abs_eta (_ :: tys) (v_ty `|=> t) =
let
val (vs_tys, t') = unfold_abs_eta tys t;
in (v_ty :: vs_tys, t') end
| unfold_abs_eta tys t =
let
val ctxt = fold_varnames Name.declare t Name.context;
val vs_tys = (map o apfst) SOME (Name.invent_names ctxt "a" tys);
in (vs_tys, t `$$ map (IVar o fst) vs_tys) end;
fun eta_expand k (const as { dom = tys, ... }, ts) =
let
val j = length ts;
val l = k - j;
val _ = if l > length tys
then error "Impossible eta-expansion" else ();
val vars = (fold o fold_varnames) Name.declare ts Name.context;
val vs_tys = (map o apfst) SOME
(Name.invent_names vars "a" ((take l o drop j) tys));
in vs_tys `|==> IConst const `$$ ts @ map (IVar o fst) vs_tys end;
fun map_terms_bottom_up f (t as IConst _) = f t
| map_terms_bottom_up f (t as IVar _) = f t
| map_terms_bottom_up f (t1 `$ t2) = f
(map_terms_bottom_up f t1 `$ map_terms_bottom_up f t2)
| map_terms_bottom_up f ((v, ty) `|=> t) = f
((v, ty) `|=> map_terms_bottom_up f t)
| map_terms_bottom_up f (ICase { term = t, typ = ty, clauses = clauses, primitive = t0 }) = f
(ICase { term = map_terms_bottom_up f t, typ = ty,
clauses = (map o apply2) (map_terms_bottom_up f) clauses,
primitive = map_terms_bottom_up f t0 });
fun exists_dict_var f (Dict (_, d)) = exists_plain_dict_var_pred f d
and exists_plain_dict_var_pred f (Dict_Const (_, dss)) = exists_dictss_var f dss
| exists_plain_dict_var_pred f (Dict_Var x) = f x
and exists_dictss_var f dss = (exists o exists) (exists_dict_var f) dss;
fun contains_dict_var (IConst { dicts = dss, ... }) = exists_dictss_var (K true) dss
| contains_dict_var (IVar _) = false
| contains_dict_var (t1 `$ t2) = contains_dict_var t1 orelse contains_dict_var t2
| contains_dict_var (_ `|=> t) = contains_dict_var t
| contains_dict_var (ICase { primitive = t, ... }) = contains_dict_var t;
val unambiguous_dictss = not o exists_dictss_var (fn { unique, ... } => not unique);
(** statements, abstract programs **)
type typscheme = (vname * sort) list * itype;
datatype stmt =
NoStmt
| Fun of (typscheme * ((iterm list * iterm) * (thm option * bool)) list) * thm option
| Datatype of vname list * ((string * vname list) * itype list) list
| Datatypecons of string
| Class of vname * ((class * class) list * (string * itype) list)
| Classrel of class * class
| Classparam of class
| Classinst of { class: string, tyco: string, vs: (vname * sort) list,
superinsts: (class * dict list list) list,
inst_params: ((string * (const * int)) * (thm * bool)) list,
superinst_params: ((string * (const * int)) * (thm * bool)) list };
type program = stmt Code_Symbol.Graph.T;
fun unimplemented program =
Code_Symbol.Graph.fold (fn (Constant c, (NoStmt, _)) => cons c | _ => I) program [];
fun implemented_deps program =
Code_Symbol.Graph.keys program
|> subtract (op =) (Code_Symbol.Graph.all_preds program (map Constant (unimplemented program)))
|> map_filter (fn Constant c => SOME c | _ => NONE);
fun map_classparam_instances_as_term f =
(map o apfst o apsnd o apfst) (fn const => case f (IConst const) of IConst const' => const')
fun map_terms_stmt f NoStmt = NoStmt
| map_terms_stmt f (Fun ((tysm, eqs), case_cong)) = Fun ((tysm, (map o apfst)
(fn (ts, t) => (map f ts, f t)) eqs), case_cong)
| map_terms_stmt f (stmt as Datatype _) = stmt
| map_terms_stmt f (stmt as Datatypecons _) = stmt
| map_terms_stmt f (stmt as Class _) = stmt
| map_terms_stmt f (stmt as Classrel _) = stmt
| map_terms_stmt f (stmt as Classparam _) = stmt
| map_terms_stmt f (Classinst { class, tyco, vs, superinsts,
inst_params, superinst_params }) =
Classinst { class = class, tyco = tyco, vs = vs, superinsts = superinsts,
inst_params = map_classparam_instances_as_term f inst_params,
superinst_params = map_classparam_instances_as_term f superinst_params };
fun is_constr program sym = case Code_Symbol.Graph.get_node program sym
of Datatypecons _ => true
| _ => false;
fun is_case (Fun (_, SOME _)) = true
| is_case _ = false;
fun linear_stmts program =
rev (Code_Symbol.Graph.strong_conn program)
|> map (AList.make (Code_Symbol.Graph.get_node program));
fun group_stmts ctxt program =
let
fun is_fun (_, Fun _) = true | is_fun _ = false;
fun is_datatypecons (_, Datatypecons _) = true | is_datatypecons _ = false;
fun is_datatype (_, Datatype _) = true | is_datatype _ = false;
fun is_class (_, Class _) = true | is_class _ = false;
fun is_classrel (_, Classrel _) = true | is_classrel _ = false;
fun is_classparam (_, Classparam _) = true | is_classparam _ = false;
fun is_classinst (_, Classinst _) = true | is_classinst _ = false;
fun group stmts =
if forall (is_datatypecons orf is_datatype) stmts
then (filter is_datatype stmts, [], ([], []))
else if forall (is_class orf is_classrel orf is_classparam) stmts
then ([], filter is_class stmts, ([], []))
else if forall (is_fun orf is_classinst) stmts
then ([], [], List.partition is_fun stmts)
else error ("Illegal mutual dependencies: " ^ (commas
o map (Code_Symbol.quote ctxt o fst)) stmts);
in
linear_stmts program
|> map group
end;
(** translation kernel **)
(* generic mechanisms *)
fun ensure_stmt symbolize generate x (deps, program) =
let
val sym = symbolize x;
val add_dep = case deps of [] => I
| dep :: _ => Code_Symbol.Graph.add_edge (dep, sym);
in
if can (Code_Symbol.Graph.get_node program) sym
then
program
|> add_dep
|> pair deps
|> pair x
else
program
|> Code_Symbol.Graph.default_node (sym, NoStmt)
|> add_dep
|> curry generate (sym :: deps)
||> snd
|-> (fn stmt => (Code_Symbol.Graph.map_node sym) (K stmt))
|> pair deps
|> pair x
end;
exception PERMISSIVE of unit;
fun translation_error ctxt permissive some_thm deps msg sub_msg =
if permissive
then raise PERMISSIVE ()
else
let
val thm_msg =
Option.map (fn thm => "in code equation " ^ Thm.string_of_thm ctxt thm) some_thm;
val dep_msg = if null (tl deps) then NONE
else SOME ("with dependency "
^ space_implode " -> " (map (Code_Symbol.quote ctxt) (rev deps)));
val thm_dep_msg = case (thm_msg, dep_msg)
of (SOME thm_msg, SOME dep_msg) => "\n(" ^ thm_msg ^ ",\n" ^ dep_msg ^ ")"
| (SOME thm_msg, NONE) => "\n(" ^ thm_msg ^ ")"
| (NONE, SOME dep_msg) => "\n(" ^ dep_msg ^ ")"
| (NONE, NONE) => ""
in error (msg ^ thm_dep_msg ^ ":\n" ^ sub_msg) end;
fun maybe_permissive f prgrm =
f prgrm |>> SOME handle PERMISSIVE () => (NONE, prgrm);
fun not_wellsorted ctxt permissive some_thm deps ty sort e =
let
val err_class = Sorts.class_error (Context.Proof ctxt) e;
val err_typ =
"Type " ^ Syntax.string_of_typ ctxt ty ^ " not of sort " ^
Syntax.string_of_sort ctxt sort;
in
translation_error ctxt permissive some_thm deps
"Wellsortedness error" (err_typ ^ "\n" ^ err_class)
end;
(* inference of type annotations for disambiguation with type classes *)
fun mk_tagged_type (true, T) = Type ("", [T])
| mk_tagged_type (false, T) = T;
fun dest_tagged_type (Type ("", [T])) = (true, T)
| dest_tagged_type T = (false, T);
val untag_term = map_types (snd o dest_tagged_type);
fun tag_term (proj_sort, _) eqngr =
let
val has_sort_constraints = exists (not o null) o map proj_sort o Code_Preproc.sortargs eqngr;
fun tag (Const (_, T')) (Const (c, T)) =
Const (c,
mk_tagged_type (not (null (Term.add_tvarsT T' [])) andalso has_sort_constraints c, T))
| tag (t1 $ u1) (t $ u) = tag t1 t $ tag u1 u
| tag (Abs (_, _, t1)) (Abs (x, T, t)) = Abs (x, T, tag t1 t)
| tag (Free _) (t as Free _) = t
| tag (Var _) (t as Var _) = t
| tag (Bound _) (t as Bound _) = t;
in tag end
fun annotate ctxt algbr eqngr (c, ty) args rhs =
let
val erase = map_types (fn _ => Type_Infer.anyT []);
val reinfer = singleton (Type_Infer_Context.infer_types ctxt);
val lhs = list_comb (Const (c, ty), map (map_types Type.strip_sorts o fst) args);
val reinferred_rhs = snd (Logic.dest_equals (reinfer (Logic.mk_equals (lhs, erase rhs))));
in tag_term algbr eqngr reinferred_rhs rhs end
fun annotate_eqns ctxt algbr eqngr (c, ty) eqns =
let
val ctxt' = ctxt |> Proof_Context.theory_of |> Proof_Context.init_global
|> Config.put Type_Infer_Context.const_sorts false;
(*avoid spurious fixed variables: there is no eigen context for equations*)
in
map (apfst (fn (args, (rhs, some_abs)) => (args,
(annotate ctxt' algbr eqngr (c, ty) args rhs, some_abs)))) eqns
end;
(* abstract dictionary construction *)
datatype typarg_witness =
Weakening of (class * class) list * plain_typarg_witness
and plain_typarg_witness =
Global of (string * class) * typarg_witness list list
| Local of { var: string, index: int, sort: sort, unique: bool };
fun brand_unique unique (w as Global _) = w
| brand_unique unique (Local { var, index, sort, unique = _ }) =
Local { var = var, index = index, sort = sort, unique = unique };
fun construct_dictionaries ctxt (proj_sort, algebra) permissive some_thm (ty, sort) (deps, program) =
let
fun class_relation unique (Weakening (classrels, x), sub_class) super_class =
Weakening ((sub_class, super_class) :: classrels, brand_unique unique x);
fun type_constructor (tyco, _) dss class =
Weakening ([], Global ((tyco, class), (map o map) fst dss));
fun type_variable (TFree (v, sort)) =
let
val sort' = proj_sort sort;
in map_index (fn (n, class) => (Weakening ([], Local
{ var = v, index = n, sort = sort', unique = true }), class)) sort'
end;
val typarg_witnesses = Sorts.of_sort_derivation algebra
{class_relation = fn _ => fn unique =>
Sorts.classrel_derivation algebra (class_relation unique),
type_constructor = type_constructor,
type_variable = type_variable} (ty, proj_sort sort)
handle Sorts.CLASS_ERROR e => not_wellsorted ctxt permissive some_thm deps ty sort e;
in (typarg_witnesses, (deps, program)) end;
(* translation *)
fun ensure_tyco ctxt algbr eqngr permissive tyco =
let
val thy = Proof_Context.theory_of ctxt;
val ((vs, cos), _) = Code.get_type thy tyco;
val stmt_datatype =
fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs
#>> map fst
##>> fold_map (fn (c, (vs, tys)) =>
ensure_const ctxt algbr eqngr permissive c
##>> pair (map (unprefix "'" o fst) vs)
##>> fold_map (translate_typ ctxt algbr eqngr permissive) tys) cos
#>> Datatype;
in ensure_stmt Type_Constructor stmt_datatype tyco end
and ensure_const ctxt algbr eqngr permissive c =
let
val thy = Proof_Context.theory_of ctxt;
fun stmt_datatypecons tyco =
ensure_tyco ctxt algbr eqngr permissive tyco
#>> Datatypecons;
fun stmt_classparam class =
ensure_class ctxt algbr eqngr permissive class
#>> Classparam;
fun stmt_fun cert = case Code.equations_of_cert thy cert
of (_, NONE) => pair NoStmt
| ((vs, ty), SOME eqns) =>
let
val eqns' = annotate_eqns ctxt algbr eqngr (c, ty) eqns
val some_case_cong = Code.get_case_cong thy c;
in
fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs
##>> translate_typ ctxt algbr eqngr permissive ty
##>> translate_eqns ctxt algbr eqngr permissive eqns'
#>>
(fn (_, NONE) => NoStmt
| (tyscm, SOME eqns) => Fun ((tyscm, eqns), some_case_cong))
end;
val stmt_const = case Code.get_type_of_constr_or_abstr thy c
of SOME (tyco, _) => stmt_datatypecons tyco
| NONE => (case Axclass.class_of_param thy c
of SOME class => stmt_classparam class
| NONE => stmt_fun (Code_Preproc.cert eqngr c))
in ensure_stmt Constant stmt_const c end
and ensure_class ctxt (algbr as (_, algebra)) eqngr permissive class =
let
val thy = Proof_Context.theory_of ctxt;
val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
val cs = #params (Axclass.get_info thy class);
val stmt_class =
fold_map (fn super_class =>
ensure_classrel ctxt algbr eqngr permissive (class, super_class)) super_classes
##>> fold_map (fn (c, ty) => ensure_const ctxt algbr eqngr permissive c
##>> translate_typ ctxt algbr eqngr permissive ty) cs
#>> (fn info => Class (unprefix "'" Name.aT, info))
in ensure_stmt Type_Class stmt_class class end
and ensure_classrel ctxt algbr eqngr permissive (sub_class, super_class) =
let
val stmt_classrel =
ensure_class ctxt algbr eqngr permissive sub_class
##>> ensure_class ctxt algbr eqngr permissive super_class
#>> Classrel;
in ensure_stmt Class_Relation stmt_classrel (sub_class, super_class) end
and ensure_inst ctxt (algbr as (_, algebra)) eqngr permissive (tyco, class) =
let
val thy = Proof_Context.theory_of ctxt;
val super_classes = (Sorts.minimize_sort algebra o Sorts.super_classes algebra) class;
val these_class_params = these o try (#params o Axclass.get_info thy);
val class_params = these_class_params class;
val superclass_params = maps these_class_params
((Sorts.complete_sort algebra o Sorts.super_classes algebra) class);
val vs = Name.invent_names Name.context "'a" (Sorts.mg_domain algebra tyco [class]);
val sorts' = Sorts.mg_domain (Sign.classes_of thy) tyco [class];
val vs' = map2 (fn (v, sort1) => fn sort2 => (v,
Sorts.inter_sort (Sign.classes_of thy) (sort1, sort2))) vs sorts';
val arity_typ = Type (tyco, map TFree vs);
val arity_typ' = Type (tyco, map (fn (v, sort) => TVar ((v, 0), sort)) vs');
fun translate_super_instance super_class =
ensure_class ctxt algbr eqngr permissive super_class
##>> translate_dicts ctxt algbr eqngr permissive NONE (arity_typ, [super_class])
#>> (fn (super_class, [Dict ([], Dict_Const (_, dss))]) => (super_class, dss));
fun translate_classparam_instance (c, ty) =
let
val raw_const = Const (c, map_type_tfree (K arity_typ') ty);
val dom_length = length (fst (strip_type ty))
val thm = Axclass.unoverload_conv ctxt (Thm.cterm_of ctxt raw_const);
val const = (apsnd Logic.unvarifyT_global o dest_Const o snd
o Logic.dest_equals o Thm.prop_of) thm;
in
ensure_const ctxt algbr eqngr permissive c
##>> translate_const ctxt algbr eqngr permissive (SOME thm) (const, NONE)
#>> (fn (c, IConst const') => ((c, (const', dom_length)), (thm, true)))
end;
val stmt_inst =
ensure_class ctxt algbr eqngr permissive class
##>> ensure_tyco ctxt algbr eqngr permissive tyco
##>> fold_map (translate_tyvar_sort ctxt algbr eqngr permissive) vs
##>> fold_map translate_super_instance super_classes
##>> fold_map translate_classparam_instance class_params
##>> fold_map translate_classparam_instance superclass_params
#>> (fn (((((class, tyco), vs), superinsts), inst_params), superinst_params) =>
Classinst { class = class, tyco = tyco, vs = vs,
superinsts = superinsts, inst_params = inst_params, superinst_params = superinst_params });
in ensure_stmt Class_Instance stmt_inst (tyco, class) end
and translate_typ ctxt algbr eqngr permissive (TFree (v, _)) =
pair (ITyVar (unprefix "'" v))
| translate_typ ctxt algbr eqngr permissive (Type (tyco, tys)) =
ensure_tyco ctxt algbr eqngr permissive tyco
##>> fold_map (translate_typ ctxt algbr eqngr permissive) tys
#>> (fn (tyco, tys) => tyco `%% tys)
and translate_term ctxt algbr eqngr permissive some_thm (Const (c, ty), some_abs) =
translate_app ctxt algbr eqngr permissive some_thm (((c, ty), []), some_abs)
| translate_term ctxt algbr eqngr permissive some_thm (Free (v, _), some_abs) =
pair (IVar (SOME v))
| translate_term ctxt algbr eqngr permissive some_thm (Abs (v, ty, t), some_abs) =
let
val ((v', _), t') = Term.dest_abs_global (Abs (Name.desymbolize (SOME false) v, ty, t));
val v'' = if Term.used_free v' t' then SOME v' else NONE
in
translate_typ ctxt algbr eqngr permissive ty
##>> translate_term ctxt algbr eqngr permissive some_thm (t', some_abs)
#>> (fn (ty, t) => (v'', ty) `|=> t)
end
| translate_term ctxt algbr eqngr permissive some_thm (t as _ $ _, some_abs) =
case strip_comb t
of (Const (c, ty), ts) =>
translate_app ctxt algbr eqngr permissive some_thm (((c, ty), ts), some_abs)
| (t', ts) =>
translate_term ctxt algbr eqngr permissive some_thm (t', some_abs)
##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts
#>> (fn (t, ts) => t `$$ ts)
and translate_eqn ctxt algbr eqngr permissive ((args, (rhs, some_abs)), (some_thm, proper)) =
fold_map (translate_term ctxt algbr eqngr permissive some_thm) args
##>> translate_term ctxt algbr eqngr permissive some_thm (rhs, some_abs)
#>> rpair (some_thm, proper)
and translate_eqns ctxt algbr eqngr permissive eqns =
maybe_permissive (fold_map (translate_eqn ctxt algbr eqngr permissive) eqns)
and translate_const ctxt algbr eqngr permissive some_thm ((c, ty), some_abs) (deps, program) =
let
val thy = Proof_Context.theory_of ctxt;
val _ = if (case some_abs of NONE => true | SOME abs => not (c = abs))
andalso Code.is_abstr thy c
then translation_error ctxt permissive some_thm deps
"Abstraction violation" ("constant " ^ Code.string_of_const thy c)
else ()
in translate_const_proper ctxt algbr eqngr permissive some_thm (c, ty) (deps, program) end
and translate_const_proper ctxt algbr eqngr permissive some_thm (c, ty) =
let
val thy = Proof_Context.theory_of ctxt;
val (annotate, ty') = dest_tagged_type ty;
val typargs = Sign.const_typargs thy (c, ty');
val sorts = Code_Preproc.sortargs eqngr c;
val (dom, range) = Term.strip_type ty';
in
ensure_const ctxt algbr eqngr permissive c
##>> fold_map (translate_typ ctxt algbr eqngr permissive) typargs
##>> fold_map (translate_dicts ctxt algbr eqngr permissive some_thm) (typargs ~~ sorts)
##>> fold_map (translate_typ ctxt algbr eqngr permissive) (ty' :: dom)
#>> (fn (((c, typargs), dss), annotation :: dom) =>
IConst { sym = Constant c, typargs = typargs, dicts = dss,
dom = dom, annotation =
if annotate then SOME annotation else NONE })
end
and translate_app_const ctxt algbr eqngr permissive some_thm ((c_ty, ts), some_abs) =
translate_const ctxt algbr eqngr permissive some_thm (c_ty, some_abs)
##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts
#>> (fn (t, ts) => t `$$ ts)
and translate_case ctxt algbr eqngr permissive some_thm (t_pos, case_pats) (c_ty, ts) =
let
val thy = Proof_Context.theory_of ctxt;
val ty = nth (binder_types (snd c_ty)) t_pos;
fun mk_constr NONE _ = NONE
| mk_constr (SOME c) t =
let
val n = Code.args_number thy c;
in SOME ((c, (take n o binder_types o fastype_of o untag_term) t ---> ty), n) end;
val constrs =
if null case_pats then []
else map_filter I (map2 mk_constr case_pats (nth_drop t_pos ts));
fun disjunctive_varnames ts =
let
val vs = (fold o fold_varnames) (insert (op =)) ts [];
in fn pat => null (inter (op =) vs (fold_varnames (insert (op =)) pat [])) end;
fun purge_unused_vars_in t =
let
val vs = fold_varnames (insert (op =)) t [];
in
map_terms_bottom_up (fn IVar (SOME v) =>
IVar (if member (op =) vs v then SOME v else NONE) | t => t)
end;
fun collapse_clause vs_map ts body =
case body
of IConst { sym = Constant c, ... } => if Code.is_undefined thy c
then []
else [(ts, body)]
| ICase { term = IVar (SOME v), clauses = clauses, ... } =>
if forall (fn (pat', body') => exists_var pat' v
orelse not (exists_var body' v)) clauses
andalso forall (disjunctive_varnames ts o fst) clauses
then case AList.lookup (op =) vs_map v
of SOME i => maps (fn (pat', body') =>
collapse_clause (AList.delete (op =) v vs_map)
(nth_map i (K pat') ts |> map (purge_unused_vars_in body')) body') clauses
| NONE => [(ts, body)]
else [(ts, body)]
| _ => [(ts, body)];
fun mk_clause mk tys t =
let
val (vs, body) = unfold_abs_eta tys t;
val vs_map = fold_index (fn (i, (SOME v, _)) => cons (v, i) | _ => I) vs [];
val ts = map (IVar o fst) vs;
in map mk (collapse_clause vs_map ts body) end;
fun casify constrs ty t_app ts =
let
val t = nth ts t_pos;
val ts_clause = ts |> nth_drop t_pos |> curry (op ~~) case_pats
|> map_filter (fn (NONE, _) => NONE | (SOME _, t) => SOME t);
val clauses = if null case_pats
then mk_clause (fn ([t], body) => (t, body)) [ty] (the_single ts_clause)
else maps (fn ((constr as IConst { dom = tys, ... }, n), t) =>
mk_clause (fn (ts, body) => (constr `$$ ts, body)) (take n tys) t)
(constrs ~~ ts_clause);
in ICase { term = t, typ = ty, clauses = clauses, primitive = t_app `$$ ts } end;
in
translate_const ctxt algbr eqngr permissive some_thm (c_ty, NONE)
##>> fold_map (fn (constr, n) => translate_const ctxt algbr eqngr permissive some_thm (constr, NONE)
#>> rpair n) constrs
##>> translate_typ ctxt algbr eqngr permissive ty
##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) ts
#>> (fn (((t, constrs), ty), ts) =>
casify constrs ty t ts)
end
and translate_app_case ctxt algbr eqngr permissive some_thm (num_args, pattern_schema) ((c, ty), ts) =
if length ts < num_args then
let
val k = length ts;
val tys = (take (num_args - k) o drop k o fst o strip_type) ty;
val names = Name.build_context (ts |> (fold o fold_aterms) Term.declare_term_frees);
val vs = Name.invent_names names "a" tys;
in
fold_map (translate_typ ctxt algbr eqngr permissive) tys
##>> translate_case ctxt algbr eqngr permissive some_thm pattern_schema ((c, ty), ts @ map Free vs)
#>> (fn (tys, t) => map2 (fn (v, _) => pair (SOME v)) vs tys `|==> t)
end
else if length ts > num_args then
translate_case ctxt algbr eqngr permissive some_thm pattern_schema ((c, ty), take num_args ts)
##>> fold_map (translate_term ctxt algbr eqngr permissive some_thm o rpair NONE) (drop num_args ts)
#>> (fn (t, ts) => t `$$ ts)
else
translate_case ctxt algbr eqngr permissive some_thm pattern_schema ((c, ty), ts)
and translate_app ctxt algbr eqngr permissive some_thm (c_ty_ts as ((c, _), _), some_abs) =
case Code.get_case_schema (Proof_Context.theory_of ctxt) c
of SOME case_schema => translate_app_case ctxt algbr eqngr permissive some_thm case_schema c_ty_ts
| NONE => translate_app_const ctxt algbr eqngr permissive some_thm (c_ty_ts, some_abs)
and translate_tyvar_sort ctxt (algbr as (proj_sort, _)) eqngr permissive (v, sort) =
fold_map (ensure_class ctxt algbr eqngr permissive) (proj_sort sort)
#>> (fn sort => (unprefix "'" v, sort))
and translate_dicts ctxt algbr eqngr permissive some_thm (ty, sort) =
let
fun mk_dict (Weakening (classrels, d)) =
fold_map (ensure_classrel ctxt algbr eqngr permissive) classrels
##>> mk_plain_dict d
#>> Dict
and mk_plain_dict (Global (inst, dss)) =
ensure_inst ctxt algbr eqngr permissive inst
##>> (fold_map o fold_map) mk_dict dss
#>> Dict_Const
| mk_plain_dict (Local { var, index, sort, unique }) =
ensure_class ctxt algbr eqngr permissive (nth sort index)
#>> (fn class => Dict_Var { var = unprefix "'" var, index = index,
length = length sort, class = class, unique = unique })
in
construct_dictionaries ctxt algbr permissive some_thm (ty, sort)
#-> (fn typarg_witnesses => fold_map mk_dict typarg_witnesses)
end;
(* store *)
structure Program = Code_Data
(
type T = program;
val empty = Code_Symbol.Graph.empty;
);
fun invoke_generation ignore_cache ctxt generate thing =
Program.change_yield
(if ignore_cache then NONE else SOME (Proof_Context.theory_of ctxt))
(fn program => ([], program)
|> generate thing
|-> (fn thing => fn (_, program) => (thing, program)));
(* program generation *)
fun check_abstract_constructors thy consts =
case filter (Code.is_abstr thy) consts of
[] => ()
| abstrs => error ("Cannot export abstract constructor(s): "
^ commas (map (Code.string_of_const thy) abstrs));
fun invoke_generation_for_consts ctxt { ignore_cache, permissive } { algebra, eqngr } consts =
let
val thy = Proof_Context.theory_of ctxt;
val _ = if permissive then ()
else check_abstract_constructors thy consts;
in
Code_Preproc.timed "translating program" #ctxt
(fn { ctxt, algebra, eqngr, consts } => invoke_generation ignore_cache ctxt
(fold_map (ensure_const ctxt algebra eqngr permissive)) consts)
{ ctxt = ctxt, algebra = algebra, eqngr = eqngr, consts = consts }
end;
fun invoke_generation_for_consts' ctxt ignore_cache_and_permissive consts =
invoke_generation_for_consts ctxt
{ ignore_cache = ignore_cache_and_permissive, permissive = ignore_cache_and_permissive }
(Code_Preproc.obtain ignore_cache_and_permissive
{ ctxt = ctxt, consts = consts, terms = []}) consts
|> snd;
fun invoke_generation_for_consts'' ctxt algebra_eqngr =
invoke_generation_for_consts ctxt
{ ignore_cache = true, permissive = false }
algebra_eqngr
#> (fn (deps, program) => { deps = deps, program = program });
fun consts_program_permissive ctxt =
invoke_generation_for_consts' ctxt true;
fun consts_program ctxt consts =
let
fun project program = Code_Symbol.Graph.restrict
(member (op =) (Code_Symbol.Graph.all_succs program
(map Constant consts))) program;
in
invoke_generation_for_consts' ctxt false consts
|> project
end;
(* value evaluation *)
fun ensure_value ctxt algbr eqngr t =
let
val ty = fastype_of t;
val vs = fold_term_types (K (fold_atyps (insert (eq_fst op =)
o dest_TFree))) t [];
val t' = annotate ctxt algbr eqngr (\<^const_name>\<open>Pure.dummy_pattern\<close>, ty) [] t;
val dummy_constant = Constant \<^const_name>\<open>Pure.dummy_pattern\<close>;
val stmt_value =
fold_map (translate_tyvar_sort ctxt algbr eqngr false) vs
##>> translate_typ ctxt algbr eqngr false ty
##>> translate_term ctxt algbr eqngr false NONE (t', NONE)
#>> (fn ((vs, ty), t) => Fun
(((vs, ty), [(([], t), (NONE, true))]), NONE));
fun term_value (_, program1) =
let
val Fun ((vs_ty, [(([], t), _)]), _) =
Code_Symbol.Graph.get_node program1 dummy_constant;
val deps' = Code_Symbol.Graph.immediate_succs program1 dummy_constant;
val program2 = Code_Symbol.Graph.del_node dummy_constant program1;
val deps_all = Code_Symbol.Graph.all_succs program2 deps';
val program3 = Code_Symbol.Graph.restrict (member (op =) deps_all) program2;
in ((program3, ((vs_ty, t), deps')), (deps', program2)) end;
in
ensure_stmt Constant stmt_value \<^const_name>\<open>Pure.dummy_pattern\<close>
#> snd
#> term_value
end;
fun dynamic_evaluation comp ctxt algebra eqngr t =
let
val ((program, (vs_ty_t', deps)), _) =
Code_Preproc.timed "translating term" #ctxt
(fn { ctxt, algebra, eqngr, t } =>
invoke_generation false ctxt (ensure_value ctxt algebra eqngr) t)
{ ctxt = ctxt, algebra = algebra, eqngr = eqngr, t = t };
in comp program t vs_ty_t' deps end;
fun dynamic_conv ctxt conv =
Code_Preproc.dynamic_conv ctxt
(dynamic_evaluation (fn program => fn _ => conv program) ctxt);
fun dynamic_value ctxt postproc comp =
Code_Preproc.dynamic_value ctxt postproc
(dynamic_evaluation comp ctxt);
fun static_evaluation ctxt consts algebra_eqngr static_eval =
static_eval (invoke_generation_for_consts'' ctxt algebra_eqngr consts);
fun static_evaluation_thingol ctxt consts (algebra_eqngr as { algebra, eqngr }) static_eval =
let
fun evaluation program dynamic_eval ctxt t =
let
val ((_, ((vs_ty', t'), deps)), _) =
Code_Preproc.timed "translating term" #ctxt
(fn { ctxt, t } =>
ensure_value ctxt algebra eqngr t ([], program))
{ ctxt = ctxt, t = t };
in dynamic_eval ctxt t (vs_ty', t') deps end;
in
static_evaluation ctxt consts algebra_eqngr (fn program_deps =>
evaluation (#program program_deps) (static_eval program_deps))
end;
fun static_evaluation_isa ctxt consts algebra_eqngr static_eval =
static_evaluation ctxt consts algebra_eqngr (fn program_deps =>
(static_eval (#program program_deps)));
fun static_conv_thingol (ctxt_consts as { ctxt, consts }) conv =
Code_Preproc.static_conv ctxt_consts (fn algebra_eqngr =>
static_evaluation_thingol ctxt consts algebra_eqngr
(fn program_deps =>
let
val static_conv = conv program_deps;
in
fn ctxt => fn _ => fn vs_ty => fn deps => static_conv ctxt vs_ty deps
end));
fun static_conv_isa (ctxt_consts as { ctxt, consts }) conv =
Code_Preproc.static_conv ctxt_consts (fn algebra_eqngr =>
static_evaluation_isa ctxt consts algebra_eqngr conv);
fun static_value (ctxt_postproc_consts as { ctxt, consts, ... }) comp =
Code_Preproc.static_value ctxt_postproc_consts (fn algebra_eqngr =>
static_evaluation_thingol ctxt consts algebra_eqngr comp);
(** constant expressions **)
fun read_const_exprs_internal ctxt =
let
val thy = Proof_Context.theory_of ctxt;
fun this_theory name =
if Context.theory_name thy = name then thy
else Context.get_theory {long = false} thy name;
fun consts_of thy' =
fold (fn (c, (_, NONE)) => cons c | _ => I)
(#constants (Consts.dest (Sign.consts_of thy'))) []
|> filter_out (Code.is_abstr thy);
fun belongs_here thy' c = forall
(fn thy'' => not (Sign.declared_const thy'' c)) (Theory.parents_of thy');
fun consts_of_select thy' = filter (belongs_here thy') (consts_of thy');
fun read_const_expr str =
(case Syntax.parse_input ctxt (K NONE) (K Markup.empty) (SOME o Symbol_Pos.implode o #1) str of
SOME "_" => ([], consts_of thy)
| SOME s =>
(case try (unsuffix "._") s of
SOME name => ([], consts_of_select (this_theory name))
| NONE => ([Code.read_const thy str], []))
| NONE => ([Code.read_const thy str], []));
in apply2 flat o split_list o map read_const_expr end;
fun read_const_exprs_all ctxt = op @ o read_const_exprs_internal ctxt;
fun read_const_exprs ctxt const_exprs =
let
val (consts, consts_permissive) =
read_const_exprs_internal ctxt const_exprs;
val consts' =
consts_program_permissive ctxt consts_permissive
|> implemented_deps
|> filter_out (Code.is_abstr (Proof_Context.theory_of ctxt));
in union (op =) consts' consts end;
(** diagnostic commands **)
fun code_depgr ctxt consts =
let
val { eqngr, ... } = Code_Preproc.obtain true
{ ctxt = ctxt, consts = consts, terms = [] };
val all_consts = Graph.all_succs eqngr consts;
in Graph.restrict (member (op =) all_consts) eqngr end;
fun code_thms ctxt = Pretty.writeln o Code_Preproc.pretty ctxt o code_depgr ctxt;
fun coalesce_strong_conn gr =
let
val xss = Graph.strong_conn gr;
val xss_ys = map (fn xs => (xs, commas xs)) xss;
val y_for = the o AList.lookup (op =) (maps (fn (xs, y) => map (fn x => (x, y)) xs) xss_ys);
fun coalesced_succs_for xs = maps (Graph.immediate_succs gr) xs
|> subtract (op =) xs
|> map y_for
|> distinct (op =);
val succs = map (fn (xs, _) => (xs, coalesced_succs_for xs)) xss_ys;
in
map (fn (xs, y) => ((y, xs), (maps (Graph.get_node gr) xs, (the o AList.lookup (op =) succs) xs))) xss_ys
end;
fun code_deps ctxt consts =
let
val thy = Proof_Context.theory_of ctxt;
fun mk_entry ((name, consts), (ps, deps)) =
let
val label = commas (map (Code.string_of_const thy) consts);
in ((name, Graph_Display.content_node label (Pretty.str label :: ps)), deps) end;
in
code_depgr ctxt consts
|> Graph.map (K (Code.pretty_cert thy o snd))
|> coalesce_strong_conn
|> map mk_entry
|> Graph_Display.display_graph
end;
local
fun code_thms_cmd ctxt = code_thms ctxt o read_const_exprs_all ctxt;
fun code_deps_cmd ctxt = code_deps ctxt o read_const_exprs_all ctxt;
in
val _ =
Outer_Syntax.command \<^command_keyword>\<open>code_thms\<close>
"print system of code equations for code"
(Scan.repeat1 Parse.term >> (fn cs =>
Toplevel.keep (fn st => code_thms_cmd (Toplevel.context_of st) cs)));
val _ =
Outer_Syntax.command \<^command_keyword>\<open>code_deps\<close>
"visualize dependencies of code equations for code"
(Scan.repeat1 Parse.term >> (fn cs =>
Toplevel.keep (fn st => code_deps_cmd (Toplevel.context_of st) cs)));
end;
end; (*struct*)
structure Basic_Code_Thingol: BASIC_CODE_THINGOL = Code_Thingol;