(* Title: HOLCF/Universal.thy
Author: Brian Huffman
*)
header {* A universal bifinite domain *}
theory Universal
imports CompactBasis Nat_Bijection
begin
subsection {* Basis datatype *}
types ubasis = nat
definition
node :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis set \<Rightarrow> ubasis"
where
"node i a S = Suc (prod_encode (i, prod_encode (a, set_encode S)))"
lemma node_not_0 [simp]: "node i a S \<noteq> 0"
unfolding node_def by simp
lemma node_gt_0 [simp]: "0 < node i a S"
unfolding node_def by simp
lemma node_inject [simp]:
"\<lbrakk>finite S; finite T\<rbrakk>
\<Longrightarrow> node i a S = node j b T \<longleftrightarrow> i = j \<and> a = b \<and> S = T"
unfolding node_def by (simp add: prod_encode_eq set_encode_eq)
lemma node_gt0: "i < node i a S"
unfolding node_def less_Suc_eq_le
by (rule le_prod_encode_1)
lemma node_gt1: "a < node i a S"
unfolding node_def less_Suc_eq_le
by (rule order_trans [OF le_prod_encode_1 le_prod_encode_2])
lemma nat_less_power2: "n < 2^n"
by (induct n) simp_all
lemma node_gt2: "\<lbrakk>finite S; b \<in> S\<rbrakk> \<Longrightarrow> b < node i a S"
unfolding node_def less_Suc_eq_le set_encode_def
apply (rule order_trans [OF _ le_prod_encode_2])
apply (rule order_trans [OF _ le_prod_encode_2])
apply (rule order_trans [where y="setsum (op ^ 2) {b}"])
apply (simp add: nat_less_power2 [THEN order_less_imp_le])
apply (erule setsum_mono2, simp, simp)
done
lemma eq_prod_encode_pairI:
"\<lbrakk>fst (prod_decode x) = a; snd (prod_decode x) = b\<rbrakk> \<Longrightarrow> x = prod_encode (a, b)"
by (erule subst, erule subst, simp)
lemma node_cases:
assumes 1: "x = 0 \<Longrightarrow> P"
assumes 2: "\<And>i a S. \<lbrakk>finite S; x = node i a S\<rbrakk> \<Longrightarrow> P"
shows "P"
apply (cases x)
apply (erule 1)
apply (rule 2)
apply (rule finite_set_decode)
apply (simp add: node_def)
apply (rule eq_prod_encode_pairI [OF refl])
apply (rule eq_prod_encode_pairI [OF refl refl])
done
lemma node_induct:
assumes 1: "P 0"
assumes 2: "\<And>i a S. \<lbrakk>P a; finite S; \<forall>b\<in>S. P b\<rbrakk> \<Longrightarrow> P (node i a S)"
shows "P x"
apply (induct x rule: nat_less_induct)
apply (case_tac n rule: node_cases)
apply (simp add: 1)
apply (simp add: 2 node_gt1 node_gt2)
done
subsection {* Basis ordering *}
inductive
ubasis_le :: "nat \<Rightarrow> nat \<Rightarrow> bool"
where
ubasis_le_refl: "ubasis_le a a"
| ubasis_le_trans:
"\<lbrakk>ubasis_le a b; ubasis_le b c\<rbrakk> \<Longrightarrow> ubasis_le a c"
| ubasis_le_lower:
"finite S \<Longrightarrow> ubasis_le a (node i a S)"
| ubasis_le_upper:
"\<lbrakk>finite S; b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> ubasis_le (node i a S) b"
lemma ubasis_le_minimal: "ubasis_le 0 x"
apply (induct x rule: node_induct)
apply (rule ubasis_le_refl)
apply (erule ubasis_le_trans)
apply (erule ubasis_le_lower)
done
subsubsection {* Generic take function *}
function
ubasis_until :: "(ubasis \<Rightarrow> bool) \<Rightarrow> ubasis \<Rightarrow> ubasis"
where
"ubasis_until P 0 = 0"
| "finite S \<Longrightarrow> ubasis_until P (node i a S) =
(if P (node i a S) then node i a S else ubasis_until P a)"
apply clarify
apply (rule_tac x=b in node_cases)
apply simp
apply simp
apply fast
apply simp
apply simp
apply simp
done
termination ubasis_until
apply (relation "measure snd")
apply (rule wf_measure)
apply (simp add: node_gt1)
done
lemma ubasis_until: "P 0 \<Longrightarrow> P (ubasis_until P x)"
by (induct x rule: node_induct) simp_all
lemma ubasis_until': "0 < ubasis_until P x \<Longrightarrow> P (ubasis_until P x)"
by (induct x rule: node_induct) auto
lemma ubasis_until_same: "P x \<Longrightarrow> ubasis_until P x = x"
by (induct x rule: node_induct) simp_all
lemma ubasis_until_idem:
"P 0 \<Longrightarrow> ubasis_until P (ubasis_until P x) = ubasis_until P x"
by (rule ubasis_until_same [OF ubasis_until])
lemma ubasis_until_0:
"\<forall>x. x \<noteq> 0 \<longrightarrow> \<not> P x \<Longrightarrow> ubasis_until P x = 0"
by (induct x rule: node_induct) simp_all
lemma ubasis_until_less: "ubasis_le (ubasis_until P x) x"
apply (induct x rule: node_induct)
apply (simp add: ubasis_le_refl)
apply (simp add: ubasis_le_refl)
apply (rule impI)
apply (erule ubasis_le_trans)
apply (erule ubasis_le_lower)
done
lemma ubasis_until_chain:
assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"
shows "ubasis_le (ubasis_until P x) (ubasis_until Q x)"
apply (induct x rule: node_induct)
apply (simp add: ubasis_le_refl)
apply (simp add: ubasis_le_refl)
apply (simp add: PQ)
apply clarify
apply (rule ubasis_le_trans)
apply (rule ubasis_until_less)
apply (erule ubasis_le_lower)
done
lemma ubasis_until_mono:
assumes "\<And>i a S b. \<lbrakk>finite S; P (node i a S); b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> P b"
shows "ubasis_le a b \<Longrightarrow> ubasis_le (ubasis_until P a) (ubasis_until P b)"
proof (induct set: ubasis_le)
case (ubasis_le_refl a) show ?case by (rule ubasis_le.ubasis_le_refl)
next
case (ubasis_le_trans a b c) thus ?case by - (rule ubasis_le.ubasis_le_trans)
next
case (ubasis_le_lower S a i) thus ?case
apply (clarsimp simp add: ubasis_le_refl)
apply (rule ubasis_le_trans [OF ubasis_until_less])
apply (erule ubasis_le.ubasis_le_lower)
done
next
case (ubasis_le_upper S b a i) thus ?case
apply clarsimp
apply (subst ubasis_until_same)
apply (erule (3) prems)
apply (erule (2) ubasis_le.ubasis_le_upper)
done
qed
lemma finite_range_ubasis_until:
"finite {x. P x} \<Longrightarrow> finite (range (ubasis_until P))"
apply (rule finite_subset [where B="insert 0 {x. P x}"])
apply (clarsimp simp add: ubasis_until')
apply simp
done
subsubsection {* Take function for \emph{ubasis} *}
definition
ubasis_take :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis"
where
"ubasis_take n = ubasis_until (\<lambda>x. x \<le> n)"
lemma ubasis_take_le: "ubasis_take n x \<le> n"
unfolding ubasis_take_def by (rule ubasis_until, rule le0)
lemma ubasis_take_same: "x \<le> n \<Longrightarrow> ubasis_take n x = x"
unfolding ubasis_take_def by (rule ubasis_until_same)
lemma ubasis_take_idem: "ubasis_take n (ubasis_take n x) = ubasis_take n x"
by (rule ubasis_take_same [OF ubasis_take_le])
lemma ubasis_take_0 [simp]: "ubasis_take 0 x = 0"
unfolding ubasis_take_def by (simp add: ubasis_until_0)
lemma ubasis_take_less: "ubasis_le (ubasis_take n x) x"
unfolding ubasis_take_def by (rule ubasis_until_less)
lemma ubasis_take_chain: "ubasis_le (ubasis_take n x) (ubasis_take (Suc n) x)"
unfolding ubasis_take_def by (rule ubasis_until_chain) simp
lemma ubasis_take_mono:
assumes "ubasis_le x y"
shows "ubasis_le (ubasis_take n x) (ubasis_take n y)"
unfolding ubasis_take_def
apply (rule ubasis_until_mono [OF _ prems])
apply (frule (2) order_less_le_trans [OF node_gt2])
apply (erule order_less_imp_le)
done
lemma finite_range_ubasis_take: "finite (range (ubasis_take n))"
apply (rule finite_subset [where B="{..n}"])
apply (simp add: subset_eq ubasis_take_le)
apply simp
done
lemma ubasis_take_covers: "\<exists>n. ubasis_take n x = x"
apply (rule exI [where x=x])
apply (simp add: ubasis_take_same)
done
interpretation udom: preorder ubasis_le
apply default
apply (rule ubasis_le_refl)
apply (erule (1) ubasis_le_trans)
done
interpretation udom: basis_take ubasis_le ubasis_take
apply default
apply (rule ubasis_take_less)
apply (rule ubasis_take_idem)
apply (erule ubasis_take_mono)
apply (rule ubasis_take_chain)
apply (rule finite_range_ubasis_take)
apply (rule ubasis_take_covers)
done
subsection {* Defining the universal domain by ideal completion *}
typedef (open) udom = "{S. udom.ideal S}"
by (fast intro: udom.ideal_principal)
instantiation udom :: below
begin
definition
"x \<sqsubseteq> y \<longleftrightarrow> Rep_udom x \<subseteq> Rep_udom y"
instance ..
end
instance udom :: po
by (rule udom.typedef_ideal_po
[OF type_definition_udom below_udom_def])
instance udom :: cpo
by (rule udom.typedef_ideal_cpo
[OF type_definition_udom below_udom_def])
lemma Rep_udom_lub:
"chain Y \<Longrightarrow> Rep_udom (\<Squnion>i. Y i) = (\<Union>i. Rep_udom (Y i))"
by (rule udom.typedef_ideal_rep_contlub
[OF type_definition_udom below_udom_def])
lemma ideal_Rep_udom: "udom.ideal (Rep_udom xs)"
by (rule Rep_udom [unfolded mem_Collect_eq])
definition
udom_principal :: "nat \<Rightarrow> udom" where
"udom_principal t = Abs_udom {u. ubasis_le u t}"
lemma Rep_udom_principal:
"Rep_udom (udom_principal t) = {u. ubasis_le u t}"
unfolding udom_principal_def
by (simp add: Abs_udom_inverse udom.ideal_principal)
interpretation udom:
ideal_completion ubasis_le ubasis_take udom_principal Rep_udom
apply unfold_locales
apply (rule ideal_Rep_udom)
apply (erule Rep_udom_lub)
apply (rule Rep_udom_principal)
apply (simp only: below_udom_def)
done
text {* Universal domain is pointed *}
lemma udom_minimal: "udom_principal 0 \<sqsubseteq> x"
apply (induct x rule: udom.principal_induct)
apply (simp, simp add: ubasis_le_minimal)
done
instance udom :: pcpo
by intro_classes (fast intro: udom_minimal)
lemma inst_udom_pcpo: "\<bottom> = udom_principal 0"
by (rule udom_minimal [THEN UU_I, symmetric])
text {* Universal domain is bifinite *}
instantiation udom :: bifinite
begin
definition
approx_udom_def: "approx = udom.completion_approx"
instance
apply (intro_classes, unfold approx_udom_def)
apply (rule udom.chain_completion_approx)
apply (rule udom.lub_completion_approx)
apply (rule udom.completion_approx_idem)
apply (rule udom.finite_fixes_completion_approx)
done
end
lemma approx_udom_principal [simp]:
"approx n\<cdot>(udom_principal x) = udom_principal (ubasis_take n x)"
unfolding approx_udom_def
by (rule udom.completion_approx_principal)
lemma approx_eq_udom_principal:
"\<exists>a\<in>Rep_udom x. approx n\<cdot>x = udom_principal (ubasis_take n a)"
unfolding approx_udom_def
by (rule udom.completion_approx_eq_principal)
subsection {* Universality of \emph{udom} *}
default_sort bifinite
subsubsection {* Choosing a maximal element from a finite set *}
lemma finite_has_maximal:
fixes A :: "'a::po set"
shows "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y"
proof (induct rule: finite_ne_induct)
case (singleton x)
show ?case by simp
next
case (insert a A)
from `\<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y`
obtain x where x: "x \<in> A"
and x_eq: "\<And>y. \<lbrakk>y \<in> A; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x = y" by fast
show ?case
proof (intro bexI ballI impI)
fix y
assume "y \<in> insert a A" and "(if x \<sqsubseteq> a then a else x) \<sqsubseteq> y"
thus "(if x \<sqsubseteq> a then a else x) = y"
apply auto
apply (frule (1) below_trans)
apply (frule (1) x_eq)
apply (rule below_antisym, assumption)
apply simp
apply (erule (1) x_eq)
done
next
show "(if x \<sqsubseteq> a then a else x) \<in> insert a A"
by (simp add: x)
qed
qed
definition
choose :: "'a compact_basis set \<Rightarrow> 'a compact_basis"
where
"choose A = (SOME x. x \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y})"
lemma choose_lemma:
"\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y}"
unfolding choose_def
apply (rule someI_ex)
apply (frule (1) finite_has_maximal, fast)
done
lemma maximal_choose:
"\<lbrakk>finite A; y \<in> A; choose A \<sqsubseteq> y\<rbrakk> \<Longrightarrow> choose A = y"
apply (cases "A = {}", simp)
apply (frule (1) choose_lemma, simp)
done
lemma choose_in: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> A"
by (frule (1) choose_lemma, simp)
function
choose_pos :: "'a compact_basis set \<Rightarrow> 'a compact_basis \<Rightarrow> nat"
where
"choose_pos A x =
(if finite A \<and> x \<in> A \<and> x \<noteq> choose A
then Suc (choose_pos (A - {choose A}) x) else 0)"
by auto
termination choose_pos
apply (relation "measure (card \<circ> fst)", simp)
apply clarsimp
apply (rule card_Diff1_less)
apply assumption
apply (erule choose_in)
apply clarsimp
done
declare choose_pos.simps [simp del]
lemma choose_pos_choose: "finite A \<Longrightarrow> choose_pos A (choose A) = 0"
by (simp add: choose_pos.simps)
lemma inj_on_choose_pos [OF refl]:
"\<lbrakk>card A = n; finite A\<rbrakk> \<Longrightarrow> inj_on (choose_pos A) A"
apply (induct n arbitrary: A)
apply simp
apply (case_tac "A = {}", simp)
apply (frule (1) choose_in)
apply (rule inj_onI)
apply (drule_tac x="A - {choose A}" in meta_spec, simp)
apply (simp add: choose_pos.simps)
apply (simp split: split_if_asm)
apply (erule (1) inj_onD, simp, simp)
done
lemma choose_pos_bounded [OF refl]:
"\<lbrakk>card A = n; finite A; x \<in> A\<rbrakk> \<Longrightarrow> choose_pos A x < n"
apply (induct n arbitrary: A)
apply simp
apply (case_tac "A = {}", simp)
apply (frule (1) choose_in)
apply (subst choose_pos.simps)
apply simp
done
lemma choose_pos_lessD:
"\<lbrakk>choose_pos A x < choose_pos A y; finite A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<not> x \<sqsubseteq> y"
apply (induct A x arbitrary: y rule: choose_pos.induct)
apply simp
apply (case_tac "x = choose A")
apply simp
apply (rule notI)
apply (frule (2) maximal_choose)
apply simp
apply (case_tac "y = choose A")
apply (simp add: choose_pos_choose)
apply (drule_tac x=y in meta_spec)
apply simp
apply (erule meta_mp)
apply (simp add: choose_pos.simps)
done
subsubsection {* Rank of basis elements *}
primrec
cb_take :: "nat \<Rightarrow> 'a compact_basis \<Rightarrow> 'a compact_basis"
where
"cb_take 0 = (\<lambda>x. compact_bot)"
| "cb_take (Suc n) = compact_take n"
lemma cb_take_covers: "\<exists>n. cb_take n x = x"
apply (rule exE [OF compact_basis.take_covers [where a=x]])
apply (rename_tac n, rule_tac x="Suc n" in exI, simp)
done
lemma cb_take_less: "cb_take n x \<sqsubseteq> x"
by (cases n, simp, simp add: compact_basis.take_less)
lemma cb_take_idem: "cb_take n (cb_take n x) = cb_take n x"
by (cases n, simp, simp add: compact_basis.take_take)
lemma cb_take_mono: "x \<sqsubseteq> y \<Longrightarrow> cb_take n x \<sqsubseteq> cb_take n y"
by (cases n, simp, simp add: compact_basis.take_mono)
lemma cb_take_chain_le: "m \<le> n \<Longrightarrow> cb_take m x \<sqsubseteq> cb_take n x"
apply (cases m, simp)
apply (cases n, simp)
apply (simp add: compact_basis.take_chain_le)
done
lemma range_const: "range (\<lambda>x. c) = {c}"
by auto
lemma finite_range_cb_take: "finite (range (cb_take n))"
apply (cases n)
apply (simp add: range_const)
apply (simp add: compact_basis.finite_range_take)
done
definition
rank :: "'a compact_basis \<Rightarrow> nat"
where
"rank x = (LEAST n. cb_take n x = x)"
lemma compact_approx_rank: "cb_take (rank x) x = x"
unfolding rank_def
apply (rule LeastI_ex)
apply (rule cb_take_covers)
done
lemma rank_leD: "rank x \<le> n \<Longrightarrow> cb_take n x = x"
apply (rule below_antisym [OF cb_take_less])
apply (subst compact_approx_rank [symmetric])
apply (erule cb_take_chain_le)
done
lemma rank_leI: "cb_take n x = x \<Longrightarrow> rank x \<le> n"
unfolding rank_def by (rule Least_le)
lemma rank_le_iff: "rank x \<le> n \<longleftrightarrow> cb_take n x = x"
by (rule iffI [OF rank_leD rank_leI])
lemma rank_compact_bot [simp]: "rank compact_bot = 0"
using rank_leI [of 0 compact_bot] by simp
lemma rank_eq_0_iff [simp]: "rank x = 0 \<longleftrightarrow> x = compact_bot"
using rank_le_iff [of x 0] by auto
definition
rank_le :: "'a compact_basis \<Rightarrow> 'a compact_basis set"
where
"rank_le x = {y. rank y \<le> rank x}"
definition
rank_lt :: "'a compact_basis \<Rightarrow> 'a compact_basis set"
where
"rank_lt x = {y. rank y < rank x}"
definition
rank_eq :: "'a compact_basis \<Rightarrow> 'a compact_basis set"
where
"rank_eq x = {y. rank y = rank x}"
lemma rank_eq_cong: "rank x = rank y \<Longrightarrow> rank_eq x = rank_eq y"
unfolding rank_eq_def by simp
lemma rank_lt_cong: "rank x = rank y \<Longrightarrow> rank_lt x = rank_lt y"
unfolding rank_lt_def by simp
lemma rank_eq_subset: "rank_eq x \<subseteq> rank_le x"
unfolding rank_eq_def rank_le_def by auto
lemma rank_lt_subset: "rank_lt x \<subseteq> rank_le x"
unfolding rank_lt_def rank_le_def by auto
lemma finite_rank_le: "finite (rank_le x)"
unfolding rank_le_def
apply (rule finite_subset [where B="range (cb_take (rank x))"])
apply clarify
apply (rule range_eqI)
apply (erule rank_leD [symmetric])
apply (rule finite_range_cb_take)
done
lemma finite_rank_eq: "finite (rank_eq x)"
by (rule finite_subset [OF rank_eq_subset finite_rank_le])
lemma finite_rank_lt: "finite (rank_lt x)"
by (rule finite_subset [OF rank_lt_subset finite_rank_le])
lemma rank_lt_Int_rank_eq: "rank_lt x \<inter> rank_eq x = {}"
unfolding rank_lt_def rank_eq_def rank_le_def by auto
lemma rank_lt_Un_rank_eq: "rank_lt x \<union> rank_eq x = rank_le x"
unfolding rank_lt_def rank_eq_def rank_le_def by auto
subsubsection {* Sequencing basis elements *}
definition
place :: "'a compact_basis \<Rightarrow> nat"
where
"place x = card (rank_lt x) + choose_pos (rank_eq x) x"
lemma place_bounded: "place x < card (rank_le x)"
unfolding place_def
apply (rule ord_less_eq_trans)
apply (rule add_strict_left_mono)
apply (rule choose_pos_bounded)
apply (rule finite_rank_eq)
apply (simp add: rank_eq_def)
apply (subst card_Un_disjoint [symmetric])
apply (rule finite_rank_lt)
apply (rule finite_rank_eq)
apply (rule rank_lt_Int_rank_eq)
apply (simp add: rank_lt_Un_rank_eq)
done
lemma place_ge: "card (rank_lt x) \<le> place x"
unfolding place_def by simp
lemma place_rank_mono:
fixes x y :: "'a compact_basis"
shows "rank x < rank y \<Longrightarrow> place x < place y"
apply (rule less_le_trans [OF place_bounded])
apply (rule order_trans [OF _ place_ge])
apply (rule card_mono)
apply (rule finite_rank_lt)
apply (simp add: rank_le_def rank_lt_def subset_eq)
done
lemma place_eqD: "place x = place y \<Longrightarrow> x = y"
apply (rule linorder_cases [where x="rank x" and y="rank y"])
apply (drule place_rank_mono, simp)
apply (simp add: place_def)
apply (rule inj_on_choose_pos [where A="rank_eq x", THEN inj_onD])
apply (rule finite_rank_eq)
apply (simp cong: rank_lt_cong rank_eq_cong)
apply (simp add: rank_eq_def)
apply (simp add: rank_eq_def)
apply (drule place_rank_mono, simp)
done
lemma inj_place: "inj place"
by (rule inj_onI, erule place_eqD)
subsubsection {* Embedding and projection on basis elements *}
definition
sub :: "'a compact_basis \<Rightarrow> 'a compact_basis"
where
"sub x = (case rank x of 0 \<Rightarrow> compact_bot | Suc k \<Rightarrow> cb_take k x)"
lemma rank_sub_less: "x \<noteq> compact_bot \<Longrightarrow> rank (sub x) < rank x"
unfolding sub_def
apply (cases "rank x", simp)
apply (simp add: less_Suc_eq_le)
apply (rule rank_leI)
apply (rule cb_take_idem)
done
lemma place_sub_less: "x \<noteq> compact_bot \<Longrightarrow> place (sub x) < place x"
apply (rule place_rank_mono)
apply (erule rank_sub_less)
done
lemma sub_below: "sub x \<sqsubseteq> x"
unfolding sub_def by (cases "rank x", simp_all add: cb_take_less)
lemma rank_less_imp_below_sub: "\<lbrakk>x \<sqsubseteq> y; rank x < rank y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> sub y"
unfolding sub_def
apply (cases "rank y", simp)
apply (simp add: less_Suc_eq_le)
apply (subgoal_tac "cb_take nat x \<sqsubseteq> cb_take nat y")
apply (simp add: rank_leD)
apply (erule cb_take_mono)
done
function
basis_emb :: "'a compact_basis \<Rightarrow> ubasis"
where
"basis_emb x = (if x = compact_bot then 0 else
node (place x) (basis_emb (sub x))
(basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}))"
by auto
termination basis_emb
apply (relation "measure place", simp)
apply (simp add: place_sub_less)
apply simp
done
declare basis_emb.simps [simp del]
lemma basis_emb_compact_bot [simp]: "basis_emb compact_bot = 0"
by (simp add: basis_emb.simps)
lemma fin1: "finite {y. place y < place x \<and> x \<sqsubseteq> y}"
apply (subst Collect_conj_eq)
apply (rule finite_Int)
apply (rule disjI1)
apply (subgoal_tac "finite (place -` {n. n < place x})", simp)
apply (rule finite_vimageI [OF _ inj_place])
apply (simp add: lessThan_def [symmetric])
done
lemma fin2: "finite (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y})"
by (rule finite_imageI [OF fin1])
lemma rank_place_mono:
"\<lbrakk>place x < place y; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> rank x < rank y"
apply (rule linorder_cases, assumption)
apply (simp add: place_def cong: rank_lt_cong rank_eq_cong)
apply (drule choose_pos_lessD)
apply (rule finite_rank_eq)
apply (simp add: rank_eq_def)
apply (simp add: rank_eq_def)
apply simp
apply (drule place_rank_mono, simp)
done
lemma basis_emb_mono:
"x \<sqsubseteq> y \<Longrightarrow> ubasis_le (basis_emb x) (basis_emb y)"
proof (induct "max (place x) (place y)" arbitrary: x y rule: less_induct)
case less
show ?case proof (rule linorder_cases)
assume "place x < place y"
then have "rank x < rank y"
using `x \<sqsubseteq> y` by (rule rank_place_mono)
with `place x < place y` show ?case
apply (case_tac "y = compact_bot", simp)
apply (simp add: basis_emb.simps [of y])
apply (rule ubasis_le_trans [OF _ ubasis_le_lower [OF fin2]])
apply (rule less)
apply (simp add: less_max_iff_disj)
apply (erule place_sub_less)
apply (erule rank_less_imp_below_sub [OF `x \<sqsubseteq> y`])
done
next
assume "place x = place y"
hence "x = y" by (rule place_eqD)
thus ?case by (simp add: ubasis_le_refl)
next
assume "place x > place y"
with `x \<sqsubseteq> y` show ?case
apply (case_tac "x = compact_bot", simp add: ubasis_le_minimal)
apply (simp add: basis_emb.simps [of x])
apply (rule ubasis_le_upper [OF fin2], simp)
apply (rule less)
apply (simp add: less_max_iff_disj)
apply (erule place_sub_less)
apply (erule rev_below_trans)
apply (rule sub_below)
done
qed
qed
lemma inj_basis_emb: "inj basis_emb"
apply (rule inj_onI)
apply (case_tac "x = compact_bot")
apply (case_tac [!] "y = compact_bot")
apply simp
apply (simp add: basis_emb.simps)
apply (simp add: basis_emb.simps)
apply (simp add: basis_emb.simps)
apply (simp add: fin2 inj_eq [OF inj_place])
done
definition
basis_prj :: "ubasis \<Rightarrow> 'a compact_basis"
where
"basis_prj x = inv basis_emb
(ubasis_until (\<lambda>x. x \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> ubasis)) x)"
lemma basis_prj_basis_emb: "\<And>x. basis_prj (basis_emb x) = x"
unfolding basis_prj_def
apply (subst ubasis_until_same)
apply (rule rangeI)
apply (rule inv_f_f)
apply (rule inj_basis_emb)
done
lemma basis_prj_node:
"\<lbrakk>finite S; node i a S \<notin> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)\<rbrakk>
\<Longrightarrow> basis_prj (node i a S) = (basis_prj a :: 'a compact_basis)"
unfolding basis_prj_def by simp
lemma basis_prj_0: "basis_prj 0 = compact_bot"
apply (subst basis_emb_compact_bot [symmetric])
apply (rule basis_prj_basis_emb)
done
lemma node_eq_basis_emb_iff:
"finite S \<Longrightarrow> node i a S = basis_emb x \<longleftrightarrow>
x \<noteq> compact_bot \<and> i = place x \<and> a = basis_emb (sub x) \<and>
S = basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}"
apply (cases "x = compact_bot", simp)
apply (simp add: basis_emb.simps [of x])
apply (simp add: fin2)
done
lemma basis_prj_mono: "ubasis_le a b \<Longrightarrow> basis_prj a \<sqsubseteq> basis_prj b"
proof (induct a b rule: ubasis_le.induct)
case (ubasis_le_refl a) show ?case by (rule below_refl)
next
case (ubasis_le_trans a b c) thus ?case by - (rule below_trans)
next
case (ubasis_le_lower S a i) thus ?case
apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)")
apply (erule rangeE, rename_tac x)
apply (simp add: basis_prj_basis_emb)
apply (simp add: node_eq_basis_emb_iff)
apply (simp add: basis_prj_basis_emb)
apply (rule sub_below)
apply (simp add: basis_prj_node)
done
next
case (ubasis_le_upper S b a i) thus ?case
apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)")
apply (erule rangeE, rename_tac x)
apply (simp add: basis_prj_basis_emb)
apply (clarsimp simp add: node_eq_basis_emb_iff)
apply (simp add: basis_prj_basis_emb)
apply (simp add: basis_prj_node)
done
qed
lemma basis_emb_prj_less: "ubasis_le (basis_emb (basis_prj x)) x"
unfolding basis_prj_def
apply (subst f_inv_into_f [where f=basis_emb])
apply (rule ubasis_until)
apply (rule range_eqI [where x=compact_bot])
apply simp
apply (rule ubasis_until_less)
done
hide_const (open)
node
choose
choose_pos
place
sub
subsubsection {* EP-pair from any bifinite domain into \emph{udom} *}
definition
udom_emb :: "'a::bifinite \<rightarrow> udom"
where
"udom_emb = compact_basis.basis_fun (\<lambda>x. udom_principal (basis_emb x))"
definition
udom_prj :: "udom \<rightarrow> 'a::bifinite"
where
"udom_prj = udom.basis_fun (\<lambda>x. Rep_compact_basis (basis_prj x))"
lemma udom_emb_principal:
"udom_emb\<cdot>(Rep_compact_basis x) = udom_principal (basis_emb x)"
unfolding udom_emb_def
apply (rule compact_basis.basis_fun_principal)
apply (rule udom.principal_mono)
apply (erule basis_emb_mono)
done
lemma udom_prj_principal:
"udom_prj\<cdot>(udom_principal x) = Rep_compact_basis (basis_prj x)"
unfolding udom_prj_def
apply (rule udom.basis_fun_principal)
apply (rule compact_basis.principal_mono)
apply (erule basis_prj_mono)
done
lemma ep_pair_udom: "ep_pair udom_emb udom_prj"
apply default
apply (rule compact_basis.principal_induct, simp)
apply (simp add: udom_emb_principal udom_prj_principal)
apply (simp add: basis_prj_basis_emb)
apply (rule udom.principal_induct, simp)
apply (simp add: udom_emb_principal udom_prj_principal)
apply (rule basis_emb_prj_less)
done
end