src/HOL/MicroJava/BV/Typing_Framework_err.thy
author kleing
Tue, 14 May 2002 12:33:42 +0200
changeset 13148 fe118a977a6d
parent 13067 a59af3a83c61
child 13224 6f0928a942d1
permissions -rw-r--r--
numerals work again

(*  Title:      HOL/MicroJava/BV/Typing_Framework_err.thy
    ID:         $Id$
    Author:     Gerwin Klein
    Copyright   2000 TUM

*)

header {* \isaheader{Static and Dynamic Welltyping} *}

theory Typing_Framework_err = Typing_Framework + SemilatAlg:

constdefs

wt_err_step :: "'s ord \<Rightarrow> 's err step_type \<Rightarrow> 's err list \<Rightarrow> bool"
"wt_err_step r step ts \<equiv> wt_step (Err.le r) Err step ts"

wt_app_eff :: "'s ord \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's list \<Rightarrow> bool"
"wt_app_eff r app step ts \<equiv>
  \<forall>p < size ts. app p (ts!p) \<and> (\<forall>(q,t) \<in> set (step p (ts!p)). t <=_r ts!q)"


map_snd :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'c) list"
"map_snd f \<equiv> map (\<lambda>(x,y). (x, f y))"

error :: "nat \<Rightarrow> (nat \<times> 'a err) list"
"error n \<equiv> map (\<lambda>x. (x,Err)) [0..n(]"


err_step :: "nat \<Rightarrow> (nat \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> 's step_type \<Rightarrow> 's err step_type"
"err_step n app step p t \<equiv> 
  case t of 
    Err   \<Rightarrow> error n
  | OK t' \<Rightarrow> if app p t' then map_snd OK (step p t') else error n"

lemmas err_step_defs = err_step_def map_snd_def error_def

lemma bounded_err_stepD:
  "bounded (err_step n app step) n \<Longrightarrow> 
  p < n \<Longrightarrow>  app p a \<Longrightarrow> (q,b) \<in> set (step p a) \<Longrightarrow> 
  q < n"
  apply (simp add: bounded_def err_step_def)
  apply (erule allE, erule impE, assumption)
  apply (erule_tac x = "OK a" in allE, drule bspec)
   apply (simp add: map_snd_def)
   apply fast
  apply simp
  done


lemma in_map_sndD: "(a,b) \<in> set (map_snd f xs) \<Longrightarrow> \<exists>b'. (a,b') \<in> set xs"
  apply (induct xs)
  apply (auto simp add: map_snd_def)
  done


lemma bounded_err_stepI:
  "\<forall>p. p < n \<longrightarrow> (\<forall>s. ap p s \<longrightarrow> (\<forall>(q,s') \<in> set (step p s). q < n))
  \<Longrightarrow> bounded (err_step n ap step) n"
apply (unfold bounded_def)
apply clarify
apply (simp add: err_step_def split: err.splits)
apply (simp add: error_def)
 apply blast
apply (simp split: split_if_asm) 
 apply (blast dest: in_map_sndD)
apply (simp add: error_def)
apply blast
done


text {*
  There used to be a condition here that each instruction must have a
  successor. This is not needed any more, because the definition of
  @{term error} trivially ensures that there is a successor for
  the critical case where @{term app} does not hold. 
*}
lemma wt_err_imp_wt_app_eff:
  assumes wt: "wt_err_step r (err_step (size ts) app step) ts"
  assumes b:  "bounded (err_step (size ts) app step) (size ts)"
  shows "wt_app_eff r app step (map ok_val ts)"
proof (unfold wt_app_eff_def, intro strip, rule conjI)
  fix p assume "p < size (map ok_val ts)"
  hence lp: "p < size ts" by simp
  hence ts: "0 < size ts" by (cases p) auto
  hence err: "(0,Err) \<in> set (error (size ts))" by (simp add: error_def)

  from wt lp
  have [intro?]: "\<And>p. p < size ts \<Longrightarrow> ts ! p \<noteq> Err" 
    by (unfold wt_err_step_def wt_step_def) simp

  show app: "app p (map ok_val ts ! p)"
  proof (rule ccontr)
    from wt lp obtain s where
      OKp:  "ts ! p = OK s" and
      less: "\<forall>(q,t) \<in> set (err_step (size ts) app step p (ts!p)). t <=_(Err.le r) ts!q"
      by (unfold wt_err_step_def wt_step_def stable_def) 
         (auto iff: not_Err_eq)
    assume "\<not> app p (map ok_val ts ! p)"
    with OKp lp have "\<not> app p s" by simp
    with OKp have "err_step (size ts) app step p (ts!p) = error (size ts)" 
      by (simp add: err_step_def)    
    with err ts obtain q where 
      "(q,Err) \<in> set (err_step (size ts) app step p (ts!p))" and
      q: "q < size ts" by auto    
    with less have "ts!q = Err" by auto
    moreover from q have "ts!q \<noteq> Err" ..
    ultimately show False by blast
  qed
  
  show "\<forall>(q,t)\<in>set(step p (map ok_val ts ! p)). t <=_r map ok_val ts ! q" 
  proof clarify
    fix q t assume q: "(q,t) \<in> set (step p (map ok_val ts ! p))"

    from wt lp q
    obtain s where
      OKp:  "ts ! p = OK s" and
      less: "\<forall>(q,t) \<in> set (err_step (size ts) app step p (ts!p)). t <=_(Err.le r) ts!q"
      by (unfold wt_err_step_def wt_step_def stable_def) 
         (auto iff: not_Err_eq)

    from b lp app q have lq: "q < size ts" by (rule bounded_err_stepD)
    hence "ts!q \<noteq> Err" ..
    then obtain s' where OKq: "ts ! q = OK s'" by (auto iff: not_Err_eq)

    from lp lq OKp OKq app less q
    show "t <=_r map ok_val ts ! q"
      by (auto simp add: err_step_def map_snd_def) 
  qed
qed


lemma wt_app_eff_imp_wt_err:
  assumes app_eff: "wt_app_eff r app step ts"
  assumes bounded: "bounded (err_step (size ts) app step) (size ts)"
  shows "wt_err_step r (err_step (size ts) app step) (map OK ts)"
proof (unfold wt_err_step_def wt_step_def, intro strip, rule conjI)
  fix p assume "p < size (map OK ts)" 
  hence p: "p < size ts" by simp
  thus "map OK ts ! p \<noteq> Err" by simp
  { fix q t
    assume q: "(q,t) \<in> set (err_step (size ts) app step p (map OK ts ! p))" 
    with p app_eff obtain 
      "app p (ts ! p)" "\<forall>(q,t) \<in> set (step p (ts!p)). t <=_r ts!q"
      by (unfold wt_app_eff_def) blast
    moreover
    from q p bounded have "q < size ts"
      by - (rule boundedD)
    hence "map OK ts ! q = OK (ts!q)" by simp
    moreover
    have "p < size ts" by (rule p)
    moreover note q
    ultimately     
    have "t <=_(Err.le r) map OK ts ! q" 
      by (auto simp add: err_step_def map_snd_def)
  }
  thus "stable (Err.le r) (err_step (size ts) app step) (map OK ts) p"
    by (unfold stable_def) blast
qed

end