src/HOL/Nominal/Examples/Support.thy
author urbanc
Sun, 21 Oct 2007 19:32:19 +0200
changeset 25139 ffc5054a7274
parent 24895 7cbb842aa99e
child 25751 a4e69ce247e0
permissions -rw-r--r--
tuned

(* $Id$ *)

theory Support 
imports "../Nominal" 
begin

text {* 
  An example showing that in general

  x\<sharp>(A \<union> B) does not imply  x\<sharp>A and  x\<sharp>B

  For this we set A to the set of even atoms 
  and B to the set of odd even atoms. Then A \<union> B, 
  that is the set of all atoms, has empty support. 
  The sets A, respectively B, have the set of all atoms 
  as support. 
*}

atom_decl atom

abbreviation
  EVEN :: "atom set"
where
  "EVEN \<equiv> {atom n | n. \<exists>i. n=2*i}"

abbreviation  
  ODD :: "atom set"
where
  "ODD \<equiv> {atom n | n. \<exists>i. n=2*i+1}"

lemma even_or_odd:
  fixes n::"nat"
  shows "\<exists>i. (n = 2*i) \<or> (n=2*i+1)"
  by (induct n) (presburger)+

lemma EVEN_union_ODD:
  shows "EVEN \<union> ODD = UNIV"
  using even_or_odd
proof -
  have "EVEN \<union> ODD = (\<lambda>n. atom n) ` {n. \<exists>i. n = 2*i} \<union> (\<lambda>n. atom n) ` {n. \<exists>i. n = 2*i+1}" by auto
  also have "\<dots> = (\<lambda>n. atom n) ` ({n. \<exists>i. n = 2*i} \<union> {n. \<exists>i. n = 2*i+1})" by auto
  also have "\<dots> = (\<lambda>n. atom n) ` ({n. \<exists>i. n = 2*i \<or> n = 2*i+1})" by auto
  also have "\<dots> = (\<lambda>n. atom n) ` (UNIV::nat set)" using even_or_odd by auto
  also have "\<dots> = (UNIV::atom set)" using atom.exhaust
    by (rule_tac  surj_range) (auto simp add: surj_def)
  finally show "EVEN \<union> ODD = UNIV" by simp
qed

lemma EVEN_intersect_ODD:
  shows "EVEN \<inter> ODD = {}"
  using even_or_odd
  by (auto) (presburger)

lemma UNIV_subtract:
  shows "UNIV - EVEN = ODD"
  and   "UNIV - ODD  = EVEN"
  using EVEN_union_ODD EVEN_intersect_ODD
  by (blast)+

lemma EVEN_ODD_infinite:
  shows "infinite EVEN"
  and   "infinite ODD"
apply(simp add: infinite_iff_countable_subset)
apply(rule_tac x="\<lambda>n. atom (2*n)" in exI)
apply(auto simp add: inj_on_def)[1]
apply(simp add: infinite_iff_countable_subset)
apply(rule_tac x="\<lambda>n. atom (2*n+1)" in exI)
apply(auto simp add: inj_on_def)
done

text {* 
  A set S that is infinite and coinfinite 
  has all atoms as its support. *}
lemma supp_infinite_coinfinite:
  fixes S::"atom set"
  assumes a: "infinite S"
  and     b: "infinite (UNIV-S)"
  shows "(supp S) = (UNIV::atom set)"
proof -
  have "\<forall>(x::atom). x\<in>(supp S)"
  proof
    fix x::"atom"
    show "x\<in>(supp S)"
    proof (cases "x\<in>S")
      case True
      have "x\<in>S" by fact
      hence "\<forall>b\<in>(UNIV-S). [(x,b)]\<bullet>S\<noteq>S" by (auto simp add: perm_set_def calc_atm)
      with b have "infinite {b\<in>(UNIV-S). [(x,b)]\<bullet>S\<noteq>S}" by (rule infinite_Collection)
      hence "infinite {b. [(x,b)]\<bullet>S\<noteq>S}" by (rule_tac infinite_super, auto)
      then show "x\<in>(supp S)" by (simp add: supp_def)
    next
      case False
      have "x\<notin>S" by fact
      hence "\<forall>b\<in>S. [(x,b)]\<bullet>S\<noteq>S" by (auto simp add: perm_set_def calc_atm)
      with a have "infinite {b\<in>S. [(x,b)]\<bullet>S\<noteq>S}" by (rule infinite_Collection)
      hence "infinite {b. [(x,b)]\<bullet>S\<noteq>S}" by (rule_tac infinite_super, auto)
      then show "x\<in>(supp S)" by (simp add: supp_def)
    qed
  qed
  then show "(supp S) = (UNIV::atom set)" by auto
qed

lemma EVEN_ODD_supp:
  shows "supp EVEN = (UNIV::atom set)"
  and   "supp ODD  = (UNIV::atom set)"
  using supp_infinite_coinfinite UNIV_subtract EVEN_ODD_infinite
  by simp_all

lemma UNIV_supp:
  shows "supp (UNIV::atom set) = ({}::atom set)"
proof -
  have "\<forall>(x::atom) (y::atom). [(x,y)]\<bullet>UNIV = (UNIV::atom set)"
    by (auto simp add: perm_set_def calc_atm)
  then show "supp (UNIV::atom set) = ({}::atom set)"
    by (simp add: supp_def)
qed

theorem EVEN_ODD_freshness:
  fixes x::"atom"
  shows "x\<sharp>(EVEN \<union> ODD)"
  and   "\<not>x\<sharp>EVEN"
  and   "\<not>x\<sharp>ODD"
  by (auto simp only: fresh_def EVEN_union_ODD EVEN_ODD_supp UNIV_supp)

end