src/Doc/Tutorial/Misc/Tree.thy
author haftmann
Thu, 19 Jun 2025 17:15:40 +0200
changeset 82734 89347c0cc6a3
parent 69597 ff784d5a5bfb
permissions -rw-r--r--
treat map_filter similar to list_all, list_ex, list_ex1

(*<*)
theory Tree imports Main begin
(*>*)

text\<open>\noindent
Define the datatype of \rmindex{binary trees}:
\<close>

datatype 'a tree = Tip | Node "'a tree" 'a "'a tree"(*<*)

primrec mirror :: "'a tree \<Rightarrow> 'a tree" where
"mirror Tip = Tip" |
"mirror (Node l x r) = Node (mirror r) x (mirror l)"(*>*)

text\<open>\noindent
Define a function \<^term>\<open>mirror\<close> that mirrors a binary tree
by swapping subtrees recursively. Prove
\<close>

lemma mirror_mirror: "mirror(mirror t) = t"
(*<*)
apply(induct_tac t)
by(auto)

primrec flatten :: "'a tree => 'a list" where
"flatten Tip = []" |
"flatten (Node l x r) = flatten l @ [x] @ flatten r"
(*>*)

text\<open>\noindent
Define a function \<^term>\<open>flatten\<close> that flattens a tree into a list
by traversing it in infix order. Prove
\<close>

lemma "flatten(mirror t) = rev(flatten t)"
(*<*)
apply(induct_tac t)
by(auto)

end
(*>*)