(* Title: ZF/IMP/Equiv.thy
Author: Heiko Loetzbeyer and Robert Sandner, TU München
*)
section \<open>Equivalence\<close>
theory Equiv imports Denotation Com begin
lemma aexp_iff [rule_format]:
"\<lbrakk>a \<in> aexp; sigma: loc -> nat\<rbrakk>
\<Longrightarrow> \<forall>n. \<langle>a,sigma\<rangle> -a-> n \<longleftrightarrow> A(a,sigma) = n"
apply (erule aexp.induct)
apply (force intro!: evala.intros)+
done
declare aexp_iff [THEN iffD1, simp]
aexp_iff [THEN iffD2, intro!]
inductive_cases [elim!]:
"\<langle>true,sigma\<rangle> -b-> x"
"\<langle>false,sigma\<rangle> -b-> x"
"<ROp(f,a0,a1),sigma> -b-> x"
"<noti(b),sigma> -b-> x"
"<b0 andi b1,sigma> -b-> x"
"<b0 ori b1,sigma> -b-> x"
lemma bexp_iff [rule_format]:
"\<lbrakk>b \<in> bexp; sigma: loc -> nat\<rbrakk>
\<Longrightarrow> \<forall>w. \<langle>b,sigma\<rangle> -b-> w \<longleftrightarrow> B(b,sigma) = w"
apply (erule bexp.induct)
apply (auto intro!: evalb.intros)
done
declare bexp_iff [THEN iffD1, simp]
bexp_iff [THEN iffD2, intro!]
lemma com1: "\<langle>c,sigma\<rangle> -c-> sigma' \<Longrightarrow> <sigma,sigma'> \<in> C(c)"
apply (erule evalc.induct)
apply (simp_all (no_asm_simp))
txt \<open>\<open>assign\<close>\<close>
apply (simp add: update_type)
txt \<open>\<open>comp\<close>\<close>
apply fast
txt \<open>\<open>while\<close>\<close>
apply (erule Gamma_bnd_mono [THEN lfp_unfold, THEN ssubst, OF C_subset])
apply (simp add: Gamma_def)
txt \<open>recursive case of \<open>while\<close>\<close>
apply (erule Gamma_bnd_mono [THEN lfp_unfold, THEN ssubst, OF C_subset])
apply (auto simp add: Gamma_def)
done
declare B_type [intro!] A_type [intro!]
declare evalc.intros [intro]
lemma com2 [rule_format]: "c \<in> com \<Longrightarrow> \<forall>x \<in> C(c). <c,fst(x)> -c-> snd(x)"
apply (erule com.induct)
txt \<open>\<open>skip\<close>\<close>
apply force
txt \<open>\<open>assign\<close>\<close>
apply force
txt \<open>\<open>comp\<close>\<close>
apply force
txt \<open>\<open>while\<close>\<close>
apply safe
apply simp_all
apply (frule Gamma_bnd_mono [OF C_subset], erule Fixedpt.induct, assumption)
unfolding Gamma_def
apply force
txt \<open>\<open>if\<close>\<close>
apply auto
done
subsection \<open>Main theorem\<close>
theorem com_equivalence:
"c \<in> com \<Longrightarrow> C(c) = {io \<in> (loc->nat) \<times> (loc->nat). <c,fst(io)> -c-> snd(io)}"
by (force intro: C_subset [THEN subsetD] elim: com2 dest: com1)
end