Fri, 01 Aug 2008 17:41:37 +0200 Removed import and lparams from locale record.
ballarin [Fri, 01 Aug 2008 17:41:37 +0200] rev 27716
Removed import and lparams from locale record.
Fri, 01 Aug 2008 12:57:50 +0200 made setsum executable on int.
nipkow [Fri, 01 Aug 2008 12:57:50 +0200] rev 27715
made setsum executable on int.
Thu, 31 Jul 2008 09:49:21 +0200 Tuned (for the sake of a meaningless log entry).
ballarin [Thu, 31 Jul 2008 09:49:21 +0200] rev 27714
Tuned (for the sake of a meaningless log entry).
Wed, 30 Jul 2008 19:03:33 +0200 New locales for orders and lattices where the equivalence relation is not restricted to equality.
ballarin [Wed, 30 Jul 2008 19:03:33 +0200] rev 27713
New locales for orders and lattices where the equivalence relation is not restricted to equality.
Wed, 30 Jul 2008 16:07:00 +0200 added hint about writing "x : set xs".
nipkow [Wed, 30 Jul 2008 16:07:00 +0200] rev 27712
added hint about writing "x : set xs".
Wed, 30 Jul 2008 07:34:01 +0200 simple lifters
haftmann [Wed, 30 Jul 2008 07:34:01 +0200] rev 27711
simple lifters
Wed, 30 Jul 2008 07:34:00 +0200 dropped imperative monad bind
haftmann [Wed, 30 Jul 2008 07:34:00 +0200] rev 27710
dropped imperative monad bind
Wed, 30 Jul 2008 07:33:59 +0200 facts_of
haftmann [Wed, 30 Jul 2008 07:33:59 +0200] rev 27709
facts_of
Wed, 30 Jul 2008 07:33:58 +0200 improved morphism
haftmann [Wed, 30 Jul 2008 07:33:58 +0200] rev 27708
improved morphism
Wed, 30 Jul 2008 07:33:57 +0200 SML_imp, OCaml_imp
haftmann [Wed, 30 Jul 2008 07:33:57 +0200] rev 27707
SML_imp, OCaml_imp
Wed, 30 Jul 2008 07:33:56 +0200 clarified
haftmann [Wed, 30 Jul 2008 07:33:56 +0200] rev 27706
clarified
Wed, 30 Jul 2008 07:33:55 +0200 tuned
haftmann [Wed, 30 Jul 2008 07:33:55 +0200] rev 27705
tuned
Tue, 29 Jul 2008 17:50:48 +0200 Zorn's Lemma for partial orders.
ballarin [Tue, 29 Jul 2008 17:50:48 +0200] rev 27704
Zorn's Lemma for partial orders.
Tue, 29 Jul 2008 17:50:12 +0200 Definitions and some lemmas for reflexive orderings.
ballarin [Tue, 29 Jul 2008 17:50:12 +0200] rev 27703
Definitions and some lemmas for reflexive orderings.
(0) -10000 -3000 -1000 -300 -100 -14 +14 +100 +300 +1000 +3000 +10000 +30000 tip