--- a/src/HOL/Deriv.thy Wed Oct 03 12:28:09 2018 +0200
+++ b/src/HOL/Deriv.thy Wed Oct 03 13:20:05 2018 +0200
@@ -1384,19 +1384,19 @@
assumes "a < b"
and contf: "continuous_on {a..b} f"
and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"
- obtains z where "a < z" "z < b" "f b - f a = (f' z) (b - a)"
+ obtains \<xi> where "a < \<xi>" "\<xi> < b" "f b - f a = (f' \<xi>) (b - a)"
proof -
have "\<exists>x. a < x \<and> x < b \<and> (\<lambda>y. f' x y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)"
proof (intro Rolle_deriv[OF \<open>a < b\<close>])
fix x
assume x: "a < x" "x < b"
- show "((\<lambda>x. f x - (f b - f a) / (b - a) * x) has_derivative
- (\<lambda>xa. f' x xa - (f b - f a) / (b - a) * xa)) (at x)"
+ show "((\<lambda>x. f x - (f b - f a) / (b - a) * x)
+ has_derivative (\<lambda>y. f' x y - (f b - f a) / (b - a) * y)) (at x)"
by (intro derivative_intros derf[OF x])
qed (use assms in \<open>auto intro!: continuous_intros simp: field_simps\<close>)
- then obtain x where
- "a < x" "x < b"
- "(\<lambda>y. f' x y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)" by metis
+ then obtain \<xi> where
+ "a < \<xi>" "\<xi> < b" "(\<lambda>y. f' \<xi> y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)"
+ by metis
then show ?thesis
by (metis (no_types, hide_lams) that add.right_neutral add_diff_cancel_left' add_diff_eq \<open>a < b\<close>
less_irrefl nonzero_eq_divide_eq)