*** empty log message ***
authorwenzelm
Tue, 27 Aug 2002 11:09:35 +0200
changeset 13535 007559e981c7
parent 13534 ca6debb89d77
child 13536 825249a031c3
*** empty log message ***
src/ZF/AC/AC15_WO6.thy
src/ZF/AC/AC17_AC1.thy
src/ZF/Constructible/Formula.thy
src/ZF/Constructible/Relative.thy
src/ZF/Constructible/Satisfies_absolute.thy
src/ZF/Induct/FoldSet.ML
src/ZF/Induct/Multiset.ML
src/ZF/Induct/Tree_Forest.thy
src/ZF/Integ/Bin.ML
src/ZF/UNITY/WFair.ML
src/ZF/ex/Limit.thy
--- a/src/ZF/AC/AC15_WO6.thy	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/AC/AC15_WO6.thy	Tue Aug 27 11:09:35 2002 +0200
@@ -145,7 +145,7 @@
 lemma OUN_eq_UN: "Ord(x) ==> (\<Union>a<x. F(a)) = (\<Union>a \<in> x. F(a))"
 by (fast intro!: ltI dest!: ltD)
 
-lemma lemma1:
+lemma AC15_WO6_aux1:
      "\<forall>x \<in> Pow(A)-{0}. f`x\<noteq>0 & f`x \<subseteq> x & f`x \<lesssim> m 
       ==> (\<Union>i<LEAST x. HH(f,A,x)={A}. HH(f,A,i)) = A"
 apply (simp add: Ord_Least [THEN OUN_eq_UN])
@@ -155,7 +155,7 @@
            intro!: f_subsets_imp_UN_HH_eq_x [THEN Diff_eq_0_iff [THEN iffD1]])
 done
 
-lemma lemma2:
+lemma AC15_WO6_aux2:
      "\<forall>x \<in> Pow(A)-{0}. f`x\<noteq>0 & f`x \<subseteq> x & f`x \<lesssim> m 
       ==> \<forall>x < (LEAST x. HH(f,A,x)={A}). HH(f,A,x) \<lesssim> m"
 apply (rule oallI)
@@ -163,7 +163,7 @@
 apply (frule HH_subset_imp_eq)
 apply (erule ssubst)
 apply (blast dest!: HH_subset_x_imp_subset_Diff_UN [THEN not_emptyI2])
-	(*but can't use del: DiffE despite the obvious conflictc*)
+	(*but can't use del: DiffE despite the obvious conflict*)
 done
 
 theorem AC15_WO6: "AC15 ==> WO6"
@@ -178,7 +178,7 @@
  apply (rule_tac x = "\<lambda>j \<in> (LEAST i. HH (f,A,i) ={A}) . HH (f,A,j) " in exI)
  apply (simp_all add: ltD)
 apply (fast intro!: Ord_Least lam_type [THEN domain_of_fun]
-            elim!: less_Least_subset_x lemma1 lemma2) 
+            elim!: less_Least_subset_x AC15_WO6_aux1 AC15_WO6_aux2) 
 done
 
 
--- a/src/ZF/AC/AC17_AC1.thy	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/AC/AC17_AC1.thy	Tue Aug 27 11:09:35 2002 +0200
@@ -78,7 +78,7 @@
 apply (blast intro: lam_type)
 done
 
-lemma lemma1:
+lemma AC17_AC1_aux1:
      "[| \<forall>f \<in> Pow(x) - {0} -> x. \<exists>u \<in> Pow(x) - {0}. f`u\<notin>u;   
          \<exists>f \<in> Pow(x)-{0}->x.  
             x - (\<Union>a \<in> (LEAST i. HH(\<lambda>X \<in> Pow(x)-{0}. {f`X},x,i)={x}).   
@@ -94,18 +94,18 @@
 apply (blast dest: apply_type) 
 done
 
-lemma lemma2:
+lemma AC17_AC1_aux2:
       "~ (\<exists>f \<in> Pow(x)-{0}->x. x - F(f) = 0)   
        ==> (\<lambda>f \<in> Pow(x)-{0}->x . x - F(f))   
            \<in> (Pow(x) -{0} -> x) -> Pow(x) - {0}"
 by (fast intro!: lam_type dest!: Diff_eq_0_iff [THEN iffD1])
 
-lemma lemma3:
+lemma AC17_AC1_aux3:
      "[| f`Z \<in> Z; Z \<in> Pow(x)-{0} |] 
       ==> (\<lambda>X \<in> Pow(x)-{0}. {f`X})`Z \<in> Pow(Z)-{0}"
 by auto
 
-lemma lemma4:
+lemma AC17_AC1_aux4:
      "\<exists>f \<in> F. f`((\<lambda>f \<in> F. Q(f))`f) \<in> (\<lambda>f \<in> F. Q(f))`f   
       ==> \<exists>f \<in> F. f`Q(f) \<in> Q(f)"
 by simp
@@ -117,15 +117,15 @@
 apply (case_tac 
        "\<exists>f \<in> Pow(x)-{0} -> x. 
         x - (\<Union>a \<in> (LEAST i. HH (\<lambda>X \<in> Pow (x) -{0}. {f`X},x,i) ={x}) . HH (\<lambda>X \<in> Pow (x) -{0}. {f`X},x,a)) = 0")
-apply (erule lemma1, assumption)
-apply (drule lemma2)
+apply (erule AC17_AC1_aux1, assumption)
+apply (drule AC17_AC1_aux2)
 apply (erule allE)
 apply (drule bspec, assumption)
-apply (drule lemma4)
+apply (drule AC17_AC1_aux4)
 apply (erule bexE)
 apply (drule apply_type, assumption)
 apply (simp add: HH_Least_eq_x del: Diff_iff ) 
-apply (drule lemma3, assumption) 
+apply (drule AC17_AC1_aux3, assumption) 
 apply (fast dest!: subst_elem [OF _ HH_Least_eq_x [symmetric]]
                    f_subset_imp_HH_subset elim!: mem_irrefl)
 done
@@ -142,11 +142,11 @@
 (* AC1 ==> AC2                                                            *)
 (* ********************************************************************** *)
 
-lemma lemma1:
+lemma AC1_AC2_aux1:
      "[| f:(\<Pi>X \<in> A. X);  B \<in> A;  0\<notin>A |] ==> {f`B} \<subseteq> B Int {f`C. C \<in> A}"
 by (fast elim!: apply_type)
 
-lemma lemma2: 
+lemma AC1_AC2_aux2: 
         "[| pairwise_disjoint(A); B \<in> A; C \<in> A; D \<in> B; D \<in> C |] ==> f`B = f`C"
 by (unfold pairwise_disjoint_def, fast)
 
@@ -156,8 +156,8 @@
 apply (rule impI)  
 apply (elim asm_rl conjE allE exE impE, assumption)
 apply (intro exI ballI equalityI)
-prefer 2 apply (rule lemma1, assumption+)
-apply (fast elim!: lemma2 elim: apply_type)
+prefer 2 apply (rule AC1_AC2_aux1, assumption+)
+apply (fast elim!: AC1_AC2_aux2 elim: apply_type)
 done
 
 
@@ -165,30 +165,30 @@
 (* AC2 ==> AC1                                                            *)
 (* ********************************************************************** *)
 
-lemma lemma1: "0\<notin>A ==> 0 \<notin> {B*{B}. B \<in> A}"
+lemma AC2_AC1_aux1: "0\<notin>A ==> 0 \<notin> {B*{B}. B \<in> A}"
 by (fast dest!: sym [THEN Sigma_empty_iff [THEN iffD1]])
 
-lemma lemma2: "[| X*{X} Int C = {y}; X \<in> A |]   
+lemma AC2_AC1_aux2: "[| X*{X} Int C = {y}; X \<in> A |]   
                ==> (THE y. X*{X} Int C = {y}): X*A"
 apply (rule subst_elem [of y])
 apply (blast elim!: equalityE)
 apply (auto simp add: singleton_eq_iff) 
 done
 
-lemma lemma3:
+lemma AC2_AC1_aux3:
      "\<forall>D \<in> {E*{E}. E \<in> A}. \<exists>y. D Int C = {y}   
       ==> (\<lambda>x \<in> A. fst(THE z. (x*{x} Int C = {z}))) \<in> (\<Pi>X \<in> A. X)"
 apply (rule lam_type)
 apply (drule bspec, blast)
-apply (blast intro: lemma2 fst_type)
+apply (blast intro: AC2_AC1_aux2 fst_type)
 done
 
 lemma AC2_AC1: "AC2 ==> AC1"
 apply (unfold AC1_def AC2_def pairwise_disjoint_def)
 apply (intro allI impI)
 apply (elim allE impE)
-prefer 2 apply (fast elim!: lemma3) 
-apply (blast intro!: lemma1)
+prefer 2 apply (fast elim!: AC2_AC1_aux3) 
+apply (blast intro!: AC2_AC1_aux1)
 done
 
 
@@ -211,21 +211,21 @@
 (* AC4 ==> AC3                                                            *)
 (* ********************************************************************** *)
 
-lemma lemma1: "f \<in> A->B ==> (\<Union>z \<in> A. {z}*f`z) \<subseteq> A*Union(B)"
+lemma AC4_AC3_aux1: "f \<in> A->B ==> (\<Union>z \<in> A. {z}*f`z) \<subseteq> A*Union(B)"
 by (fast dest!: apply_type)
 
-lemma lemma2: "domain(\<Union>z \<in> A. {z}*f(z)) = {a \<in> A. f(a)\<noteq>0}"
+lemma AC4_AC3_aux2: "domain(\<Union>z \<in> A. {z}*f(z)) = {a \<in> A. f(a)\<noteq>0}"
 by blast
 
-lemma lemma3: "x \<in> A ==> (\<Union>z \<in> A. {z}*f(z))``{x} = f(x)"
+lemma AC4_AC3_aux3: "x \<in> A ==> (\<Union>z \<in> A. {z}*f(z))``{x} = f(x)"
 by fast
 
 lemma AC4_AC3: "AC4 ==> AC3"
 apply (unfold AC3_def AC4_def)
 apply (intro allI ballI)
 apply (elim allE impE)
-apply (erule lemma1)
-apply (simp add: lemma2 lemma3 cong add: Pi_cong)
+apply (erule AC4_AC3_aux1)
+apply (simp add: AC4_AC3_aux2 AC4_AC3_aux3 cong add: Pi_cong)
 done
 
 (* ********************************************************************** *)
@@ -264,18 +264,18 @@
 (* AC5 ==> AC4, Rubin & Rubin, p. 11                                      *)
 (* ********************************************************************** *)
 
-lemma lemma1: "R \<subseteq> A*B ==> (\<lambda>x \<in> R. fst(x)) \<in> R -> A"
+lemma AC5_AC4_aux1: "R \<subseteq> A*B ==> (\<lambda>x \<in> R. fst(x)) \<in> R -> A"
 by (fast intro!: lam_type fst_type)
 
-lemma lemma2: "R \<subseteq> A*B ==> range(\<lambda>x \<in> R. fst(x)) = domain(R)"
+lemma AC5_AC4_aux2: "R \<subseteq> A*B ==> range(\<lambda>x \<in> R. fst(x)) = domain(R)"
 by (unfold lam_def, force)
 
-lemma lemma3: "[| \<exists>f \<in> A->C. P(f,domain(f)); A=B |] ==>  \<exists>f \<in> B->C. P(f,B)"
+lemma AC5_AC4_aux3: "[| \<exists>f \<in> A->C. P(f,domain(f)); A=B |] ==>  \<exists>f \<in> B->C. P(f,B)"
 apply (erule bexE)
 apply (frule domain_of_fun, fast)
 done
 
-lemma lemma4: "[| R \<subseteq> A*B; g \<in> C->R; \<forall>x \<in> C. (\<lambda>z \<in> R. fst(z))` (g`x) = x |]  
+lemma AC5_AC4_aux4: "[| R \<subseteq> A*B; g \<in> C->R; \<forall>x \<in> C. (\<lambda>z \<in> R. fst(z))` (g`x) = x |]  
                 ==> (\<lambda>x \<in> C. snd(g`x)): (\<Pi>x \<in> C. R``{x})"
 apply (rule lam_type)
 apply (force dest: apply_type)
@@ -284,9 +284,9 @@
 lemma AC5_AC4: "AC5 ==> AC4"
 apply (unfold AC4_def AC5_def, clarify)
 apply (elim allE ballE)
-apply (drule lemma3 [OF _ lemma2], assumption)
-apply (fast elim!: lemma4)
-apply (blast intro: lemma1) 
+apply (drule AC5_AC4_aux3 [OF _ AC5_AC4_aux2], assumption)
+apply (fast elim!: AC5_AC4_aux4)
+apply (blast intro: AC5_AC4_aux1) 
 done
 
 
--- a/src/ZF/Constructible/Formula.thy	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/Constructible/Formula.thy	Tue Aug 27 11:09:35 2002 +0200
@@ -164,11 +164,6 @@
        ==> (P | Q) <-> sats(A, Or(p,q), env)"
 by (simp add: sats_Or_iff)
 
-lemma imp_iff_sats:
-      "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
-       ==> (P --> Q) <-> sats(A, Implies(p,q), env)"
-by (simp add: sats_Forall_iff) 
-
 lemma iff_iff_sats:
       "[| P <-> sats(A,p,env); Q <-> sats(A,q,env); env \<in> list(A)|]
        ==> (P <-> Q) <-> sats(A, Iff(p,q), env)"
@@ -819,8 +814,6 @@
 apply (blast intro: doubleton_in_Lset) 
 done
 
-lemmas zero_in_LLimit = Limit_has_0 [THEN ltD, THEN zero_in_Lset, standard]
-
 lemma singleton_in_LLimit:
     "[| a: Lset(i);  Limit(i) |] ==> {a} : Lset(i)"
 apply (erule Limit_LsetE, assumption)
@@ -974,7 +967,7 @@
 done
 
 text{*Kunen's VI, 1.12 *}
-lemma Lset_subset_Vset: "i \<in> nat ==> Lset(i) = Vset(i)";
+lemma Lset_subset_Vset': "i \<in> nat ==> Lset(i) = Vset(i)";
 apply (erule nat_induct)
  apply (simp add: Vfrom_0) 
 apply (simp add: Lset_succ Vset_succ Finite_Vset Finite_DPow_eq_Pow) 
--- a/src/ZF/Constructible/Relative.thy	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/Constructible/Relative.thy	Tue Aug 27 11:09:35 2002 +0200
@@ -802,14 +802,6 @@
       ==> is_nat_case(M, a, is_b, k, z) <-> is_nat_case(M, a', is_b', k', z')"
 by (simp add: is_nat_case_def) 
 
-lemma (in M_triv_axioms) Inl_in_M_iff [iff]:
-     "M(Inl(a)) <-> M(a)"
-by (simp add: Inl_def) 
-
-lemma (in M_triv_axioms) Inr_in_M_iff [iff]:
-     "M(Inr(a)) <-> M(a)"
-by (simp add: Inr_def)
-
 
 subsection{*Absoluteness for Ordinals*}
 text{*These results constitute Theorem IV 5.1 of Kunen (page 126).*}
--- a/src/ZF/Constructible/Satisfies_absolute.thy	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/Constructible/Satisfies_absolute.thy	Tue Aug 27 11:09:35 2002 +0200
@@ -595,8 +595,8 @@
 done
 
 lemmas (in M_satisfies) 
-    satisfies_closed = Formula_Rec.formula_rec_closed [OF Formula_Rec_M]
-and satisfies_abs    = Formula_Rec.formula_rec_abs [OF Formula_Rec_M]
+    satisfies_closed' = Formula_Rec.formula_rec_closed [OF Formula_Rec_M]
+and satisfies_abs'    = Formula_Rec.formula_rec_abs [OF Formula_Rec_M]
 
 
 lemma (in M_satisfies) satisfies_closed:
--- a/src/ZF/Induct/FoldSet.ML	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/Induct/FoldSet.ML	Tue Aug 27 11:09:35 2002 +0200
@@ -301,7 +301,7 @@
 by (asm_simp_tac (simpset() addsimps [setsum_def]) 2);
 by (etac Finite_induct 1);
 by Auto_tac;
-qed "setsum_0";
+qed "setsum_K0";
 
 (*The reversed orientation looks more natural, but LOOPS as a simprule!*)
 Goal "[| Finite(C); Finite(D) |] \
--- a/src/ZF/Induct/Multiset.ML	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/Induct/Multiset.ML	Tue Aug 27 11:09:35 2002 +0200
@@ -206,7 +206,7 @@
 by (res_inst_tac [("x", "{x:A . 0<f`x}")] exI 1);
 by (auto_tac (claset() addIs [Collect_subset RS subset_Finite,
                               funrestrict_type], simpset()));
-qed "normalize_multiset";
+qed "multiset_normalize";
 
 (** Typechecking rules for union and difference of multisets **)
 
@@ -231,7 +231,7 @@
 
 Goalw [mdiff_def]
 "multiset(M) ==> multiset(M -# N)";
-by (res_inst_tac [("A", "mset_of(M)")] normalize_multiset 1);
+by (res_inst_tac [("A", "mset_of(M)")] multiset_normalize 1);
 by (asm_simp_tac (simpset() addsimps [multiset_set_of_Finite]) 2);
 by (auto_tac (claset(), simpset() addsimps [mset_of_def, multiset_def]));
 by (auto_tac (claset() addSIs [lam_type], 
--- a/src/ZF/Induct/Tree_Forest.thy	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/Induct/Tree_Forest.thy	Tue Aug 27 11:09:35 2002 +0200
@@ -45,7 +45,7 @@
   apply (rule Part_subset)
   done
 
-lemma treeI [TC]: "x \<in> forest(A) ==> x \<in> tree_forest(A)"
+lemma treeI' [TC]: "x \<in> forest(A) ==> x \<in> tree_forest(A)"
   by (rule forest_subset_TF [THEN subsetD])
 
 lemma TF_equals_Un: "tree(A) \<union> forest(A) = tree_forest(A)"
--- a/src/ZF/Integ/Bin.ML	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/Integ/Bin.ML	Tue Aug 27 11:09:35 2002 +0200
@@ -412,10 +412,6 @@
 Delsimps [integ_of_Pls, integ_of_Min, integ_of_BIT];
 
 
-bind_thms ("NCons_simps", 
-	   [NCons_Pls_0, NCons_Pls_1, NCons_Min_0, NCons_Min_1, NCons_BIT]);
-
-
 bind_thms ("bin_arith_extra_simps",
     [integ_of_add RS sym,   (*invoke bin_add*)
      integ_of_minus RS sym, (*invoke bin_minus*)
--- a/src/ZF/UNITY/WFair.ML	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/UNITY/WFair.ML	Tue Aug 27 11:09:35 2002 +0200
@@ -387,7 +387,7 @@
 by (blast_tac (claset() addIs leadsTo_refl::prems) 1);
 by (rtac (major RS leadsTo_induct) 1);
 by (REPEAT (blast_tac (claset() addIs prems) 1));
-qed "lemma";
+qed "leadsTo_induct_pre_aux";
 
 
 val [major, zb_prem, basis_prem, union_prem] = Goal
@@ -399,7 +399,7 @@
 by (cut_facts_tac [major] 1);
 by (subgoal_tac "(F : za leadsTo zb) & P(za)" 1);
 by (etac conjunct2 1);
-by (rtac (major RS lemma) 1);
+by (rtac (major RS leadsTo_induct_pre_aux) 1);
 by (blast_tac (claset() addDs [leadsToD2]
                         addIs [leadsTo_Union,union_prem]) 3);
 by (blast_tac (claset() addIs [leadsTo_Trans,basis_prem, leadsTo_Basis]) 2);
@@ -501,7 +501,7 @@
 by (blast_tac (claset() addIs [leadsTo_cancel1, leadsTo_Un_duplicate]) 1);
 by (auto_tac (claset() addIs [leadsTo_UN], 
               simpset()  delsimps UN_simps addsimps [Int_UN_distrib]));
-qed "lemma1";
+qed "leadsTo_wf_induct_aux";
 
 (** Meta or object quantifier ? **)
 Goal "[| wf(r); \
@@ -515,7 +515,7 @@
 by (res_inst_tac [("I", "I")] leadsTo_UN 2);
 by (REPEAT (assume_tac 2));
 by (Clarify_tac 2);
-by (eres_inst_tac [("I", "I")] lemma1 2);
+by (eres_inst_tac [("I", "I")] leadsTo_wf_induct_aux 2);
 by (REPEAT (assume_tac 2));
 by (rtac equalityI 1);
 by Safe_tac;
@@ -602,7 +602,7 @@
 \   ==> F : (A1 Un A2 - C) co (A1 Un A2 Un C)";
 by (Clarify_tac 1);
 by (Blast_tac 1);
-qed "lemma1";
+qed "leadsTo_123_aux";
 
 (*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*)
 (* slightly different from the HOL one: B here is bounded *)
@@ -615,7 +615,7 @@
 (*Trans*)
 by (Clarify_tac 1);
 by (res_inst_tac [("x", "Ba Un Bb")] bexI 1);
-by (blast_tac (claset() addIs [lemma1,leadsTo_Un_Un, leadsTo_cancel1,
+by (blast_tac (claset() addIs [leadsTo_123_aux,leadsTo_Un_Un, leadsTo_cancel1,
                                leadsTo_Un_duplicate]) 1);
 by (Blast_tac 1);
 (*Union*)
--- a/src/ZF/ex/Limit.thy	Tue Aug 27 11:09:33 2002 +0200
+++ b/src/ZF/ex/Limit.thy	Tue Aug 27 11:09:35 2002 +0200
@@ -542,12 +542,12 @@
                      matrix_chain_lub isub_lemma)
 done
 
-lemma lemma1:
+lemma lub_matrix_diag_aux1:
     "lub(D,(\<lambda>n \<in> nat. lub(D,\<lambda>m \<in> nat. M`n`m))) =
      (THE x. islub(D, (\<lambda>n \<in> nat. lub(D,\<lambda>m \<in> nat. M`n`m)), x))"
 by (simp add: lub_def)
 
-lemma lemma2:
+lemma lub_matrix_diag_aux2:
     "lub(D,(\<lambda>n \<in> nat. M`n`n)) =
      (THE x. islub(D, (\<lambda>n \<in> nat. M`n`n), x))"
 by (simp add: lub_def)
@@ -556,7 +556,7 @@
     "[|matrix(D,M); cpo(D)|] 
      ==> lub(D,(\<lambda>n \<in> nat. lub(D,\<lambda>m \<in> nat. M`n`m))) =
          lub(D,(\<lambda>n \<in> nat. M`n`n))"
-apply (simp (no_asm) add: lemma1 lemma2)
+apply (simp (no_asm) add: lub_matrix_diag_aux1 lub_matrix_diag_aux2)
 apply (simp add: islub_def isub_eq)
 done
 
@@ -876,7 +876,7 @@
 lemmas id_comp = fun_is_rel [THEN left_comp_id]
 and    comp_id = fun_is_rel [THEN right_comp_id]
 
-lemma lemma1:
+lemma projpair_unique_aux1:
     "[|cpo(D); cpo(E); projpair(D,E,e,p); projpair(D,E,e',p');
        rel(cf(D,E),e,e')|] ==> rel(cf(E,D),p',p)"
 apply (rule_tac b=p' in
@@ -899,7 +899,7 @@
 
 text{*Proof's very like the previous one.  Is there a pattern that
       could be exploited?*}
-lemma lemma2:
+lemma projpair_unique_aux2:
     "[|cpo(D); cpo(E); projpair(D,E,e,p); projpair(D,E,e',p');
        rel(cf(E,D),p',p)|] ==> rel(cf(D,E),e,e')"
 apply (rule_tac b=e
@@ -923,7 +923,7 @@
 lemma projpair_unique:
     "[|cpo(D); cpo(E); projpair(D,E,e,p); projpair(D,E,e',p')|] 
      ==> (e=e')<->(p=p')"
-by (blast intro: cpo_antisym lemma1 lemma2 cpo_cf cont_cf
+by (blast intro: cpo_antisym projpair_unique_aux1 projpair_unique_aux2 cpo_cf cont_cf
           dest: projpair_ep_cont)
 
 (* Slightly different, more asms, since THE chooses the unique element. *)
@@ -1763,7 +1763,7 @@
 
 (* 32 vs 61, using safe_tac with imp in asm would be unfortunate (5steps) *)
 
-lemma lemma1:
+lemma eps1_aux1:
     "[|m le n; emb_chain(DD,ee); x \<in> set(Dinf(DD,ee)); m \<in> nat; n \<in> nat|] 
      ==> rel(DD`n,e_less(DD,ee,m,n)`(x`m),x`n)"
 apply (erule rev_mp) (* For induction proof *)
@@ -1807,7 +1807,7 @@
 
 (* 18 vs 40 *)
 
-lemma lemma2:
+lemma eps1_aux2:
     "[|n le m; emb_chain(DD,ee); x \<in> set(Dinf(DD,ee)); m \<in> nat; n \<in> nat|] 
      ==> rel(DD`n,e_gr(DD,ee,m,n)`(x`m),x`n)"
 apply (erule rev_mp) (* For induction proof *)
@@ -1835,7 +1835,7 @@
     "[|emb_chain(DD,ee); x \<in> set(Dinf(DD,ee)); m \<in> nat; n \<in> nat|] 
      ==> rel(DD`n,eps(DD,ee,m,n)`(x`m),x`n)"
 apply (simp add: eps_def)
-apply (blast intro: lemma1 not_le_iff_lt [THEN iffD1, THEN leI, THEN lemma2]  
+apply (blast intro: eps1_aux1 not_le_iff_lt [THEN iffD1, THEN leI, THEN eps1_aux2]
                     nat_into_Ord)
 done
 
@@ -1894,7 +1894,7 @@
   "[| emb_chain(DD,ee); n \<in> nat |] ==> emb(DD`n,Dinf(DD,ee),rho_emb(DD,ee,n))"
 by (auto simp add: emb_def intro: exI rho_projpair)
 
-lemma commuteI: "[| emb_chain(DD,ee); n \<in> nat |] 
+lemma rho_proj_cont: "[| emb_chain(DD,ee); n \<in> nat |] 
      ==> rho_proj(DD,ee,n) \<in> cont(Dinf(DD,ee),DD`n)"
 by (auto intro: rho_projpair projpair_p_cont)