--- a/doc-src/Nitpick/nitpick.tex Tue Apr 13 11:13:52 2010 +0200
+++ b/doc-src/Nitpick/nitpick.tex Tue Apr 13 11:43:11 2010 +0200
@@ -1445,8 +1445,8 @@
(\!\begin{aligned}[t]%
& \xi_1 := \xi_2,\> \xi_2 := \xi_2, \\[-2pt]
& \textit{Branch}~\xi_1~\xi_2 := \xi_2)\end{aligned}$ \\[2\smallskipamount]
-The existence of a nonstandard model suggests that the induction hypothesis is not general enough or perhaps
-even wrong. See the ``Inductive Properties'' section of the Nitpick manual for details (``\textit{isabelle doc nitpick}'').
+The existence of a nonstandard model suggests that the induction hypothesis is not general enough or may even
+be wrong. See the Nitpick manual's ``Inductive Properties'' section for details (``\textit{isabelle doc nitpick}'').
\postw
Reading the Nitpick manual is a most excellent idea.
--- a/src/HOL/Tools/Nitpick/nitpick.ML Tue Apr 13 11:13:52 2010 +0200
+++ b/src/HOL/Tools/Nitpick/nitpick.ML Tue Apr 13 11:43:11 2010 +0200
@@ -658,9 +658,9 @@
();
if not standard andalso likely_in_struct_induct_step then
print "The existence of a nonstandard model suggests that the \
- \induction hypothesis is not general enough or perhaps \
- \even wrong. See the \"Inductive Properties\" section of \
- \the Nitpick manual for details (\"isabelle doc nitpick\")."
+ \induction hypothesis is not general enough or may even be \
+ \wrong. See the Nitpick manual's \"Inductive Properties\" \
+ \section for details (\"isabelle doc nitpick\")."
else
();
if has_syntactic_sorts orig_t then
--- a/src/HOL/Tools/Nitpick/nitpick_hol.ML Tue Apr 13 11:13:52 2010 +0200
+++ b/src/HOL/Tools/Nitpick/nitpick_hol.ML Tue Apr 13 11:43:11 2010 +0200
@@ -1265,9 +1265,8 @@
boring <> is_funky_typedef_name thy s andalso is_typedef thy s
| is_typedef_axiom _ _ _ = false
(* term -> bool *)
-fun is_class_axiom t =
- (t |> Logic.strip_horn |> swap |> op :: |> map Logic.dest_of_class; true)
- handle TERM _ => false
+val is_class_axiom =
+ Logic.strip_horn #> swap #> op :: #> forall (can Logic.dest_of_class)
(* Distinguishes between (1) constant definition axioms, (2) type arity and
typedef axioms, and (3) other axioms, and returns the pair ((1), (3)).