--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nominal/Examples/SOS.thy Fri Mar 16 17:12:52 2007 +0100
@@ -0,0 +1,1423 @@
+(* "$Id$" *)
+(* *)
+(* Formalisation of some typical SOS-proofs from a *)
+(* challenge suggested by Adam Chlipala. *)
+(* *)
+(* We thank Nick Benton for hellping us with the *)
+(* termination-proof for evaluation . *)
+
+theory SOS
+ imports "Nominal"
+begin
+
+atom_decl name
+
+nominal_datatype data =
+ DNat
+ | DProd "data" "data"
+ | DSum "data" "data"
+
+nominal_datatype ty =
+ Data "data"
+ | Arrow "ty" "ty" ("_\<rightarrow>_" [100,100] 100)
+
+nominal_datatype trm =
+ Var "name"
+ | Lam "\<guillemotleft>name\<guillemotright>trm" ("Lam [_]._" [100,100] 100)
+ | App "trm" "trm"
+ | Const "nat"
+ | Pr "trm" "trm"
+ | Fst "trm"
+ | Snd "trm"
+ | InL "trm"
+ | InR "trm"
+ | Case "trm" "\<guillemotleft>name\<guillemotright>trm" "\<guillemotleft>name\<guillemotright>trm" ("Case _ of inl _ \<rightarrow> _ | inr _ \<rightarrow> _" [100,100,100,100,100] 100)
+
+lemma in_eqvt[eqvt]:
+ fixes pi::"name prm"
+ and x::"'a::pt_name"
+ assumes "x\<in>X"
+ shows "pi\<bullet>x \<in> pi\<bullet>X"
+ using assms by (perm_simp add: pt_set_bij1a[OF pt_name_inst, OF at_name_inst])
+
+lemma perm_data[simp]:
+ fixes D::"data"
+ and pi::"name prm"
+ shows "pi\<bullet>D = D"
+ by (induct D rule: data.induct_weak) (simp_all)
+
+lemma perm_ty[simp]:
+ fixes T::"ty"
+ and pi::"name prm"
+ shows "pi\<bullet>T = T"
+ by (induct T rule: ty.induct_weak) (simp_all)
+
+lemma fresh_ty[simp]:
+ fixes x::"name"
+ and T::"ty"
+ shows "x\<sharp>T"
+ by (simp add: fresh_def supp_def)
+
+text {* substitution *}
+
+fun
+ lookup :: "(name\<times>trm) list \<Rightarrow> name \<Rightarrow> trm"
+where
+ "lookup [] x = Var x"
+ "lookup ((y,e)#\<theta>) x = (if x=y then e else lookup \<theta> x)"
+
+lemma lookup_eqvt:
+ fixes pi::"name prm"
+ and \<theta>::"(name\<times>trm) list"
+ and X::"name"
+ shows "pi\<bullet>(lookup \<theta> X) = lookup (pi\<bullet>\<theta>) (pi\<bullet>X)"
+by (induct \<theta>, auto simp add: perm_bij)
+
+lemma lookup_fresh:
+ fixes z::"name"
+ assumes "z\<sharp>\<theta>" and "z\<sharp>x"
+ shows "z \<sharp>lookup \<theta> x"
+using assms
+by (induct rule: lookup.induct) (auto simp add: fresh_list_cons)
+
+lemma lookup_fresh':
+ assumes "z\<sharp>\<theta>"
+ shows "lookup \<theta> z = Var z"
+using assms
+by (induct rule: lookup.induct)
+ (auto simp add: fresh_list_cons fresh_prod fresh_atm)
+
+consts
+ psubst :: "(name\<times>trm) list \<Rightarrow> trm \<Rightarrow> trm" ("_<_>" [95,95] 105)
+
+nominal_primrec
+ "\<theta><(Var x)> = (lookup \<theta> x)"
+ "\<theta><(App e\<^isub>1 e\<^isub>2)> = App (\<theta><e\<^isub>1>) (\<theta><e\<^isub>2>)"
+ "x\<sharp>\<theta> \<Longrightarrow> \<theta><(Lam [x].e)> = Lam [x].(\<theta><e>)"
+ "\<theta><(Const n)> = Const n"
+ "\<theta><(Pr e\<^isub>1 e\<^isub>2)> = Pr (\<theta><e\<^isub>1>) (\<theta><e\<^isub>2>)"
+ "\<theta><(Fst e)> = Fst (\<theta><e>)"
+ "\<theta><(Snd e)> = Snd (\<theta><e>)"
+ "\<theta><(InL e)> = InL (\<theta><e>)"
+ "\<theta><(InR e)> = InR (\<theta><e>)"
+ "\<lbrakk>y\<noteq>x; x\<sharp>(e,e\<^isub>2,\<theta>); y\<sharp>(e,e\<^isub>1,\<theta>)\<rbrakk>
+ \<Longrightarrow> \<theta><(Case e of inl x \<rightarrow> e\<^isub>1 | inr y \<rightarrow> e\<^isub>2)> =
+ (Case (\<theta><e>) of inl x \<rightarrow> (\<theta><e\<^isub>1>) | inr y \<rightarrow> (\<theta><e\<^isub>2>))"
+ apply(finite_guess add: lookup_eqvt)+
+ apply(rule TrueI)+
+ apply(simp add: abs_fresh)+
+ apply(fresh_guess add: fs_name1 lookup_eqvt)+
+ done
+
+lemma psubst_eqvt[eqvt]:
+ fixes pi::"name prm"
+ and t::"trm"
+ shows "pi\<bullet>(\<theta><t>) = (pi\<bullet>\<theta>)<(pi\<bullet>t)>"
+ by (nominal_induct t avoiding: \<theta> rule: trm.induct)
+ (perm_simp add: fresh_bij lookup_eqvt)+
+
+lemma fresh_psubst:
+ fixes z::"name"
+ and t::"trm"
+ assumes "z\<sharp>t" and "z\<sharp>\<theta>"
+ shows "z\<sharp>(\<theta><t>)"
+using assms
+by (nominal_induct t avoiding: z \<theta> t rule: trm.induct)
+ (auto simp add: abs_fresh lookup_fresh)
+
+abbreviation
+ subst :: "trm \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> trm" ("_[_::=_]" [100,100,100] 100)
+ where "t[x::=t'] \<equiv> ([(x,t')])<t>"
+
+lemma subst[simp]:
+ shows "(Var x)[y::=t'] = (if x=y then t' else (Var x))"
+ and "(App t\<^isub>1 t\<^isub>2)[y::=t'] = App (t\<^isub>1[y::=t']) (t\<^isub>2[y::=t'])"
+ and "x\<sharp>(y,t') \<Longrightarrow> (Lam [x].t)[y::=t'] = Lam [x].(t[y::=t'])"
+ and "(Const n)[y::=t'] = Const n"
+ and "(Pr e\<^isub>1 e\<^isub>2)[y::=t'] = Pr (e\<^isub>1[y::=t']) (e\<^isub>2[y::=t'])"
+ and "(Fst e)[y::=t'] = Fst (e[y::=t'])"
+ and "(Snd e)[y::=t'] = Snd (e[y::=t'])"
+ and "(InL e)[y::=t'] = InL (e[y::=t'])"
+ and "(InR e)[y::=t'] = InR (e[y::=t'])"
+ and "\<lbrakk>z\<noteq>x; x\<sharp>(y,e,e\<^isub>2,t'); z\<sharp>(y,e,e\<^isub>1,t')\<rbrakk>
+ \<Longrightarrow> (Case e of inl x \<rightarrow> e\<^isub>1 | inr z \<rightarrow> e\<^isub>2)[y::=t'] =
+ (Case (e[y::=t']) of inl x \<rightarrow> (e\<^isub>1[y::=t']) | inr z \<rightarrow> (e\<^isub>2[y::=t']))"
+ by (simp_all add: fresh_list_cons fresh_list_nil)
+
+lemma subst_eqvt[eqvt]:
+ fixes pi::"name prm"
+ and t::"trm"
+ shows "pi\<bullet>(t[x::=t']) = (pi\<bullet>t)[(pi\<bullet>x)::=(pi\<bullet>t')]"
+ by (nominal_induct t avoiding: x t' rule: trm.induct)
+ (perm_simp add: fresh_bij)+
+
+
+lemma subst_rename:
+ fixes c::"name"
+ and t\<^isub>1::"trm"
+ assumes "c\<sharp>t\<^isub>1"
+ shows "t\<^isub>1[a::=t\<^isub>2] = ([(c,a)]\<bullet>t\<^isub>1)[c::=t\<^isub>2]"
+ using assms
+ apply(nominal_induct t\<^isub>1 avoiding: a c t\<^isub>2 rule: trm.induct)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp add: trm.inject calc_atm fresh_atm abs_fresh perm_nat_def)
+ apply(simp (no_asm_use))
+ apply(rule sym)
+ apply(rule trans)
+ apply(rule subst)
+ apply(simp add: perm_bij)
+ apply(simp add: fresh_prod)
+ apply(simp add: fresh_bij)
+ apply(simp add: calc_atm fresh_atm)
+ apply(simp add: fresh_prod)
+ apply(simp add: fresh_bij)
+ apply(simp add: calc_atm fresh_atm)
+ apply(rule sym)
+ apply(rule trans)
+ apply(rule subst)
+ apply(simp add: fresh_atm)
+ apply(simp)
+ apply(simp)
+ apply(simp (no_asm_use) add: trm.inject)
+ apply(rule conjI)
+ apply(blast)
+ apply(rule conjI)
+ apply(rotate_tac 12)
+ apply(drule_tac x="a" in meta_spec)
+ apply(rotate_tac 14)
+ apply(drule_tac x="c" in meta_spec)
+ apply(rotate_tac 14)
+ apply(drule_tac x="t\<^isub>2" in meta_spec)
+ apply(simp add: calc_atm fresh_atm alpha abs_fresh)
+ apply(rotate_tac 13)
+ apply(drule_tac x="a" in meta_spec)
+ apply(rotate_tac 14)
+ apply(drule_tac x="c" in meta_spec)
+ apply(rotate_tac 14)
+ apply(drule_tac x="t\<^isub>2" in meta_spec)
+ apply(simp add: calc_atm fresh_atm alpha abs_fresh)
+ done
+
+lemma fresh_subst:
+ fixes z::"name"
+ and t\<^isub>1::"trm"
+ and t2::"trm"
+ assumes "z\<sharp>t\<^isub>1" and "z\<sharp>t\<^isub>2"
+ shows "z\<sharp>t\<^isub>1[y::=t\<^isub>2]"
+using assms
+by (nominal_induct t\<^isub>1 avoiding: z y t\<^isub>2 rule: trm.induct)
+ (auto simp add: abs_fresh fresh_atm)
+
+lemma fresh_subst':
+ fixes z::"name"
+ and t\<^isub>1::"trm"
+ and t2::"trm"
+ assumes "z\<sharp>[y].t\<^isub>1" and "z\<sharp>t\<^isub>2"
+ shows "z\<sharp>t\<^isub>1[y::=t\<^isub>2]"
+using assms
+by (nominal_induct t\<^isub>1 avoiding: y t\<^isub>2 z rule: trm.induct)
+ (auto simp add: abs_fresh fresh_nat fresh_atm)
+
+lemma forget:
+ fixes x::"name"
+ and L::"trm"
+ assumes "x\<sharp>L"
+ shows "L[x::=P] = L"
+ using assms
+ by (nominal_induct L avoiding: x P rule: trm.induct)
+ (auto simp add: fresh_atm abs_fresh)
+
+lemma subst_fun_eq:
+ fixes u::trm
+ assumes "[x].t\<^isub>1 = [y].t\<^isub>2"
+ shows "t\<^isub>1[x::=u] = t\<^isub>2[y::=u]"
+proof -
+ {
+ assume "x=y" and "t\<^isub>1=t\<^isub>2"
+ then have ?thesis using assms by simp
+ }
+ moreover
+ {
+ assume h1:"x \<noteq> y" and h2:"t\<^isub>1=[(x,y)]\<bullet>t\<^isub>2" and h3:"x \<sharp> t\<^isub>2"
+ then have "([(x,y)]\<bullet>t\<^isub>2)[x::=u] = t\<^isub>2[y::=u]" by (simp add: subst_rename)
+ then have ?thesis using h2 by simp
+ }
+ ultimately show ?thesis using alpha assms by blast
+qed
+
+lemma psubst_empty[simp]:
+ shows "[]<t> = t"
+ by (nominal_induct t rule: trm.induct, auto simp add:fresh_list_nil)
+
+lemma psubst_subst_psubst:
+assumes h:"x\<sharp>\<theta>"
+shows "\<theta><e>[x::=e'] = ((x,e')#\<theta>)<e>"
+using h
+apply(nominal_induct e avoiding: \<theta> x e' rule: trm.induct)
+apply(auto simp add: fresh_list_cons fresh_atm forget lookup_fresh lookup_fresh' fresh_psubst)
+done
+
+lemma fresh_subst_fresh:
+ assumes "a\<sharp>e"
+ shows "a\<sharp>t[a::=e]"
+using assms
+by (nominal_induct t avoiding: a e rule: trm.induct)
+ (auto simp add: fresh_atm abs_fresh fresh_nat)
+
+text {* Typing *}
+
+inductive2
+ valid :: "(name \<times> 'a::pt_name) list \<Rightarrow> bool"
+where
+ v_nil[intro]: "valid []"
+ | v_cons[intro]: "\<lbrakk>valid \<Gamma>;x\<sharp>\<Gamma>\<rbrakk> \<Longrightarrow> valid ((x,T)#\<Gamma>)"
+
+nominal_inductive valid
+
+inductive_cases2
+ valid_cons_inv_auto[elim]:"valid ((x,T)#\<Gamma>)"
+
+abbreviation
+ "sub" :: "(name\<times>ty) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" ("_ \<lless> _" [55,55] 55)
+where
+ "\<Gamma>\<^isub>1 \<lless> \<Gamma>\<^isub>2 \<equiv> \<forall>x T. (x,T)\<in>set \<Gamma>\<^isub>1 \<longrightarrow> (x,T)\<in>set \<Gamma>\<^isub>2"
+
+lemma type_unicity_in_context:
+ assumes asm1: "(x,t\<^isub>2) \<in> set ((x,t\<^isub>1)#\<Gamma>)"
+ and asm2: "valid ((x,t\<^isub>1)#\<Gamma>)"
+ shows "t\<^isub>1=t\<^isub>2"
+proof -
+ from asm2 have "x\<sharp>\<Gamma>" by (cases, auto)
+ then have "(x,t\<^isub>2) \<notin> set \<Gamma>"
+ by (induct \<Gamma>) (auto simp add: fresh_list_cons fresh_prod fresh_atm)
+ then have "(x,t\<^isub>2) = (x,t\<^isub>1)" using asm1 by auto
+ then show "t\<^isub>1 = t\<^isub>2" by auto
+qed
+
+lemma case_distinction_on_context:
+ fixes \<Gamma>::"(name \<times> ty) list"
+ assumes asm1: "valid ((m,t)#\<Gamma>)"
+ and asm2: "(n,U) \<in> set ((m,T)#\<Gamma>)"
+ shows "(n,U) = (m,T) \<or> ((n,U) \<in> set \<Gamma> \<and> n \<noteq> m)"
+proof -
+from asm2 have "(n,U) \<in> set [(m,T)] \<or> (n,U) \<in> set \<Gamma>" by auto
+moreover
+{ assume eq: "m=n"
+ assume "(n,U) \<in> set \<Gamma>"
+ then have "\<not> n\<sharp>\<Gamma>"
+ by (induct \<Gamma>) (auto simp add: fresh_list_cons fresh_prod fresh_atm)
+ moreover have "m\<sharp>\<Gamma>" using asm1 by auto
+ ultimately have False using eq by auto
+}
+ultimately show ?thesis by auto
+qed
+
+inductive2
+ typing :: "(name\<times>ty) list\<Rightarrow>trm\<Rightarrow>ty\<Rightarrow>bool" ("_ \<turnstile> _ : _" [60,60,60] 60)
+where
+ t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x,T)\<in>set \<Gamma>\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
+| t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> e\<^isub>1 : T\<^isub>1\<rightarrow>T\<^isub>2; \<Gamma> \<turnstile> e\<^isub>2 : T\<^isub>1\<rbrakk>\<Longrightarrow> \<Gamma> \<turnstile> App e\<^isub>1 e\<^isub>2 : T\<^isub>2"
+| t_Lam[intro]: "\<lbrakk>x\<sharp>\<Gamma>; (x,T\<^isub>1)#\<Gamma> \<turnstile> e : T\<^isub>2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam [x].e : T\<^isub>1\<rightarrow>T\<^isub>2"
+| t_Const[intro]: "valid \<Gamma> \<Longrightarrow> \<Gamma> \<turnstile> Const n : Data(DNat)"
+| t_Pr[intro]: "\<lbrakk>\<Gamma> \<turnstile> e\<^isub>1 : Data(S\<^isub>1); \<Gamma> \<turnstile> e\<^isub>2 : Data(S\<^isub>2)\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Pr e\<^isub>1 e\<^isub>2 : Data (DProd S\<^isub>1 S\<^isub>2)"
+| t_Fst[intro]: "\<lbrakk>\<Gamma> \<turnstile> e : Data(DProd S\<^isub>1 S\<^isub>2)\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Fst e : Data(S\<^isub>1)"
+| t_Snd[intro]: "\<lbrakk>\<Gamma> \<turnstile> e : Data(DProd S\<^isub>1 S\<^isub>2)\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Snd e : Data(S\<^isub>2)"
+| t_InL[intro]: "\<lbrakk>\<Gamma> \<turnstile> e : Data(S\<^isub>1)\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> InL e : Data(DSum S\<^isub>1 S\<^isub>2)"
+| t_InR[intro]: "\<lbrakk>\<Gamma> \<turnstile> e : Data(S\<^isub>2)\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> InR e : Data(DSum S\<^isub>1 S\<^isub>2)"
+| t_Case[intro]: "\<lbrakk>x\<^isub>1\<sharp>(\<Gamma>,e,e\<^isub>2,x\<^isub>2); x\<^isub>2\<sharp>(\<Gamma>,e,e\<^isub>1,x\<^isub>1); \<Gamma> \<turnstile> e: Data(DSum S\<^isub>1 S\<^isub>2);
+ (x\<^isub>1,Data(S\<^isub>1))#\<Gamma> \<turnstile> e\<^isub>1 : T; (x\<^isub>2,Data(S\<^isub>2))#\<Gamma> \<turnstile> e\<^isub>2 : T\<rbrakk>
+ \<Longrightarrow> \<Gamma> \<turnstile> (Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2) : T"
+
+lemma typing_valid:
+ assumes "\<Gamma> \<turnstile> t : T"
+ shows "valid \<Gamma>"
+ using assms
+ by (induct) (auto)
+
+lemma typing_eqvt:
+ fixes pi::"name prm"
+ assumes a: "\<Gamma> \<turnstile> t : T"
+ shows "(pi\<bullet>\<Gamma>) \<turnstile> (pi\<bullet>t) : T"
+using a
+apply(induct)
+apply(auto simp add: fresh_bij set_eqvt valid_eqvt)
+apply(rule t_Var)
+apply(drule valid_eqvt)
+apply(assumption)
+apply(drule in_eqvt)
+apply(simp add: set_eqvt)
+done
+
+declare trm.inject [simp add]
+declare ty.inject [simp add]
+declare data.inject [simp add]
+
+inductive_cases2 t_Lam_inv_auto[elim]: "\<Gamma> \<turnstile> Lam [x].t : T"
+inductive_cases2 t_Var_inv_auto[elim]: "\<Gamma> \<turnstile> Var x : T"
+inductive_cases2 t_App_inv_auto[elim]: "\<Gamma> \<turnstile> App x y : T"
+inductive_cases2 t_Const_inv_auto[elim]: "\<Gamma> \<turnstile> Const n : T"
+inductive_cases2 t_Fst_inv_auto[elim]: "\<Gamma> \<turnstile> Fst x : T"
+inductive_cases2 t_Snd_inv_auto[elim]: "\<Gamma> \<turnstile> Snd x : T"
+inductive_cases2 t_InL_inv_auto[elim]: "\<Gamma> \<turnstile> InL x : T"
+inductive_cases2 t_InL_inv_auto'[elim]: "\<Gamma> \<turnstile> InL x : Data (DSum T\<^isub>1 T2)"
+inductive_cases2 t_InR_inv_auto[elim]: "\<Gamma> \<turnstile> InR x : T"
+inductive_cases2 t_InR_inv_auto'[elim]: "\<Gamma> \<turnstile> InR x : Data (DSum T\<^isub>1 T2)"
+inductive_cases2 t_Pr_inv_auto[elim]: "\<Gamma> \<turnstile> Pr x y : T"
+inductive_cases2 t_Pr_inv_auto'[elim]: "\<Gamma> \<turnstile> Pr e\<^isub>1 e\<^isub>2 : Data (DProd \<sigma>1 \<sigma>\<^isub>2)"
+inductive_cases2 t_Case_inv_auto[elim]: "\<Gamma> \<turnstile> Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 : T"
+
+declare trm.inject [simp del]
+declare ty.inject [simp del]
+declare data.inject [simp del]
+
+lemma typing_induct_strong
+ [consumes 1, case_names t_Var t_App t_Lam t_Const t_Pr t_Fst t_Snd t_InL t_InR t_Case]:
+ fixes P::"'a::fs_name \<Rightarrow> (name\<times>ty) list \<Rightarrow> trm \<Rightarrow> ty \<Rightarrow>bool"
+ and x :: "'a::fs_name"
+ assumes a: "\<Gamma> \<turnstile> e : T"
+ and a1: "\<And>\<Gamma> x T c. \<lbrakk>valid \<Gamma>; (x,T)\<in>set \<Gamma>\<rbrakk> \<Longrightarrow> P c \<Gamma> (Var x) T"
+ and a2: "\<And>\<Gamma> e\<^isub>1 T\<^isub>1 T\<^isub>2 e\<^isub>2 c. \<lbrakk>\<And>c. P c \<Gamma> e\<^isub>1 (T\<^isub>1\<rightarrow>T\<^isub>2); \<And>c. P c \<Gamma> e\<^isub>2 T\<^isub>1\<rbrakk> \<Longrightarrow> P c \<Gamma> (App e\<^isub>1 e\<^isub>2) T\<^isub>2"
+ and a3: "\<And>x \<Gamma> T\<^isub>1 t T\<^isub>2 c. \<lbrakk>x\<sharp>(\<Gamma>,c); \<And>c. P c ((x,T\<^isub>1)#\<Gamma>) t T\<^isub>2\<rbrakk> \<Longrightarrow> P c \<Gamma> (Lam [x].t) (T\<^isub>1\<rightarrow>T\<^isub>2)"
+ and a4: "\<And>\<Gamma> n c. valid \<Gamma> \<Longrightarrow> P c \<Gamma> (Const n) (Data DNat)"
+ and a5: "\<And>\<Gamma> e\<^isub>1 S\<^isub>1 e\<^isub>2 S\<^isub>2 c. \<lbrakk>\<And>c. P c \<Gamma> e\<^isub>1 (Data S\<^isub>1); \<And>c. P c \<Gamma> e\<^isub>2 (Data S\<^isub>2)\<rbrakk>
+ \<Longrightarrow> P c \<Gamma> (Pr e\<^isub>1 e\<^isub>2) (Data (DProd S\<^isub>1 S\<^isub>2))"
+ and a6: "\<And>\<Gamma> e S\<^isub>1 S\<^isub>2 c. \<lbrakk>\<And>c. P c \<Gamma> e (Data (DProd S\<^isub>1 S\<^isub>2))\<rbrakk> \<Longrightarrow> P c \<Gamma> (Fst e) (Data S\<^isub>1)"
+ and a7: "\<And>\<Gamma> e S\<^isub>1 S\<^isub>2 c. \<lbrakk>\<And>c. P c \<Gamma> e (Data (DProd S\<^isub>1 S\<^isub>2))\<rbrakk> \<Longrightarrow> P c \<Gamma> (Snd e) (Data S\<^isub>2)"
+ and a8: "\<And>\<Gamma> e S\<^isub>1 S\<^isub>2 c. \<lbrakk>\<And>c. P c \<Gamma> e (Data S\<^isub>1)\<rbrakk> \<Longrightarrow> P c \<Gamma> (InL e) (Data (DSum S\<^isub>1 S\<^isub>2))"
+ and a9: "\<And>\<Gamma> e S\<^isub>2 S\<^isub>1 c. \<lbrakk>\<And>c. P c \<Gamma> e (Data S\<^isub>2)\<rbrakk> \<Longrightarrow> P c \<Gamma> (InR e) (Data (DSum S\<^isub>1 S\<^isub>2))"
+ and a10:"\<And>x\<^isub>1 \<Gamma> e e\<^isub>2 x\<^isub>2 e\<^isub>1 S\<^isub>1 S\<^isub>2 T c.
+ \<lbrakk>x\<^isub>1\<sharp>(\<Gamma>,e,e\<^isub>2,x\<^isub>2,c); x\<^isub>2\<sharp>(\<Gamma>,e,e\<^isub>1,x\<^isub>1,c);
+ \<And>c. P c \<Gamma> e (Data (DSum S\<^isub>1 S\<^isub>2));
+ \<And>c. P c ((x\<^isub>1,Data S\<^isub>1)#\<Gamma>) e\<^isub>1 T;
+ \<And>c. P c ((x\<^isub>2,Data S\<^isub>2)#\<Gamma>) e\<^isub>2 T\<rbrakk>
+ \<Longrightarrow> P c \<Gamma> (Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2) T"
+ shows "P c \<Gamma> e T"
+proof -
+ from a have "\<And>(pi::name prm) c. P c (pi\<bullet>\<Gamma>) (pi\<bullet>e) T"
+ proof (induct)
+ case (t_Var \<Gamma> x T pi c)
+ have "valid \<Gamma>" by fact
+ then have "valid (pi\<bullet>\<Gamma>)" by (simp only: eqvt)
+ moreover
+ have "(x,T)\<in>set \<Gamma>" by fact
+ then have "pi\<bullet>(x,T)\<in>pi\<bullet>(set \<Gamma>)" by (simp only: pt_set_bij[OF pt_name_inst, OF at_name_inst])
+ then have "(pi\<bullet>x,T)\<in>set (pi\<bullet>\<Gamma>)" by (simp add: eqvt)
+ ultimately show "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(Var x)) T" using a1 by simp
+ next
+ case (t_App \<Gamma> e\<^isub>1 T\<^isub>1 T\<^isub>2 e\<^isub>2 pi c)
+ thus "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(App e\<^isub>1 e\<^isub>2)) T\<^isub>2" using a2 by (simp, blast)
+ next
+ case (t_Lam x \<Gamma> T\<^isub>1 t T\<^isub>2 pi c)
+ obtain y::"name" where fs: "y\<sharp>(pi\<bullet>x,pi\<bullet>\<Gamma>,pi\<bullet>t,c)" by (erule exists_fresh[OF fs_name1])
+ let ?sw = "[(pi\<bullet>x,y)]"
+ let ?pi' = "?sw@pi"
+ have f0: "x\<sharp>\<Gamma>" by fact
+ have f1: "(pi\<bullet>x)\<sharp>(pi\<bullet>\<Gamma>)" using f0 by (simp add: fresh_bij)
+ have f2: "y\<sharp>?pi'\<bullet>\<Gamma>" by (auto simp add: pt_name2 fresh_left calc_atm perm_pi_simp)
+ have ih1: "\<And>c. P c (?pi'\<bullet>((x,T\<^isub>1)#\<Gamma>)) (?pi'\<bullet>t) T\<^isub>2" by fact
+ then have "P c (?pi'\<bullet>\<Gamma>) (Lam [y].(?pi'\<bullet>t)) (T\<^isub>1\<rightarrow>T\<^isub>2)" using fs f2 a3 by (simp add: calc_atm)
+ then have "P c (?sw\<bullet>pi\<bullet>\<Gamma>) (?sw\<bullet>(Lam [(pi\<bullet>x)].(pi\<bullet>t))) (T\<^isub>1\<rightarrow>T\<^isub>2)"
+ by (simp del: append_Cons add: calc_atm pt_name2)
+ moreover have "(?sw\<bullet>pi\<bullet>\<Gamma>) = (pi\<bullet>\<Gamma>)"
+ by (rule perm_fresh_fresh) (simp_all add: fs f1)
+ moreover have "(?sw\<bullet>(Lam [(pi\<bullet>x)].(pi\<bullet>t))) = Lam [(pi\<bullet>x)].(pi\<bullet>t)"
+ by (rule perm_fresh_fresh) (simp_all add: fs f1 fresh_atm abs_fresh)
+ ultimately show "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(Lam [x].t)) (T\<^isub>1\<rightarrow>T\<^isub>2)"
+ by simp
+ next
+ case (t_Const \<Gamma> n pi c)
+ thus "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(Const n)) (Data DNat)" using a4 by (simp, blast intro: eqvt)
+ next
+ case (t_Pr \<Gamma> e\<^isub>1 S\<^isub>1 e\<^isub>2 S\<^isub>2 pi c)
+ thus "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(Pr e\<^isub>1 e\<^isub>2)) (Data (DProd S\<^isub>1 S\<^isub>2))" using a5
+ by (simp)
+ next
+ case (t_Fst \<Gamma> e S\<^isub>1 S\<^isub>2 pi c)
+ thus "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(Fst e)) (Data S\<^isub>1)" using a6 by (simp, blast)
+ next
+ case (t_Snd \<Gamma> e S\<^isub>1 S\<^isub>2 pi c)
+ thus "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(Snd e)) (Data S\<^isub>2)" using a7 by (simp, blast)
+ next
+ case (t_InL \<Gamma> e S\<^isub>1 S\<^isub>2 pi c)
+ thus "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(InL e)) (Data (DSum S\<^isub>1 S\<^isub>2))" using a8 by (simp)
+ next
+ case (t_InR \<Gamma> e S\<^isub>2 S\<^isub>1 pi c)
+ thus "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(InR e)) (Data (DSum S\<^isub>1 S\<^isub>2))" using a9 by (simp)
+ next
+ case (t_Case x\<^isub>1 \<Gamma> e e\<^isub>2 x\<^isub>2 e\<^isub>1 S\<^isub>1 S\<^isub>2 T pi c)
+ obtain y\<^isub>1::"name" where fs1: "y\<^isub>1\<sharp>(pi\<bullet>x\<^isub>1,pi\<bullet>x\<^isub>2,pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>e\<^isub>2,pi\<bullet>\<Gamma>,c)"
+ by (erule exists_fresh[OF fs_name1])
+ obtain y\<^isub>2::"name" where fs2: "y\<^isub>2\<sharp>(pi\<bullet>x\<^isub>1,pi\<bullet>x\<^isub>2,pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>e\<^isub>2,pi\<bullet>\<Gamma>,c,y\<^isub>1)"
+ by (erule exists_fresh[OF fs_name1])
+ let ?sw1 = "[(pi\<bullet>x\<^isub>1,y\<^isub>1)]"
+ let ?sw2 = "[(pi\<bullet>x\<^isub>2,y\<^isub>2)]"
+ let ?pi' = "?sw2@?sw1@pi"
+ have f01: "x\<^isub>1\<sharp>(\<Gamma>,e,e\<^isub>2,x\<^isub>2)" by fact
+ have f11: "(pi\<bullet>x\<^isub>1)\<sharp>(pi\<bullet>\<Gamma>,pi\<bullet>e,pi\<bullet>e\<^isub>2,pi\<bullet>x\<^isub>2)" using f01 by (simp add: fresh_bij)
+ have f21: "y\<^isub>1\<sharp>(?pi'\<bullet>\<Gamma>,?pi'\<bullet>e,?pi'\<bullet>e\<^isub>2)" using f01 fs1 fs2
+ by (simp add: fresh_atm fresh_prod fresh_left calc_atm pt_name2 perm_pi_simp)
+ have f02: "x\<^isub>2\<sharp>(\<Gamma>,e,e\<^isub>1,x\<^isub>1)" by fact
+ have f12: "(pi\<bullet>x\<^isub>2)\<sharp>(pi\<bullet>\<Gamma>,pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>x\<^isub>1)" using f02 by (simp add: fresh_bij)
+ have f22: "y\<^isub>2\<sharp>(?pi'\<bullet>\<Gamma>,?pi'\<bullet>e,?pi'\<bullet>e\<^isub>1)" using f02 fs1 fs2
+ by (auto simp add: fresh_atm fresh_prod fresh_left calc_atm pt_name2 perm_pi_simp)
+ have ih1: "\<And>c. P c (?pi'\<bullet>\<Gamma>) (?pi'\<bullet>e) (Data (DSum S\<^isub>1 S\<^isub>2))" by fact
+ moreover
+ have ih2: "\<And>c. P c (?pi'\<bullet>((x\<^isub>1,Data S\<^isub>1)#\<Gamma>)) (?pi'\<bullet>e\<^isub>1) T" by fact
+ then have "\<And>c. P c ((y\<^isub>1,Data S\<^isub>1)#(?pi'\<bullet>\<Gamma>)) (?pi'\<bullet>e\<^isub>1) T" using fs1 fs2
+ by (auto simp add: calc_atm fresh_prod fresh_atm)
+ moreover
+ have ih3: "\<And>c. P c (?pi'\<bullet>((x\<^isub>2,Data S\<^isub>2)#\<Gamma>)) (?pi'\<bullet>e\<^isub>2) T" by fact
+ then have "\<And>c. P c ((y\<^isub>2,Data S\<^isub>2)#(?pi'\<bullet>\<Gamma>)) (?pi'\<bullet>e\<^isub>2) T" using fs1 fs2 f11 f12
+ by (simp add: calc_atm fresh_prod fresh_atm)
+ ultimately have "P c (?pi'\<bullet>\<Gamma>) (Case (?pi'\<bullet>e) of inl y\<^isub>1 \<rightarrow> (?pi'\<bullet>e\<^isub>1) | inr y\<^isub>2 \<rightarrow> (?pi'\<bullet>e\<^isub>2)) T"
+ using f21 f22 fs1 fs2 a10 by (force simp add: fresh_atm fresh_prod)
+ then have "P c (?sw2\<bullet>?sw1\<bullet>pi\<bullet>\<Gamma>)
+ (?sw2\<bullet>?sw1\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))) T"
+ using fs1 fs2 f01 f02 f11 f12
+ by (auto simp del: append_Cons simp add: pt_name2 fresh_atm fresh_prod calc_atm)
+ moreover have "(?sw1\<bullet>pi\<bullet>\<Gamma>) = (pi\<bullet>\<Gamma>)"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 f11)
+ moreover have "(?sw2\<bullet>pi\<bullet>\<Gamma>) = (pi\<bullet>\<Gamma>)"
+ by (rule perm_fresh_fresh) (simp_all add: fs2 f12)
+ moreover have "?sw1\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))
+ = (Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12 abs_fresh)
+ moreover have "?sw2\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))
+ = (Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12 abs_fresh)
+ ultimately show "P c (pi\<bullet>\<Gamma>) (pi\<bullet>(Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2)) T"
+ by (simp only:, simp)
+ qed
+ then have "P c (([]::name prm)\<bullet>\<Gamma>) (([]::name prm)\<bullet>e) T" by blast
+ then show "P c \<Gamma> e T" by simp
+qed
+
+lemma t_Lam_elim [elim] :
+ assumes a1:"\<Gamma> \<turnstile> Lam [x].t : T"
+ and a2: "x\<sharp>\<Gamma>"
+ obtains T\<^isub>1 and T\<^isub>2 where "(x,T\<^isub>1)#\<Gamma> \<turnstile> t : T\<^isub>2" and "T=T\<^isub>1\<rightarrow>T\<^isub>2"
+proof -
+ from a1 obtain x' t' T\<^isub>1 T\<^isub>2
+ where b1: "x'\<sharp>\<Gamma>" and b2: "(x',T\<^isub>1)#\<Gamma> \<turnstile> t' : T\<^isub>2" and b3: "[x'].t' = [x].t" and b4: "T=T\<^isub>1\<rightarrow>T\<^isub>2"
+ by auto
+ obtain c::"name" where "c\<sharp>(\<Gamma>,x,x',t,t')" by (erule exists_fresh[OF fs_name1])
+ then have fs: "c\<sharp>\<Gamma>" "c\<noteq>x" "c\<noteq>x'" "c\<sharp>t" "c\<sharp>t'" by (simp_all add: fresh_atm[symmetric])
+ then have b5: "[(x',c)]\<bullet>t'=[(x,c)]\<bullet>t" using b3 fs by (simp add: alpha')
+ have "([(x,c)]\<bullet>[(x',c)]\<bullet>((x',T\<^isub>1)#\<Gamma>)) \<turnstile> ([(x,c)]\<bullet>[(x',c)]\<bullet>t') : T\<^isub>2" using b2
+ by (simp only: typing_eqvt[simplified perm_ty])
+ then have "(x,T\<^isub>1)#\<Gamma> \<turnstile> t : T\<^isub>2" using fs b1 a2 b5 by (perm_simp add: calc_atm)
+ then show ?thesis using prems b4 by simp
+qed
+
+lemma t_Case_elim[elim] :
+ assumes "\<Gamma> \<turnstile> Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 : T" and "x\<^isub>1\<sharp>\<Gamma>" and "x\<^isub>2\<sharp>\<Gamma>"
+ obtains \<sigma>\<^isub>1 \<sigma>\<^isub>2 where "\<Gamma> \<turnstile> e : Data (DSum \<sigma>\<^isub>1 \<sigma>\<^isub>2)"
+ and "(x\<^isub>1, Data \<sigma>\<^isub>1)#\<Gamma> \<turnstile> e\<^isub>1 : T"
+ and "(x\<^isub>2, Data \<sigma>\<^isub>2)#\<Gamma> \<turnstile> e\<^isub>2 : T"
+proof -
+ have f:"x\<^isub>1\<sharp>\<Gamma>" "x\<^isub>2\<sharp>\<Gamma>" by fact
+ have "\<Gamma> \<turnstile> Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 : T" by fact
+ then obtain \<sigma>\<^isub>1 \<sigma>\<^isub>2 x\<^isub>1' x\<^isub>2' e\<^isub>1' e\<^isub>2' where
+ h:"\<Gamma> \<turnstile> e : Data (DSum \<sigma>\<^isub>1 \<sigma>\<^isub>2)" and
+ h1:"(x\<^isub>1',Data \<sigma>\<^isub>1)#\<Gamma> \<turnstile> e\<^isub>1' : T" and
+ h2:"(x\<^isub>2',Data \<sigma>\<^isub>2)#\<Gamma> \<turnstile> e\<^isub>2' : T" and
+ e1:"[x\<^isub>1].e\<^isub>1=[x\<^isub>1'].e\<^isub>1'" and e2:"[x\<^isub>2].e\<^isub>2=[x\<^isub>2'].e\<^isub>2'"
+ by auto
+ obtain c::name where f':"c \<sharp> (x\<^isub>1,x\<^isub>1',e\<^isub>1,e\<^isub>1',\<Gamma>)" by (erule exists_fresh[OF fs_name1])
+ have e1':"[(x\<^isub>1,c)]\<bullet>e\<^isub>1 = [(x\<^isub>1',c)]\<bullet>e\<^isub>1'" using e1 f' by (auto simp add: alpha' fresh_prod fresh_atm)
+ have "[(x\<^isub>1',c)]\<bullet>((x\<^isub>1',Data \<sigma>\<^isub>1)# \<Gamma>) \<turnstile> [(x\<^isub>1',c)]\<bullet>e\<^isub>1' : T" using h1 typing_eqvt by blast
+ then have x:"(c,Data \<sigma>\<^isub>1)#( [(x\<^isub>1',c)]\<bullet>\<Gamma>) \<turnstile> [(x\<^isub>1',c)]\<bullet>e\<^isub>1': T" using f'
+ by (auto simp add: fresh_atm calc_atm)
+ have "x\<^isub>1' \<sharp> \<Gamma>" using h1 typing_valid by auto
+ then have "(c,Data \<sigma>\<^isub>1)#\<Gamma> \<turnstile> [(x\<^isub>1 ,c)]\<bullet>e\<^isub>1 : T" using f' x e1' by (auto simp add: perm_fresh_fresh)
+ then have "[(x\<^isub>1,c)]\<bullet>((c,Data \<sigma>\<^isub>1)#\<Gamma>) \<turnstile> [(x\<^isub>1,c)]\<bullet>[(x\<^isub>1 ,c)]\<bullet>e\<^isub>1 : T" using typing_eqvt by blast
+ then have "([(x\<^isub>1,c)]\<bullet>(c,Data \<sigma>\<^isub>1)) #\<Gamma> \<turnstile> [(x\<^isub>1,c)]\<bullet>[(x\<^isub>1 ,c)]\<bullet>e\<^isub>1 : T" using f f'
+ by (auto simp add: perm_fresh_fresh)
+ then have "([(x\<^isub>1,c)]\<bullet>(c,Data \<sigma>\<^isub>1)) #\<Gamma> \<turnstile> e\<^isub>1 : T" by perm_simp
+ then have g1:"(x\<^isub>1, Data \<sigma>\<^isub>1)#\<Gamma> \<turnstile> e\<^isub>1 : T" using f' by (auto simp add: fresh_atm calc_atm fresh_prod)
+ (* The second part of the proof is the same *)
+ obtain c::name where f':"c \<sharp> (x\<^isub>2,x\<^isub>2',e\<^isub>2,e\<^isub>2',\<Gamma>)" by (erule exists_fresh[OF fs_name1])
+ have e2':"[(x\<^isub>2,c)]\<bullet>e\<^isub>2 = [(x\<^isub>2',c)]\<bullet>e\<^isub>2'" using e2 f' by (auto simp add: alpha' fresh_prod fresh_atm)
+ have "[(x\<^isub>2',c)]\<bullet>((x\<^isub>2',Data \<sigma>\<^isub>2)# \<Gamma>) \<turnstile> [(x\<^isub>2',c)]\<bullet>e\<^isub>2' : T" using h2 typing_eqvt by blast
+ then have x:"(c,Data \<sigma>\<^isub>2)#([(x\<^isub>2',c)]\<bullet>\<Gamma>) \<turnstile> [(x\<^isub>2',c)]\<bullet>e\<^isub>2': T" using f'
+ by (auto simp add: fresh_atm calc_atm)
+ have "x\<^isub>2' \<sharp> \<Gamma>" using h2 typing_valid by auto
+ then have "(c,Data \<sigma>\<^isub>2)#\<Gamma> \<turnstile> [(x\<^isub>2 ,c)]\<bullet>e\<^isub>2 : T" using f' x e2' by (auto simp add: perm_fresh_fresh)
+ then have "[(x\<^isub>2,c)]\<bullet>((c,Data \<sigma>\<^isub>2)#\<Gamma>) \<turnstile> [(x\<^isub>2,c)]\<bullet>[(x\<^isub>2 ,c)]\<bullet>e\<^isub>2 : T" using typing_eqvt by blast
+ then have "([(x\<^isub>2,c)]\<bullet>(c,Data \<sigma>\<^isub>2))#\<Gamma> \<turnstile> [(x\<^isub>2,c)]\<bullet>[(x\<^isub>2 ,c)]\<bullet>e\<^isub>2 : T" using f f'
+ by (auto simp add: perm_fresh_fresh)
+ then have "([(x\<^isub>2,c)]\<bullet>(c,Data \<sigma>\<^isub>2)) #\<Gamma> \<turnstile> e\<^isub>2 : T" by perm_simp
+ then have g2:"(x\<^isub>2,Data \<sigma>\<^isub>2)#\<Gamma> \<turnstile> e\<^isub>2 : T" using f' by (auto simp add: fresh_atm calc_atm fresh_prod)
+ show ?thesis using g1 g2 prems by auto
+qed
+
+lemma weakening:
+ assumes "\<Gamma>\<^isub>1 \<turnstile> e: T" and "valid \<Gamma>\<^isub>2" and "\<Gamma>\<^isub>1 \<lless> \<Gamma>\<^isub>2"
+ shows "\<Gamma>\<^isub>2 \<turnstile> e: T"
+ using assms
+proof(nominal_induct \<Gamma>\<^isub>1 e T avoiding: \<Gamma>\<^isub>2 rule: typing_induct_strong)
+ case (t_Lam x \<Gamma>\<^isub>1 T\<^isub>1 t T\<^isub>2 \<Gamma>\<^isub>2)
+ have ih: "\<lbrakk>valid ((x,T\<^isub>1)#\<Gamma>\<^isub>2); (x,T\<^isub>1)#\<Gamma>\<^isub>1 \<lless> (x,T\<^isub>1)#\<Gamma>\<^isub>2\<rbrakk> \<Longrightarrow> (x,T\<^isub>1)#\<Gamma>\<^isub>2 \<turnstile> t : T\<^isub>2" by fact
+ have H1: "valid \<Gamma>\<^isub>2" by fact
+ have H2: "\<Gamma>\<^isub>1 \<lless> \<Gamma>\<^isub>2" by fact
+ have fs: "x\<sharp>\<Gamma>\<^isub>2" by fact
+ then have "valid ((x,T\<^isub>1)#\<Gamma>\<^isub>2)" using H1 by auto
+ moreover have "(x,T\<^isub>1)#\<Gamma>\<^isub>1 \<lless> (x,T\<^isub>1)#\<Gamma>\<^isub>2" using H2 by auto
+ ultimately have "(x,T\<^isub>1)#\<Gamma>\<^isub>2 \<turnstile> t : T\<^isub>2" using ih by simp
+ thus "\<Gamma>\<^isub>2 \<turnstile> Lam [x].t : T\<^isub>1\<rightarrow>T\<^isub>2" using fs by auto
+next
+ case (t_Case x\<^isub>1 \<Gamma>\<^isub>1 e e\<^isub>2 x\<^isub>2 e\<^isub>1 S\<^isub>1 S\<^isub>2 T \<Gamma>\<^isub>2)
+ then have ih\<^isub>1: "valid ((x\<^isub>1,Data S\<^isub>1)#\<Gamma>\<^isub>2) \<Longrightarrow> (x\<^isub>1,Data S\<^isub>1)#\<Gamma>\<^isub>2 \<turnstile> e\<^isub>1 : T"
+ and ih\<^isub>2: "valid ((x\<^isub>2,Data S\<^isub>2)#\<Gamma>\<^isub>2) \<Longrightarrow> (x\<^isub>2,Data S\<^isub>2)#\<Gamma>\<^isub>2 \<turnstile> e\<^isub>2 : T"
+ and ih\<^isub>3: "\<Gamma>\<^isub>2 \<turnstile> e : Data (DSum S\<^isub>1 S\<^isub>2)" by auto
+ have fs\<^isub>1: "x\<^isub>1\<sharp>\<Gamma>\<^isub>2" "x\<^isub>1\<sharp>e" "x\<^isub>1\<sharp>e\<^isub>2" "x\<^isub>1\<sharp>x\<^isub>2" by fact
+ have fs\<^isub>2: "x\<^isub>2\<sharp>\<Gamma>\<^isub>2" "x\<^isub>2\<sharp>e" "x\<^isub>2\<sharp>e\<^isub>1" "x\<^isub>2\<sharp>x\<^isub>1" by fact
+ have "valid \<Gamma>\<^isub>2" by fact
+ then have "valid ((x\<^isub>1,Data S\<^isub>1)#\<Gamma>\<^isub>2)" and "valid ((x\<^isub>2,Data S\<^isub>2)#\<Gamma>\<^isub>2)" using fs\<^isub>1 fs\<^isub>2 by auto
+ then have "(x\<^isub>1, Data S\<^isub>1)#\<Gamma>\<^isub>2 \<turnstile> e\<^isub>1 : T" and "(x\<^isub>2, Data S\<^isub>2)#\<Gamma>\<^isub>2 \<turnstile> e\<^isub>2 : T" using ih\<^isub>1 ih\<^isub>2 by simp_all
+ with ih\<^isub>3 show "\<Gamma>\<^isub>2 \<turnstile> Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 : T" using fs\<^isub>1 fs\<^isub>2 by auto
+qed (auto)
+
+lemma context_exchange:
+ assumes a: "(x\<^isub>1,T\<^isub>1)#(x\<^isub>2,T\<^isub>2)#\<Gamma> \<turnstile> e : T"
+ shows "(x\<^isub>2,T\<^isub>2)#(x\<^isub>1,T\<^isub>1)#\<Gamma> \<turnstile> e : T"
+proof -
+ from a have "valid ((x\<^isub>1,T\<^isub>1)#(x\<^isub>2,T\<^isub>2)#\<Gamma>)" by (simp add: typing_valid)
+ then have "x\<^isub>1\<noteq>x\<^isub>2" "x\<^isub>1\<sharp>\<Gamma>" "x\<^isub>2\<sharp>\<Gamma>" "valid \<Gamma>"
+ by (auto simp: fresh_list_cons fresh_atm[symmetric])
+ then have "valid ((x\<^isub>2,T\<^isub>2)#(x\<^isub>1,T\<^isub>1)#\<Gamma>)"
+ by (auto simp: fresh_list_cons fresh_atm)
+ moreover
+ have "(x\<^isub>1,T\<^isub>1)#(x\<^isub>2,T\<^isub>2)#\<Gamma> \<lless> (x\<^isub>2,T\<^isub>2)#(x\<^isub>1,T\<^isub>1)#\<Gamma>" by auto
+ ultimately show "(x\<^isub>2,T\<^isub>2)#(x\<^isub>1,T\<^isub>1)#\<Gamma> \<turnstile> e : T" using a by (auto intro: weakening)
+qed
+
+lemma typing_var_unicity:
+ assumes "(x,t\<^isub>1)#\<Gamma> \<turnstile> Var x : t\<^isub>2"
+ shows "t\<^isub>1=t\<^isub>2"
+proof -
+ have "(x,t\<^isub>2) \<in> set ((x,t\<^isub>1)#\<Gamma>)" and "valid ((x,t\<^isub>1)#\<Gamma>)" using assms by auto
+ thus "t\<^isub>1=t\<^isub>2" by (simp only: type_unicity_in_context)
+qed
+
+
+lemma typing_substitution:
+ fixes \<Gamma>::"(name \<times> ty) list"
+ assumes "(x,T')#\<Gamma> \<turnstile> e : T"
+ and "\<Gamma> \<turnstile> e': T'"
+ shows "\<Gamma> \<turnstile> e[x::=e'] : T"
+ using assms
+proof (nominal_induct e avoiding: \<Gamma> e' x arbitrary: T rule: trm.induct)
+ case (Var y \<Gamma> e' x T)
+ have h1: "(x,T')#\<Gamma> \<turnstile> Var y : T" by fact
+ have h2: "\<Gamma> \<turnstile> e' : T'" by fact
+ show "\<Gamma> \<turnstile> (Var y)[x::=e'] : T"
+ proof (cases "x=y")
+ case True
+ assume as: "x=y"
+ then have "T=T'" using h1 typing_var_unicity by auto
+ then show "\<Gamma> \<turnstile> (Var y)[x::=e'] : T" using as h2 by simp
+ next
+ case False
+ assume as: "x\<noteq>y"
+ have "(y,T) \<in> set ((x,T')#\<Gamma>)" using h1 by auto
+ then have "(y,T) \<in> set \<Gamma>" using as by auto
+ moreover
+ have "valid \<Gamma>" using h2 by (simp only: typing_valid)
+ ultimately show "\<Gamma> \<turnstile> (Var y)[x::=e'] : T" using as by (simp add: t_Var)
+ qed
+next
+ case (Lam y t \<Gamma> e' x T)
+ have vc: "y\<sharp>\<Gamma>" "y\<sharp>x" "y\<sharp>e'" by fact
+ have pr1: "\<Gamma> \<turnstile> e' : T'" by fact
+ have pr2: "(x,T')#\<Gamma> \<turnstile> Lam [y].t : T" by fact
+ then obtain T\<^isub>1 T\<^isub>2 where pr2': "(y,T\<^isub>1)#(x,T')#\<Gamma> \<turnstile> t : T\<^isub>2" and eq: "T = T\<^isub>1\<rightarrow>T\<^isub>2"
+ using vc by (auto simp add: fresh_list_cons)
+ then have pr2'':"(x,T')#(y,T\<^isub>1)#\<Gamma> \<turnstile> t : T\<^isub>2" by (simp add: context_exchange)
+ have ih: "\<lbrakk>(x,T')#(y,T\<^isub>1)#\<Gamma> \<turnstile> t : T\<^isub>2; (y,T\<^isub>1)#\<Gamma> \<turnstile> e' : T'\<rbrakk> \<Longrightarrow> (y,T\<^isub>1)#\<Gamma> \<turnstile> t[x::=e'] : T\<^isub>2" by fact
+ have "valid \<Gamma>" using pr1 by (simp add: typing_valid)
+ then have "valid ((y,T\<^isub>1)#\<Gamma>)" using vc by auto
+ then have "(y,T\<^isub>1)#\<Gamma> \<turnstile> e' : T'" using pr1 by (auto intro: weakening)
+ then have "(y,T\<^isub>1)#\<Gamma> \<turnstile> t[x::=e'] : T\<^isub>2" using ih pr2'' by simp
+ then have "\<Gamma> \<turnstile> Lam [y].(t[x::=e']) : T\<^isub>1\<rightarrow>T\<^isub>2" using vc by (auto intro: t_Lam)
+ thus "\<Gamma> \<turnstile> (Lam [y].t)[x::=e'] : T" using vc eq by simp
+next
+ case (Case t\<^isub>1 x\<^isub>1 t\<^isub>2 x\<^isub>2 t3 \<Gamma> e' x T)
+ have vc: "x\<^isub>1\<sharp>\<Gamma>" "x\<^isub>1\<sharp>e'" "x\<^isub>1\<sharp>x""x\<^isub>1\<sharp>t\<^isub>1" "x\<^isub>1\<sharp>t3" "x\<^isub>2\<sharp>\<Gamma>"
+ "x\<^isub>2\<sharp>e'" "x\<^isub>2\<sharp>x" "x\<^isub>2\<sharp>t\<^isub>1" "x\<^isub>2\<sharp>t\<^isub>2" "x\<^isub>2\<noteq>x\<^isub>1" by fact
+ have as1: "\<Gamma> \<turnstile> e' : T'" by fact
+ have as2: "(x,T')#\<Gamma> \<turnstile> Case t\<^isub>1 of inl x\<^isub>1 \<rightarrow> t\<^isub>2 | inr x\<^isub>2 \<rightarrow> t3 : T" by fact
+ then obtain S\<^isub>1 S\<^isub>2 where
+ h1:"(x,T')#\<Gamma> \<turnstile> t\<^isub>1 : Data (DSum S\<^isub>1 S\<^isub>2)" and
+ h2:"(x\<^isub>1,Data S\<^isub>1)#(x,T')#\<Gamma> \<turnstile> t\<^isub>2 : T" and
+ h3:"(x\<^isub>2,Data S\<^isub>2)#(x,T')#\<Gamma> \<turnstile> t3 : T"
+ using vc by (auto simp add: fresh_list_cons)
+ have ih1: "\<lbrakk>(x,T')#\<Gamma> \<turnstile> t\<^isub>1 : T; \<Gamma> \<turnstile> e' : T'\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>1[x::=e'] : T"
+ and ih2: "\<lbrakk>(x,T')#(x\<^isub>1,Data S\<^isub>1)#\<Gamma> \<turnstile> t\<^isub>2:T; (x\<^isub>1,Data S\<^isub>1)#\<Gamma> \<turnstile> e':T'\<rbrakk> \<Longrightarrow> (x\<^isub>1,Data S\<^isub>1)#\<Gamma> \<turnstile> t\<^isub>2[x::=e']:T"
+ and ih3: "\<lbrakk>(x,T')#(x\<^isub>2,Data S\<^isub>2)#\<Gamma> \<turnstile> t3:T; (x\<^isub>2,Data S\<^isub>2)#\<Gamma> \<turnstile> e':T'\<rbrakk> \<Longrightarrow> (x\<^isub>2,Data S\<^isub>2)#\<Gamma> \<turnstile> t3[x::=e']:T"
+ by fact
+ from h2 have h2': "(x,T')#(x\<^isub>1,Data S\<^isub>1)#\<Gamma> \<turnstile> t\<^isub>2 : T" by (rule context_exchange)
+ from h3 have h3': "(x,T')#(x\<^isub>2,Data S\<^isub>2)#\<Gamma> \<turnstile> t3 : T" by (rule context_exchange)
+ have "\<Gamma> \<turnstile> t\<^isub>1[x::=e'] : Data (DSum S\<^isub>1 S\<^isub>2)" using h1 ih1 as1 by simp
+ moreover
+ have "valid ((x\<^isub>1,Data S\<^isub>1)#\<Gamma>)" using h2' by (auto dest: typing_valid)
+ then have "(x\<^isub>1,Data S\<^isub>1)#\<Gamma> \<turnstile> e' : T'" using as1 by (auto simp add: weakening)
+ then have "(x\<^isub>1,Data S\<^isub>1)#\<Gamma> \<turnstile> t\<^isub>2[x::=e'] : T" using ih2 h2' by simp
+ moreover
+ have "valid ((x\<^isub>2,Data S\<^isub>2)#\<Gamma>)" using h3' by (auto dest: typing_valid)
+ then have "(x\<^isub>2,Data S\<^isub>2)#\<Gamma> \<turnstile> e' : T'" using as1 by (auto simp add: weakening)
+ then have "(x\<^isub>2,Data S\<^isub>2)#\<Gamma> \<turnstile> t3[x::=e'] : T" using ih3 h3' by simp
+ ultimately have "\<Gamma> \<turnstile> Case (t\<^isub>1[x::=e']) of inl x\<^isub>1 \<rightarrow> (t\<^isub>2[x::=e']) | inr x\<^isub>2 \<rightarrow> (t3[x::=e']) : T"
+ using vc by (auto simp add: fresh_atm fresh_subst)
+ thus "\<Gamma> \<turnstile> (Case t\<^isub>1 of inl x\<^isub>1 \<rightarrow> t\<^isub>2 | inr x\<^isub>2 \<rightarrow> t3)[x::=e'] : T" using vc by simp
+qed (simp, fast)+
+
+text {* Big-Step Evaluation *}
+
+inductive2
+ big :: "trm\<Rightarrow>trm\<Rightarrow>bool" ("_ \<Down> _" [80,80] 80)
+where
+ b_Lam[intro]: "Lam [x].e \<Down> Lam [x].e"
+| b_App[intro]: "\<lbrakk>x\<sharp>(e\<^isub>1,e\<^isub>2,e'); e\<^isub>1\<Down>Lam [x].e; e\<^isub>2\<Down>e\<^isub>2'; e[x::=e\<^isub>2']\<Down>e'\<rbrakk> \<Longrightarrow> App e\<^isub>1 e\<^isub>2 \<Down> e'"
+| b_Const[intro]: "Const n \<Down> Const n"
+| b_Pr[intro]: "\<lbrakk>e\<^isub>1\<Down>e\<^isub>1'; e\<^isub>2\<Down>e\<^isub>2'\<rbrakk> \<Longrightarrow> Pr e\<^isub>1 e\<^isub>2 \<Down> Pr e\<^isub>1' e\<^isub>2'"
+| b_Fst[intro]: "e\<Down>Pr e\<^isub>1 e\<^isub>2 \<Longrightarrow> Fst e\<Down>e\<^isub>1"
+| b_Snd[intro]: "e\<Down>Pr e\<^isub>1 e\<^isub>2 \<Longrightarrow> Snd e\<Down>e\<^isub>2"
+| b_InL[intro]: "e\<Down>e' \<Longrightarrow> InL e \<Down> InL e'"
+| b_InR[intro]: "e\<Down>e' \<Longrightarrow> InR e \<Down> InR e'"
+| b_CaseL[intro]: "\<lbrakk>x\<^isub>1\<sharp>(e,e\<^isub>2,e'',x\<^isub>2); x\<^isub>2\<sharp>(e,e\<^isub>1,e'',x\<^isub>1) ; e\<Down>InL e'; e\<^isub>1[x\<^isub>1::=e']\<Down>e''\<rbrakk>
+ \<Longrightarrow> Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 \<Down> e''"
+| b_CaseR[intro]: "\<lbrakk>x\<^isub>1\<sharp>(e,e\<^isub>2,e'',x\<^isub>2); x\<^isub>2\<sharp>(e,e\<^isub>1,e'',x\<^isub>1) ; e\<Down>InR e'; e\<^isub>2[x\<^isub>2::=e']\<Down>e''\<rbrakk>
+ \<Longrightarrow> Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 \<Down> e''"
+
+nominal_inductive big
+
+lemma fresh_preserved:
+ fixes x::name
+ fixes t::trm
+ fixes t'::trm
+ assumes "e \<Down> e'" and "x\<sharp>e"
+ shows "x\<sharp>e'"
+ using assms by (induct) (auto simp add:fresh_subst')
+
+declare trm.inject [simp add]
+declare ty.inject [simp add]
+declare data.inject [simp add]
+
+inductive_cases2 b_App_inv_auto[elim]: "App e\<^isub>1 e\<^isub>2 \<Down> t"
+inductive_cases2 b_Case_inv_auto[elim]: "Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 \<Down> t"
+inductive_cases2 b_Lam_inv_auto[elim]: "Lam[x].t \<Down> t"
+inductive_cases2 b_Const_inv_auto[elim]: "Const n \<Down> t"
+inductive_cases2 b_Fst_inv_auto[elim]: "Fst e \<Down> t"
+inductive_cases2 b_Snd_inv_auto[elim]: "Snd e \<Down> t"
+inductive_cases2 b_InL_inv_auto[elim]: "InL e \<Down> t"
+inductive_cases2 b_InR_inv_auto[elim]: "InR e \<Down> t"
+inductive_cases2 b_Pr_inv_auto[elim]: "Pr e\<^isub>1 e\<^isub>2 \<Down> t"
+
+declare trm.inject [simp del]
+declare ty.inject [simp del]
+declare data.inject [simp del]
+
+lemma big_induct_strong
+ [consumes 1, case_names b_Lam b_App b_Const b_Pr b_Fst b_Snd b_InL b_InR b_CaseL b_CaseR]:
+ fixes P::"'a::fs_name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow>bool"
+ and x :: "'a::fs_name"
+ assumes a: "t \<Down> t'"
+ and a1: "\<And>x e c. P c (Lam [x].e) (Lam [x].e)"
+ and a2: "\<And>x e\<^isub>1 e\<^isub>2 e\<^isub>2' e' e\<^isub>1' c.
+ \<lbrakk>x\<sharp>(e\<^isub>1,e\<^isub>2,e',c); e\<^isub>1\<Down>Lam [x].e\<^isub>1'; (\<And>c. P c e\<^isub>1 (Lam [x].e\<^isub>1'));
+ e\<^isub>2\<Down>e\<^isub>2'; (\<And>c. P c e\<^isub>2 e\<^isub>2'); e\<^isub>1'[x::=e\<^isub>2']\<Down>e'; (\<And>c. P c (e\<^isub>1'[x::=e\<^isub>2']) e')\<rbrakk>
+ \<Longrightarrow> P c (App e\<^isub>1 e\<^isub>2) e'"
+ and a3: "\<And>n c. P c (Const n) (Const n)"
+ and a4: "\<And>e\<^isub>1 e\<^isub>1' e\<^isub>2 e\<^isub>2' c.
+ \<lbrakk>e\<^isub>1 \<Down> e\<^isub>1'; (\<And>c. P c e\<^isub>1 e\<^isub>1'); e\<^isub>2 \<Down> e\<^isub>2'; (\<And>c. P c e\<^isub>2 e\<^isub>2')\<rbrakk>
+ \<Longrightarrow> P c (Pr e\<^isub>1 e\<^isub>2) (Pr e\<^isub>1' e\<^isub>2')"
+ and a5: "\<And>e e\<^isub>1 e\<^isub>2 c. \<lbrakk>e \<Down> Pr e\<^isub>1 e\<^isub>2; (\<And>c. P c e (Pr e\<^isub>1 e\<^isub>2))\<rbrakk> \<Longrightarrow> P c (Fst e) e\<^isub>1"
+ and a6: "\<And>e e\<^isub>1 e\<^isub>2 c. \<lbrakk>e \<Down> Pr e\<^isub>1 e\<^isub>2; (\<And>c. P c e (Pr e\<^isub>1 e\<^isub>2))\<rbrakk> \<Longrightarrow> P c (Snd e) e\<^isub>2"
+ and a7: "\<And>e e' c. \<lbrakk>e \<Down> e'; (\<And>c. P c e e')\<rbrakk> \<Longrightarrow> P c (InL e) (InL e')"
+ and a8: "\<And>e e' c. \<lbrakk>e \<Down> e'; (\<And>c. P c e e')\<rbrakk> \<Longrightarrow> P c (InR e) (InR e')"
+ and a9: "\<And>x\<^isub>1 e e\<^isub>2 e'' x\<^isub>2 e\<^isub>1 e' c.
+ \<lbrakk>x\<^isub>1\<sharp>(e,e\<^isub>2,e'',x\<^isub>2,c); x\<^isub>2\<sharp>(e,e\<^isub>1,e'',x\<^isub>1,c); e \<Down> InL e'; (\<And>c. P c e (InL e'));
+ e\<^isub>1[x\<^isub>1::=e'] \<Down> e''; (\<And>c. P c (e\<^isub>1[x\<^isub>1::=e']) e'')\<rbrakk>
+ \<Longrightarrow> P c (Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2) e''"
+ and a10:"\<And>x\<^isub>1 e e\<^isub>2 e'' x\<^isub>2 e\<^isub>1 e' c.
+ \<lbrakk>x\<^isub>1\<sharp>(e,e\<^isub>2,e'',x\<^isub>2,c); x\<^isub>2\<sharp>(e,e\<^isub>1,e'',x\<^isub>1,c); e \<Down> InR e'; (\<And>c. P c e (InR e'));
+ e\<^isub>2[x\<^isub>2::=e'] \<Down> e''; (\<And>c. P c (e\<^isub>2[x\<^isub>2::=e']) e'')\<rbrakk>
+ \<Longrightarrow> P c (Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2) e''"
+ shows "P c t t'"
+proof -
+ from a have "\<And>(pi::name prm) c. P c (pi\<bullet>t) (pi\<bullet>t')"
+ proof (induct)
+ case (b_Lam x e pi c)
+ show "P c (pi\<bullet>(Lam [x].e)) (pi\<bullet>(Lam [x].e))" using a1 by simp
+ next
+ case (b_App x e\<^isub>1 e\<^isub>2 e' e\<^isub>1' e\<^isub>2' pi c)
+ obtain y::"name" where fs: "y\<sharp>(pi\<bullet>x,pi\<bullet>e\<^isub>1,pi\<bullet>e\<^isub>2,pi\<bullet>e\<^isub>2',pi\<bullet>e',pi\<bullet>e\<^isub>1,c)"
+ by (erule exists_fresh[OF fs_name1])
+ let ?sw = "[(pi\<bullet>x,y)]"
+ let ?pi' = "?sw@pi"
+ have f0: "x\<sharp>(e\<^isub>1,e\<^isub>2,e')" by fact
+ have f1: "(pi\<bullet>x)\<sharp>(pi\<bullet>e\<^isub>1,pi\<bullet>e\<^isub>2,pi\<bullet>e')" using f0 by (simp add: fresh_bij)
+ have f2: "y\<sharp>(?pi'\<bullet>e\<^isub>1,?pi'\<bullet>e\<^isub>2,?pi'\<bullet>e')" using f0
+ by (auto simp add: pt_name2 fresh_left calc_atm perm_pi_simp fresh_prod)
+ have p1: "e\<^isub>1 \<Down> Lam [x].e\<^isub>1'" by fact
+ then have "(?pi'\<bullet>e\<^isub>1)\<Down>(?pi'\<bullet>Lam [x].e\<^isub>1')" by (simp only: big_eqvt)
+ moreover
+ have p2: "e\<^isub>2 \<Down> e\<^isub>2'" by fact
+ then have "(?pi'\<bullet>e\<^isub>2) \<Down> (?pi'\<bullet>e\<^isub>2')" by (simp only: big_eqvt)
+ moreover
+ have p3: "e\<^isub>1'[x::=e\<^isub>2'] \<Down> e'" by fact
+ then have "(?pi'\<bullet>(e\<^isub>1'[x::=e\<^isub>2'])) \<Down> (?pi'\<bullet>e')" by (simp only: big_eqvt)
+ then have "(?pi'\<bullet>e\<^isub>1')[y::=(?pi'\<bullet>e\<^isub>2')] \<Down> (?pi'\<bullet>e')" by (simp add: subst_eqvt calc_atm)
+ moreover
+ have ih1: "\<And>c. P c (?pi'\<bullet>e\<^isub>1) (?pi'\<bullet>(Lam [x].e\<^isub>1'))" by fact
+ then have "\<And>c. P c (?pi'\<bullet>e\<^isub>1) (Lam [y].(?pi'\<bullet>e\<^isub>1'))" by (simp add: calc_atm)
+ moreover
+ have ih2: "\<And>c. P c (?pi'\<bullet>e\<^isub>2) (?pi'\<bullet>e\<^isub>2')" by fact
+ moreover
+ have ih3: "\<And>c. P c (?pi'\<bullet>(e\<^isub>1'[x::=e\<^isub>2'])) (?pi'\<bullet>e')" by fact
+ then have "\<And>c. P c ((?pi'\<bullet>e\<^isub>1')[y::=(?pi'\<bullet>e\<^isub>2')]) (?pi'\<bullet>e')" by (simp add: calc_atm subst_eqvt)
+ ultimately have "P c (App (?pi'\<bullet>e\<^isub>1) (?pi'\<bullet>e\<^isub>2)) (?pi'\<bullet>e')" using fs f2
+ by (auto intro!: a2 simp add: calc_atm)
+ then have "P c (?sw\<bullet>(App (pi\<bullet>e\<^isub>1) (pi\<bullet>e\<^isub>2))) (?sw\<bullet>(pi\<bullet>e'))"
+ by (simp del: append_Cons add: pt_name2)
+ moreover have "(?sw\<bullet>(App (pi\<bullet>e\<^isub>1) (pi\<bullet>e\<^isub>2))) = App (pi\<bullet>e\<^isub>1) (pi\<bullet>e\<^isub>2)"
+ by (rule perm_fresh_fresh) (simp_all add: fs f1)
+ moreover have "(?sw\<bullet>(pi\<bullet>e')) = pi\<bullet>e'"
+ by (rule perm_fresh_fresh) (simp_all add: fs f1)
+ ultimately show "P c (pi\<bullet>(App e\<^isub>1 e\<^isub>2)) (pi\<bullet>e')"
+ by simp
+ next
+ case (b_Const n pi c)
+ show "P c (pi\<bullet>(Const n)) (pi\<bullet>(Const n))" using a3 by simp
+ next
+ case (b_Pr e\<^isub>1 e\<^isub>1' e\<^isub>2 e\<^isub>2' pi c)
+ then show "P c (pi\<bullet>(Pr e\<^isub>1 e\<^isub>2)) (pi\<bullet>(Pr e\<^isub>1' e\<^isub>2'))" using a4
+ by (simp, blast intro: big_eqvt)
+ next
+ case (b_Fst e e\<^isub>1 e\<^isub>2 pi c)
+ have p1: "e \<Down> Pr e\<^isub>1 e\<^isub>2" by fact
+ then have "(pi\<bullet>e)\<Down>(pi\<bullet>(Pr e\<^isub>1 e\<^isub>2))" by (simp only: big_eqvt)
+ moreover
+ have ih1: "\<And>c. P c (pi\<bullet>e) (pi\<bullet>(Pr e\<^isub>1 e\<^isub>2))" by fact
+ ultimately show "P c (pi\<bullet>(Fst e)) (pi\<bullet>e\<^isub>1)" using a5 by simp
+ next
+ case (b_Snd e e\<^isub>1 e\<^isub>2 pi c)
+ have p1: "e \<Down> Pr e\<^isub>1 e\<^isub>2" by fact
+ then have "(pi\<bullet>e)\<Down>(pi\<bullet>(Pr e\<^isub>1 e\<^isub>2))" by (simp only: big_eqvt)
+ moreover
+ have ih1: "\<And>c. P c (pi\<bullet>e) (pi\<bullet>(Pr e\<^isub>1 e\<^isub>2))" by fact
+ ultimately show "P c (pi\<bullet>(Snd e)) (pi\<bullet>e\<^isub>2)" using a6 by simp
+ next
+ case (b_InL e e' pi c)
+ then show "P c (pi\<bullet>(InL e)) (pi\<bullet>(InL e'))" using a7
+ by (simp, blast intro: big_eqvt)
+ next
+ case (b_InR e e' pi c)
+ then show "P c (pi\<bullet>(InR e)) (pi\<bullet>(InR e'))" using a8
+ by (simp, blast intro: big_eqvt)
+ next
+ case (b_CaseL x\<^isub>1 e e\<^isub>2 e'' x\<^isub>2 e\<^isub>1 e' pi c)
+ obtain y\<^isub>1::"name" where fs1: "y\<^isub>1\<sharp>(pi\<bullet>x\<^isub>1,pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>e\<^isub>2,pi\<bullet>e'',pi\<bullet>x\<^isub>2,c)"
+ by (rule exists_fresh[OF fs_name1])
+ obtain y\<^isub>2::"name" where fs2: "y\<^isub>2\<sharp>(pi\<bullet>x\<^isub>2,pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>e\<^isub>2,pi\<bullet>e'',pi\<bullet>x\<^isub>1,c,y\<^isub>1)"
+ by (rule exists_fresh[OF fs_name1])
+ let ?sw1 = "[(pi\<bullet>x\<^isub>1,y\<^isub>1)]"
+ let ?sw2 = "[(pi\<bullet>x\<^isub>2,y\<^isub>2)]"
+ let ?pi' = "?sw2@?sw1@pi"
+ have f01: "x\<^isub>1\<sharp>(e,e\<^isub>2,e'',x\<^isub>2)" by fact
+ have f11: "(pi\<bullet>x\<^isub>1)\<sharp>(pi\<bullet>e,pi\<bullet>e\<^isub>2,pi\<bullet>e'',pi\<bullet>x\<^isub>2)" using f01 by (simp add: fresh_bij)
+ have f21: "y\<^isub>1\<sharp>(?pi'\<bullet>e,?pi'\<bullet>e\<^isub>2,?pi'\<bullet>e'')" using f01 fs1 fs2
+ by (simp add: fresh_atm fresh_prod fresh_left calc_atm pt_name2 perm_pi_simp)
+ have f02: "x\<^isub>2\<sharp>(e,e\<^isub>1,e'',x\<^isub>1)" by fact
+ have f12: "(pi\<bullet>x\<^isub>2)\<sharp>(pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>e'',pi\<bullet>x\<^isub>1)" using f02 by (simp add: fresh_bij)
+ have f22: "y\<^isub>2\<sharp>(?pi'\<bullet>e,?pi'\<bullet>e\<^isub>1,?pi'\<bullet>e'')" using f02 fs1 fs2
+ by (auto simp add: fresh_atm fresh_prod fresh_left calc_atm pt_name2 perm_pi_simp)
+ have p1: "e \<Down> InL e'" by fact
+ then have "(?pi'\<bullet>e) \<Down> (?pi'\<bullet>(InL e'))" by (simp only: big_eqvt)
+ moreover
+ have p2: "e\<^isub>1[x\<^isub>1::=e'] \<Down> e''" by fact
+ then have "(?pi'\<bullet>(e\<^isub>1[x\<^isub>1::=e'])) \<Down> (?pi'\<bullet>e'')" by (simp only: big_eqvt)
+ then have "(?pi'\<bullet>e\<^isub>1)[y\<^isub>1::=(?pi'\<bullet>e')] \<Down> (?pi'\<bullet>e'')" using fs1 fs2
+ by (auto simp add: calc_atm subst_eqvt fresh_prod fresh_atm del: append_Cons)
+ moreover
+ have ih1: "\<And>c. P c (?pi'\<bullet>e) (?pi'\<bullet>(InL e'))" by fact
+ moreover
+ have ih2: "\<And>c. P c (?pi'\<bullet>(e\<^isub>1[x\<^isub>1::=e'])) (?pi'\<bullet>e'')" by fact
+ then have "\<And>c. P c ((?pi'\<bullet>e\<^isub>1)[y\<^isub>1::=(?pi'\<bullet>e')]) (?pi'\<bullet>e'')" using fs1 fs2
+ by (auto simp add: calc_atm subst_eqvt fresh_prod fresh_atm del: append_Cons)
+ ultimately have "P c (Case (?pi'\<bullet>e) of inl y\<^isub>1 \<rightarrow> (?pi'\<bullet>e\<^isub>1) | inr y\<^isub>2 \<rightarrow> (?pi'\<bullet>e\<^isub>2)) (?pi'\<bullet>e'')"
+ using f21 f22 fs1 fs2 by (auto intro!: a9 simp add: fresh_atm fresh_prod)
+ then have "P c (?sw2\<bullet>?sw1\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2)))
+ (?sw2\<bullet>?sw1\<bullet>(pi\<bullet>e''))"
+ using fs1 fs2 f01 f02 f11 f12
+ by (auto simp del: append_Cons simp add: pt_name2 fresh_atm fresh_prod calc_atm)
+ moreover have "?sw1\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))
+ = (Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12 abs_fresh)
+ moreover have "?sw2\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))
+ = (Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12 abs_fresh)
+ moreover have "(?sw1\<bullet>(pi\<bullet>e'')) = (pi\<bullet>e'')"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12)
+ moreover have "(?sw2\<bullet>(pi\<bullet>e'')) = (pi\<bullet>e'')"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12)
+ ultimately show "P c (pi\<bullet>(Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2)) (pi\<bullet>e'')"
+ by (simp only:, simp)
+ next
+ case (b_CaseR x\<^isub>1 e e\<^isub>2 e'' x\<^isub>2 e\<^isub>1 e' pi c)
+ obtain y\<^isub>1::"name" where fs1: "y\<^isub>1\<sharp>(pi\<bullet>x\<^isub>1,pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>e\<^isub>2,pi\<bullet>e'',pi\<bullet>x\<^isub>2,c)"
+ by (rule exists_fresh[OF fs_name1])
+ obtain y\<^isub>2::"name" where fs2: "y\<^isub>2\<sharp>(pi\<bullet>x\<^isub>2,pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>e\<^isub>2,pi\<bullet>e'',pi\<bullet>x\<^isub>1,c,y\<^isub>1)"
+ by (rule exists_fresh[OF fs_name1])
+ let ?sw1 = "[(pi\<bullet>x\<^isub>1,y\<^isub>1)]"
+ let ?sw2 = "[(pi\<bullet>x\<^isub>2,y\<^isub>2)]"
+ let ?pi' = "?sw2@?sw1@pi"
+ have f01: "x\<^isub>1\<sharp>(e,e\<^isub>2,e'',x\<^isub>2)" by fact
+ have f11: "(pi\<bullet>x\<^isub>1)\<sharp>(pi\<bullet>e,pi\<bullet>e\<^isub>2,pi\<bullet>e'',pi\<bullet>x\<^isub>2)" using f01 by (simp add: fresh_bij)
+ have f21: "y\<^isub>1\<sharp>(?pi'\<bullet>e,?pi'\<bullet>e\<^isub>2,?pi'\<bullet>e'')" using f01 fs1 fs2
+ by (simp add: fresh_atm fresh_prod fresh_left calc_atm pt_name2 perm_pi_simp)
+ have f02: "x\<^isub>2\<sharp>(e,e\<^isub>1,e'',x\<^isub>1)" by fact
+ have f12: "(pi\<bullet>x\<^isub>2)\<sharp>(pi\<bullet>e,pi\<bullet>e\<^isub>1,pi\<bullet>e'',pi\<bullet>x\<^isub>1)" using f02 by (simp add: fresh_bij)
+ have f22: "y\<^isub>2\<sharp>(?pi'\<bullet>e,?pi'\<bullet>e\<^isub>1,?pi'\<bullet>e'')" using f02 fs1 fs2
+ by (auto simp add: fresh_atm fresh_prod fresh_left calc_atm pt_name2 perm_pi_simp)
+ have p1: "e \<Down> InR e'" by fact
+ then have "(?pi'\<bullet>e) \<Down> (?pi'\<bullet>(InR e'))" by (simp only: big_eqvt)
+ moreover
+ have p2: "e\<^isub>2[x\<^isub>2::=e'] \<Down> e''" by fact
+ then have "(?pi'\<bullet>(e\<^isub>2[x\<^isub>2::=e'])) \<Down> (?pi'\<bullet>e'')" by (simp only: big_eqvt)
+ then have "(?pi'\<bullet>e\<^isub>2)[y\<^isub>2::=(?pi'\<bullet>e')] \<Down> (?pi'\<bullet>e'')" using fs1 fs2 f11 f12
+ by (auto simp add: calc_atm subst_eqvt fresh_prod fresh_atm del: append_Cons)
+ moreover
+ have ih1: "\<And>c. P c (?pi'\<bullet>e) (?pi'\<bullet>(InR e'))" by fact
+ moreover
+ have ih2: "\<And>c. P c (?pi'\<bullet>(e\<^isub>2[x\<^isub>2::=e'])) (?pi'\<bullet>e'')" by fact
+ then have "\<And>c. P c ((?pi'\<bullet>e\<^isub>2)[y\<^isub>2::=(?pi'\<bullet>e')]) (?pi'\<bullet>e'')" using fs1 fs2 f11 f12
+ by (auto simp add: calc_atm subst_eqvt fresh_prod fresh_atm del: append_Cons)
+ ultimately have "P c (Case (?pi'\<bullet>e) of inl y\<^isub>1 \<rightarrow> (?pi'\<bullet>e\<^isub>1) | inr y\<^isub>2 \<rightarrow> (?pi'\<bullet>e\<^isub>2)) (?pi'\<bullet>e'')"
+ using f21 f22 fs1 fs2 by (auto intro!: a10 simp add: fresh_atm fresh_prod)
+ then have "P c (?sw2\<bullet>?sw1\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2)))
+ (?sw2\<bullet>?sw1\<bullet>(pi\<bullet>e''))"
+ using fs1 fs2 f01 f02 f11 f12
+ by (auto simp del: append_Cons simp add: pt_name2 fresh_atm fresh_prod calc_atm)
+ moreover have "?sw1\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))
+ = (Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12 abs_fresh)
+ moreover have "?sw2\<bullet>(Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))
+ = (Case (pi\<bullet>e) of inl (pi\<bullet>x\<^isub>1) \<rightarrow> (pi\<bullet>e\<^isub>1) | inr (pi\<bullet>x\<^isub>2) \<rightarrow> (pi\<bullet>e\<^isub>2))"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12 abs_fresh)
+ moreover have "(?sw1\<bullet>(pi\<bullet>e'')) = (pi\<bullet>e'')"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12)
+ moreover have "(?sw2\<bullet>(pi\<bullet>e'')) = (pi\<bullet>e'')"
+ by (rule perm_fresh_fresh) (simp_all add: fs1 fs2 f11 f12)
+ ultimately show "P c (pi\<bullet>(Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2)) (pi\<bullet>e'')"
+ by (simp only:, simp)
+ qed
+ then have "P c (([]::name prm)\<bullet>t) (([]::name prm)\<bullet>t')" by blast
+ then show "P c t t'" by simp
+qed
+
+lemma b_App_elim[elim]:
+ assumes "App e\<^isub>1 e\<^isub>2 \<Down> e'" and "x\<sharp>(e\<^isub>1,e\<^isub>2,e')"
+ obtains f\<^isub>1 and f\<^isub>2 where "e\<^isub>1 \<Down> Lam [x]. f\<^isub>1" "e\<^isub>2 \<Down> f\<^isub>2" "f\<^isub>1[x::=f\<^isub>2] \<Down> e'"
+ using assms
+ apply -
+ apply(erule b_App_inv_auto)
+ apply(drule_tac pi="[(xa,x)]" in big_eqvt)
+ apply(drule_tac pi="[(xa,x)]" in big_eqvt)
+ apply(drule_tac pi="[(xa,x)]" in big_eqvt)
+ apply(perm_simp add: calc_atm eqvt)
+ done
+
+lemma b_CaseL_elim[elim]:
+ assumes "Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 \<Down> e''" and "(\<And> t. \<not> e \<Down> InR t)"
+ obtains e' where "e \<Down> InL e'" and "e\<^isub>1[x\<^isub>1::=e'] \<Down> e''"
+ using assms
+ apply -
+ apply (rule b_Case_inv_auto, auto)
+ apply(drule_tac u="e'" in subst_fun_eq)
+ apply(simp)
+ done
+
+lemma b_CaseR_elim[elim]:
+ assumes "Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 \<Down> e''" and "\<And> t. \<not> e \<Down> InL t"
+ obtains e' where "e \<Down> InR e'" and "e\<^isub>2[x\<^isub>2::=e'] \<Down> e''"
+ using assms
+ apply -
+ apply (rule b_Case_inv_auto, auto)
+ apply(drule_tac u="e'" in subst_fun_eq)+
+ apply(simp)
+ done
+
+inductive2
+ val :: "trm\<Rightarrow>bool"
+where
+ v_Lam[intro]: "val (Lam [x].e)"
+| v_Const[intro]: "val (Const n)"
+| v_Pr[intro]: "\<lbrakk>val e\<^isub>1; val e\<^isub>2\<rbrakk> \<Longrightarrow> val (Pr e\<^isub>1 e\<^isub>2)"
+| v_InL[intro]: "val e \<Longrightarrow> val (InL e)"
+| v_InR[intro]: "val e \<Longrightarrow> val (InR e)"
+
+
+declare trm.inject [simp add]
+declare ty.inject [simp add]
+declare data.inject [simp add]
+
+inductive_cases2 v_Const_inv_auto[elim]: "val (Const n)"
+inductive_cases2 v_Pr_inv_auto[elim]: "val (Pr e\<^isub>1 e\<^isub>2)"
+inductive_cases2 v_InL_inv_auto[elim]: "val (InL e)"
+inductive_cases2 v_InR_inv_auto[elim]: "val (InR e)"
+inductive_cases2 v_Fst_inv_auto[elim]: "val (Fst e)"
+inductive_cases2 v_Snd_inv_auto[elim]: "val (Snd e)"
+inductive_cases2 v_Case_inv_auto[elim]: "val (Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2)"
+inductive_cases2 v_Var_inv_auto[elim]: "val (Var x)"
+inductive_cases2 v_Lam_inv_auto[elim]: "val (Lam [x].e)"
+inductive_cases2 v_App_inv_auto[elim]: "val (App e\<^isub>1 e\<^isub>2)"
+
+declare trm.inject [simp del]
+declare ty.inject [simp del]
+declare data.inject [simp del]
+
+lemma subject_reduction:
+ assumes "e \<Down> e'" and "\<Gamma> \<turnstile> e : T"
+ shows "\<Gamma> \<turnstile> e' : T"
+ using assms
+proof (nominal_induct avoiding: \<Gamma> arbitrary: T rule: big_induct_strong)
+ case (b_App x e\<^isub>1 e\<^isub>2 e\<^isub>2' e' e \<Gamma> T)
+ have vc: "x\<sharp>\<Gamma>" by fact
+ have "\<Gamma> \<turnstile> App e\<^isub>1 e\<^isub>2 : T" by fact
+ then obtain T' where
+ a1: "\<Gamma> \<turnstile> e\<^isub>1 : T'\<rightarrow>T" and
+ a2: "\<Gamma> \<turnstile> e\<^isub>2 : T'" by auto
+ have ih1: "\<Gamma> \<turnstile> e\<^isub>1 : T'\<rightarrow>T \<Longrightarrow> \<Gamma> \<turnstile> Lam [x].e : T'\<rightarrow>T" by fact
+ have ih2: "\<Gamma> \<turnstile> e\<^isub>2 : T' \<Longrightarrow> \<Gamma> \<turnstile> e\<^isub>2' : T'" by fact
+ have ih3: "\<Gamma> \<turnstile> e[x::=e\<^isub>2'] : T \<Longrightarrow> \<Gamma> \<turnstile> e' : T" by fact
+ have "\<Gamma> \<turnstile> Lam [x].e : T'\<rightarrow>T" using ih1 a1 by simp
+ then have "((x,T')#\<Gamma>) \<turnstile> e : T" using vc by (auto simp add: ty.inject)
+ moreover
+ have "\<Gamma> \<turnstile> e\<^isub>2': T'" using ih2 a2 by simp
+ ultimately have "\<Gamma> \<turnstile> e[x::=e\<^isub>2'] : T" by (simp add: typing_substitution)
+ thus "\<Gamma> \<turnstile> e' : T" using ih3 by simp
+next
+ case (b_CaseL x\<^isub>1 e e\<^isub>2 e'' x\<^isub>2 e\<^isub>1 e' \<Gamma>)
+ have vc: "x\<^isub>1\<sharp>\<Gamma>" "x\<^isub>2\<sharp>\<Gamma>" by fact
+ have "\<Gamma> \<turnstile> Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 : T" by fact
+ then obtain S\<^isub>1 S\<^isub>2 e\<^isub>1' e\<^isub>2' where
+ a1: "\<Gamma> \<turnstile> e : Data (DSum S\<^isub>1 S\<^isub>2)" and
+ a2: "((x\<^isub>1,Data S\<^isub>1)#\<Gamma>) \<turnstile> e\<^isub>1 : T" using vc by auto
+ have ih1:"\<Gamma> \<turnstile> e : Data (DSum S\<^isub>1 S\<^isub>2) \<Longrightarrow> \<Gamma> \<turnstile> InL e' : Data (DSum S\<^isub>1 S\<^isub>2)" by fact
+ have ih2:"\<Gamma> \<turnstile> e\<^isub>1[x\<^isub>1::=e'] : T \<Longrightarrow> \<Gamma> \<turnstile> e'' : T " by fact
+ have "\<Gamma> \<turnstile> InL e' : Data (DSum S\<^isub>1 S\<^isub>2)" using ih1 a1 by simp
+ then have "\<Gamma> \<turnstile> e' : Data S\<^isub>1" by auto
+ then have "\<Gamma> \<turnstile> e\<^isub>1[x\<^isub>1::=e'] : T" using a2 by (simp add: typing_substitution)
+ then show "\<Gamma> \<turnstile> e'' : T" using ih2 by simp
+next
+ case (b_CaseR x\<^isub>1 e e\<^isub>2 e'' x\<^isub>2 e\<^isub>1 e' \<Gamma> T)
+ then show "\<Gamma> \<turnstile> e'' : T" by (blast intro: typing_substitution)
+qed (blast)+
+
+lemma challenge_5:
+ assumes "x\<noteq>y"
+ shows "App (App (Lam [x].(Lam [y].Var y)) (Const n\<^isub>1)) (Const n\<^isub>2) \<Down> (Const n\<^isub>2)"
+ using assms
+ by (auto intro!: big.intros simp add: forget abs_fresh fresh_atm fresh_nat)
+
+lemma challenge_6:
+ shows "Fst (App (Lam [x].Pr (Var x) (Var x)) (Const n)) \<Down> Const n"
+ by (auto intro!: big.intros) (simp add: fresh_nat abs_fresh)
+
+lemma challenge_4_unicity:
+ assumes "e \<Down> e\<^isub>1" and "e \<Down> e\<^isub>2"
+ shows "e\<^isub>1 = e\<^isub>2"
+ using assms
+proof (induct arbitrary: e\<^isub>2)
+ case (b_Lam x e t\<^isub>2)
+ have "Lam [x].e \<Down> t\<^isub>2" by fact
+ thus "Lam [x].e = t\<^isub>2" by (cases, simp_all add: trm.inject)
+next
+ case (b_Fst e e\<^isub>1 e\<^isub>2 t\<^isub>2)
+ have "Fst e \<Down> t\<^isub>2" by fact
+ then obtain e\<^isub>1' e\<^isub>2' where "e \<Down> Pr e\<^isub>1' e\<^isub>2'" and eq: "t\<^isub>2 = e\<^isub>1'" by auto
+ then have "Pr e\<^isub>1 e\<^isub>2 = Pr e\<^isub>1' e\<^isub>2'" by auto
+ thus "e\<^isub>1 = t\<^isub>2" using eq by (simp add: trm.inject)
+next
+ case (b_Snd e e\<^isub>1 e\<^isub>2 t\<^isub>2)
+ thus ?case by (force simp add: trm.inject)
+next
+ case (b_App x e\<^isub>1 e\<^isub>2 e' e\<^isub>1' e\<^isub>2' t\<^isub>2)
+ have "e\<^isub>1 \<Down> Lam [x].e\<^isub>1'" by fact
+ have ih1: "\<And>t. e\<^isub>1 \<Down> t \<Longrightarrow> Lam [x].e\<^isub>1' = t" by fact
+ have "e\<^isub>2 \<Down> e\<^isub>2'" by fact
+ have ih2:"\<And>t. e\<^isub>2 \<Down> t \<Longrightarrow> e\<^isub>2' = t" by fact
+ have "e\<^isub>1'[x::=e\<^isub>2'] \<Down> e'" by fact
+ have ih3: "\<And>t. e\<^isub>1'[x::=e\<^isub>2'] \<Down> t \<Longrightarrow> e' = t" by fact
+ have f:"x\<sharp>(e\<^isub>1,e\<^isub>2,e')" by fact
+ then have "x \<sharp> App e\<^isub>1 e\<^isub>2" by auto
+ moreover
+ have app:"App e\<^isub>1 e\<^isub>2 \<Down> t\<^isub>2" by fact
+ ultimately have "x\<sharp>t\<^isub>2" using fresh_preserved by blast
+ then have "x\<sharp>(e\<^isub>1,e\<^isub>2,t\<^isub>2)" using f by auto
+ then obtain f\<^isub>1'' f\<^isub>2'' where x1:"e\<^isub>1 \<Down> Lam [x]. f\<^isub>1''" and x2:"e\<^isub>2 \<Down> f\<^isub>2''" and x3:"f\<^isub>1''[x::=f\<^isub>2''] \<Down> t\<^isub>2"
+ using app by auto
+ then have "Lam [x]. f\<^isub>1'' = Lam [x]. e\<^isub>1'" using ih1 by simp
+ then have "f\<^isub>1'' = e\<^isub>1'" by (auto simp add: trm.inject alpha)
+ moreover have "f\<^isub>2''=e\<^isub>2'" using x2 ih2 by simp
+ ultimately have "e\<^isub>1'[x::=e\<^isub>2'] \<Down> t\<^isub>2" using x3 by simp
+ thus ?case using ih3 by simp
+next
+ case (b_CaseL x\<^isub>1 e e\<^isub>2 e'' x\<^isub>2 e\<^isub>1 e' t\<^isub>2)
+ have ih1:"\<And> t. e \<Down> t \<Longrightarrow> InL e' = t" by fact
+ have ih2:"\<And>t. e\<^isub>1[x\<^isub>1::=e'] \<Down> t \<Longrightarrow> e'' = t" by fact
+ have ha:"\<And> t. (e \<Down> InR t) \<Longrightarrow> False" using ih1 by force
+ have "Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 \<Down> t\<^isub>2" by fact
+ then obtain xe' where "e\<Down>InL xe'" and h:"e\<^isub>1[x\<^isub>1::=xe']\<Down>t\<^isub>2" using ha by auto
+ then have "InL xe'=InL e'" using ih1 by simp
+ then have "xe'=e'" by (simp add: trm.inject)
+ then have "e\<^isub>1[x\<^isub>1::=e'] \<Down> t\<^isub>2" using h by simp
+ then show "e''=t\<^isub>2" using ih2 by simp
+next
+ case (b_CaseR x\<^isub>1 e e\<^isub>2 e'' x\<^isub>2 e\<^isub>1 e' t\<^isub>2 )
+ have ih1:"\<And> t. e \<Down> t \<Longrightarrow> InR e' = t" by fact
+ have ih2:"\<And>t. e\<^isub>2[x\<^isub>2::=e'] \<Down> t \<Longrightarrow> e'' = t" by fact
+ have a:"\<And> t. (e \<Down> InL t \<Longrightarrow> False)" using ih1 by force
+ have "Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2 \<Down> t\<^isub>2" by fact
+ then obtain xe' where "e\<Down>InR xe'" and h:"e\<^isub>2[x\<^isub>2::=xe']\<Down>t\<^isub>2" using a by auto
+ then have "InR xe'=InR e'" using ih1 by simp
+ then have "e\<^isub>2[x\<^isub>2::=e'] \<Down> t\<^isub>2" using h by (simp add: trm.inject)
+ thus "e''=t\<^isub>2" using ih2 by simp
+qed (fast)+
+
+lemma not_val_App[simp]:
+ shows
+ "\<not> val (App e\<^isub>1 e\<^isub>2)"
+ "\<not> val (Fst e)"
+ "\<not> val (Snd e)"
+ "\<not> val (Var x)"
+ "\<not> val (Case e of inl x\<^isub>1 \<rightarrow> e\<^isub>1 | inr x\<^isub>2 \<rightarrow> e\<^isub>2)"
+by auto
+
+lemma reduces_to_value:
+ assumes h:"t \<Down> t'"
+ shows "val t'"
+ using h by (induct, auto)
+
+lemma type_prod_down_pair:
+ assumes "\<Gamma> \<turnstile> t : Data (DProd S\<^isub>1 S\<^isub>2)" and "t \<Down> t'"
+ obtains t\<^isub>1 t\<^isub>2 where "t' = Pr t\<^isub>1 t\<^isub>2"
+proof -
+ have "\<Gamma> \<turnstile> t' : Data (DProd S\<^isub>1 S\<^isub>2)" using assms subject_reduction by simp
+ moreover
+ have "val t'" using reduces_to_value assms by simp
+ ultimately obtain t\<^isub>1 t\<^isub>2 where "t' = Pr t\<^isub>1 t\<^isub>2" by (cases, auto simp add:ty.inject data.inject)
+ thus ?thesis using prems by auto
+qed
+
+lemma type_sum_down_or:
+ assumes "\<Gamma> \<turnstile> t : Data (DSum \<sigma>\<^isub>1 \<sigma>\<^isub>2)" and "t \<Down> t'"
+ shows "(\<exists> t''. t' = InL t'') \<or> (\<exists> t''. t' = InR t'')"
+proof -
+ have "\<Gamma> \<turnstile> t' : Data (DSum \<sigma>\<^isub>1 \<sigma>\<^isub>2)" using assms subject_reduction by simp
+ moreover
+ have "val t'" using reduces_to_value assms by simp
+ ultimately obtain t'' where "t' = InL t'' \<or> t' = InR t''"
+ by (cases, auto simp add:ty.inject data.inject)
+ thus ?thesis by auto
+qed
+
+lemma type_arrow_down_lam:
+ assumes "\<Gamma> \<turnstile> t : \<sigma> \<rightarrow> \<tau>" and "t \<Down> t'"
+ obtains x t'' where "t' = Lam [x]. t''"
+proof -
+ have "\<Gamma> \<turnstile> t' : \<sigma> \<rightarrow> \<tau>" using assms subject_reduction by simp
+ moreover
+ have "val t'" using reduces_to_value assms by simp
+ ultimately obtain x t'' where "t' = Lam [x]. t''" by (cases, auto simp add:ty.inject data.inject)
+ thus ?thesis using prems by auto
+qed
+
+lemma type_nat_down_const:
+ assumes "\<Gamma> \<turnstile> t : Data DNat" and "t \<Down> t'"
+ obtains n where "t' = Const n"
+proof -
+ have "\<Gamma> \<turnstile> t' : Data DNat " using assms subject_reduction by simp
+ moreover have "val t'" using reduces_to_value assms by simp
+ ultimately obtain n where "t' = Const n" by (cases, auto simp add:ty.inject data.inject)
+ thus ?thesis using prems by auto
+qed
+
+consts
+ V' :: "data \<Rightarrow> trm set"
+
+nominal_primrec
+ "V' (DNat) = {Const n | n. n \<in> (UNIV::nat set)}"
+ "V' (DProd S\<^isub>1 S\<^isub>2) = {Pr x y | x y. x \<in> V' S\<^isub>1 \<and> y \<in> V' S\<^isub>2}"
+ "V' (DSum S\<^isub>1 S\<^isub>2) = {InL x | x. x \<in> V' S\<^isub>1} \<union> {InR y | y. y \<in> V' S\<^isub>2}"
+apply(rule TrueI)+
+done
+
+lemma Vprimes_are_values :
+ fixes S::"data"
+ assumes h: "e \<in> V' S"
+ shows "val e"
+using h
+by (nominal_induct S arbitrary: e rule:data.induct)
+ (auto)
+
+consts
+ V :: "ty \<Rightarrow> trm set"
+
+nominal_primrec
+ "V (Data S) = V' S"
+ "V (T\<^isub>1 \<rightarrow> T\<^isub>2) = {Lam [x].e | x e. \<forall> v \<in> (V T\<^isub>1). \<exists> v'. e[x::=v] \<Down> v' \<and> v' \<in> V T\<^isub>2}"
+apply(rule TrueI)+
+done
+
+lemma V_arrow_elim_weak[elim] :
+ assumes h:"u \<in> (V (T\<^isub>1 \<rightarrow> T\<^isub>2))"
+ obtains a t where "u = Lam[a].t" and "\<forall> v \<in> (V T\<^isub>1). \<exists> v'. t[a::=v] \<Down> v' \<and> v' \<in> V T\<^isub>2"
+using h by (auto)
+
+lemma V_arrow_elim_strong[elim]:
+ fixes c::"'a::fs_name"
+ assumes h: "u \<in> (V (T\<^isub>1 \<rightarrow> T\<^isub>2))"
+ obtains a t where "a\<sharp>c" "u = Lam[a].t" "\<forall> v \<in> (V T\<^isub>1). \<exists> v'. t[a::=v] \<Down> v' \<and> v' \<in> V T\<^isub>2"
+using h
+apply -
+apply(erule V_arrow_elim_weak)
+apply(subgoal_tac "\<exists>a'::name. a'\<sharp>(a,t,c)")
+apply(erule exE)
+apply(drule_tac x="a'" in meta_spec)
+apply(simp)
+apply(drule_tac x="[(a,a')]\<bullet>t" in meta_spec)
+apply(simp add: trm.inject alpha fresh_prod fresh_atm)
+apply(perm_simp)
+apply(simp add: fresh_left calc_atm)
+apply(auto)
+apply(simp add: subst_rename)
+apply(subgoal_tac "[(a',a)]\<bullet>t = [(a,a')]\<bullet>t")
+apply(simp)
+apply(rule pt_name3)
+apply(rule at_ds5[OF at_name_inst])
+apply(rule exists_fresh')
+apply(simp add: fs_name1)
+done
+
+lemma V_are_values :
+ fixes T::"ty"
+ assumes h:"e \<in> V T"
+ shows "val e"
+using h by (nominal_induct T arbitrary: e rule:ty.induct, auto simp add: Vprimes_are_values)
+
+lemma values_reduce_to_themselves:
+ assumes h:"val v"
+ shows "v \<Down> v"
+using h by (induct,auto)
+
+lemma Vs_reduce_to_themselves[simp]:
+ assumes h:"v \<in> V T"
+ shows "v \<Down> v"
+using h by (simp add: values_reduce_to_themselves V_are_values)
+
+lemma V_sum:
+ assumes h:"x \<in> V (Data (DSum S\<^isub>1 S\<^isub>2))"
+ shows "(\<exists> y. x= InL y \<and> y \<in> V' S\<^isub>1) \<or> (\<exists> y. x= InR y \<and> y \<in> V' S\<^isub>2)"
+using h by simp
+
+abbreviation
+ mapsto :: "(name\<times>trm) list \<Rightarrow> name \<Rightarrow> trm \<Rightarrow> bool" ("_ maps _ to _" [55,55,55] 55)
+where
+ "\<theta> maps x to e\<equiv> (lookup \<theta> x) = e"
+
+abbreviation
+ v_closes :: "(name\<times>trm) list \<Rightarrow> (name\<times>ty) list \<Rightarrow> bool" ("_ Vcloses _" [55,55] 55)
+where
+ "\<theta> Vcloses \<Gamma> \<equiv> \<forall>x T. ((x,T) \<in> set \<Gamma> \<longrightarrow> (\<exists>v. \<theta> maps x to v \<and> v \<in> (V T)))"
+
+lemma monotonicity:
+ fixes m::"name"
+ fixes \<theta>::"(name \<times> trm) list"
+ assumes h1: "\<theta> Vcloses \<Gamma>"
+ and h2: "e \<in> V T"
+ and h3: "valid ((x,T)#\<Gamma>)"
+ shows "(x,e)#\<theta> Vcloses (x,T)#\<Gamma>"
+proof(intro strip)
+ fix x' T'
+ assume "(x',T') \<in> set ((x,T)#\<Gamma>)"
+ then have "((x',T')=(x,T)) \<or> ((x',T')\<in>set \<Gamma> \<and> x'\<noteq>x)" using h3
+ by (rule_tac case_distinction_on_context)
+ moreover
+ { (* first case *)
+ assume "(x',T') = (x,T)"
+ then have "\<exists>e'. ((x,e)#\<theta>) maps x to e' \<and> e' \<in> V T'" using h2 by auto
+ }
+ moreover
+ { (* second case *)
+ assume "(x',T') \<in> set \<Gamma>" and neq:"x' \<noteq> x"
+ then have "\<exists>e'. \<theta> maps x' to e' \<and> e' \<in> V T'" using h1 by auto
+ then have "\<exists>e'. ((x,e)#\<theta>) maps x' to e' \<and> e' \<in> V T'" using neq by auto
+ }
+ ultimately show "\<exists>e'. ((x,e)#\<theta>) maps x' to e' \<and> e' \<in> V T'" by blast
+qed
+
+lemma termination_aux:
+ fixes T :: "ty"
+ fixes \<Gamma> :: "(name \<times> ty) list"
+ fixes \<theta> :: "(name \<times> trm) list"
+ fixes e :: "trm"
+ assumes h1: "\<Gamma> \<turnstile> e : T"
+ and h2: "\<theta> Vcloses \<Gamma>"
+ shows "\<exists>v. \<theta><e> \<Down> v \<and> v \<in> V T"
+using h2 h1
+proof(nominal_induct e avoiding: \<Gamma> \<theta> arbitrary: T rule: trm.induct)
+ case (App e\<^isub>1 e\<^isub>2 \<Gamma> \<theta> T)
+ have ih\<^isub>1:"\<And>\<theta> \<Gamma> T. \<lbrakk>\<theta> Vcloses \<Gamma>; \<Gamma> \<turnstile> e\<^isub>1 : T\<rbrakk> \<Longrightarrow> \<exists>v. \<theta><e\<^isub>1> \<Down> v \<and> v \<in> V T" by fact
+ have ih\<^isub>2:"\<And>\<theta> \<Gamma> T. \<lbrakk>\<theta> Vcloses \<Gamma>; \<Gamma> \<turnstile> e\<^isub>2 : T\<rbrakk> \<Longrightarrow> \<exists>v. \<theta><e\<^isub>2> \<Down> v \<and> v \<in> V T" by fact
+ have as\<^isub>1:"\<theta> Vcloses \<Gamma>" by fact
+ have as\<^isub>2: "\<Gamma> \<turnstile> App e\<^isub>1 e\<^isub>2 : T" by fact
+ from as\<^isub>2 obtain T' where "\<Gamma> \<turnstile> e\<^isub>1 : T' \<rightarrow> T" and "\<Gamma> \<turnstile> e\<^isub>2 : T'" by auto
+ then obtain v\<^isub>1 v\<^isub>2 where "(i)": "\<theta><e\<^isub>1> \<Down> v\<^isub>1" "v\<^isub>1 \<in> V (T' \<rightarrow> T)"
+ and "(ii)":"\<theta><e\<^isub>2> \<Down> v\<^isub>2" "v\<^isub>2 \<in> V T'" using ih\<^isub>1 ih\<^isub>2 as\<^isub>1 by blast
+ from "(i)" obtain x e'
+ where "v\<^isub>1 = Lam[x].e'"
+ and "(iii)": "(\<forall>v \<in> (V T').\<exists> v'. e'[x::=v] \<Down> v' \<and> v' \<in> V T)"
+ and "(iv)": "\<theta><e\<^isub>1> \<Down> Lam [x].e'"
+ and fr: "x\<sharp>(\<theta>,e\<^isub>1,e\<^isub>2)" by blast
+ from fr have fr\<^isub>1: "x\<sharp>\<theta><e\<^isub>1>" and fr\<^isub>2: "x\<sharp>\<theta><e\<^isub>2>" by (simp_all add: fresh_psubst)
+ from "(ii)" "(iii)" obtain v\<^isub>3 where "(v)": "e'[x::=v\<^isub>2] \<Down> v\<^isub>3" "v\<^isub>3 \<in> V T" by auto
+ from fr\<^isub>2 "(ii)" have "x\<sharp>v\<^isub>2" by (simp add: fresh_preserved)
+ then have "x\<sharp>e'[x::=v\<^isub>2]" by (simp add: fresh_subst_fresh)
+ then have fr\<^isub>3: "x\<sharp>v\<^isub>3" using "(v)" by (simp add: fresh_preserved)
+ from fr\<^isub>1 fr\<^isub>2 fr\<^isub>3 have "x\<sharp>(\<theta><e\<^isub>1>,\<theta><e\<^isub>2>,v\<^isub>3)" by simp
+ with "(iv)" "(ii)" "(v)" have "App (\<theta><e\<^isub>1>) (\<theta><e\<^isub>2>) \<Down> v\<^isub>3" by auto
+ then show "\<exists>v. \<theta><App e\<^isub>1 e\<^isub>2> \<Down> v \<and> v \<in> V T" using "(v)" by auto
+next
+ case (Pr t\<^isub>1 t\<^isub>2 \<Gamma> \<theta> T)
+ have "\<Gamma> \<turnstile> Pr t\<^isub>1 t\<^isub>2 : T" by fact
+ then obtain T\<^isub>a T\<^isub>b where ta:"\<Gamma> \<turnstile> t\<^isub>1 : Data T\<^isub>a" and "\<Gamma> \<turnstile> t\<^isub>2 : Data T\<^isub>b"
+ and eq:"T=Data (DProd T\<^isub>a T\<^isub>b)" by auto
+ have h:"\<theta> Vcloses \<Gamma>" by fact
+ then obtain v\<^isub>1 v\<^isub>2 where "\<theta><t\<^isub>1> \<Down> v\<^isub>1 \<and> v\<^isub>1 \<in> V (Data T\<^isub>a)" "\<theta><t\<^isub>2> \<Down> v\<^isub>2 \<and> v\<^isub>2 \<in> V (Data T\<^isub>b)"
+ using prems by blast
+ thus "\<exists>v. \<theta><Pr t\<^isub>1 t\<^isub>2> \<Down> v \<and> v \<in> V T" using eq by auto
+next
+ case (Lam x e \<Gamma> \<theta> T)
+ have ih:"\<And>\<theta> \<Gamma> T. \<lbrakk>\<theta> Vcloses \<Gamma>; \<Gamma> \<turnstile> e : T\<rbrakk> \<Longrightarrow> \<exists>v. \<theta><e> \<Down> v \<and> v \<in> V T" by fact
+ have as\<^isub>1: "\<theta> Vcloses \<Gamma>" by fact
+ have as\<^isub>2: "\<Gamma> \<turnstile> Lam [x].e : T" by fact
+ have fs: "x\<sharp>\<Gamma>" "x\<sharp>\<theta>" by fact
+ from as\<^isub>2 fs obtain T\<^isub>1 T\<^isub>2
+ where "(i)": "(x,T\<^isub>1)#\<Gamma> \<turnstile> e:T\<^isub>2" and "(ii)": "T = T\<^isub>1 \<rightarrow> T\<^isub>2" by auto
+ from "(i)" have "(iii)": "valid ((x,T\<^isub>1)#\<Gamma>)" by (simp add: typing_valid)
+ have "\<forall>v \<in> (V T\<^isub>1). \<exists>v'. (\<theta><e>)[x::=v] \<Down> v' \<and> v' \<in> V T\<^isub>2"
+ proof
+ fix v
+ assume "v \<in> (V T\<^isub>1)"
+ with "(iii)" as\<^isub>1 have "(x,v)#\<theta> Vcloses (x,T\<^isub>1)#\<Gamma>" using monotonicity by auto
+ with ih "(i)" obtain v' where "((x,v)#\<theta>)<e> \<Down> v' \<and> v' \<in> V T\<^isub>2" by blast
+ then have "\<theta><e>[x::=v] \<Down> v' \<and> v' \<in> V T\<^isub>2" using fs
+ by (simp add: psubst_subst_psubst)
+ then show "\<exists>v'. \<theta><e>[x::=v] \<Down> v' \<and> v' \<in> V T\<^isub>2" by auto
+ qed
+ then have "Lam[x].\<theta><e> \<in> V (T\<^isub>1 \<rightarrow> T\<^isub>2)" by auto
+ then have "\<theta><Lam [x].e> \<Down> Lam[x].\<theta><e> \<and> Lam[x].\<theta><e> \<in> V (T\<^isub>1\<rightarrow>T\<^isub>2)" using fs by auto
+ thus "\<exists>v. \<theta><Lam [x].e> \<Down> v \<and> v \<in> V T" using "(ii)" by auto
+next
+ case (Case t' n\<^isub>1 t\<^isub>1 n\<^isub>2 t\<^isub>2 \<Gamma> \<theta> T)
+ have f: "n\<^isub>1\<sharp>\<Gamma>" "n\<^isub>1\<sharp>\<theta>" "n\<^isub>2\<sharp>\<Gamma>" "n\<^isub>2\<sharp>\<theta>" "n\<^isub>2\<noteq>n\<^isub>1" "n\<^isub>1\<sharp>t'"
+ "n\<^isub>1\<sharp>t\<^isub>2" "n\<^isub>2\<sharp>t'" "n\<^isub>2\<sharp>t\<^isub>1" by fact
+ have h:"\<theta> Vcloses \<Gamma>" by fact
+ have th:"\<Gamma> \<turnstile> Case t' of inl n\<^isub>1 \<rightarrow> t\<^isub>1 | inr n\<^isub>2 \<rightarrow> t\<^isub>2 : T" by fact
+ then obtain S\<^isub>1 S\<^isub>2 where
+ hm:"\<Gamma> \<turnstile> t' : Data (DSum S\<^isub>1 S\<^isub>2)" and
+ hl:"(n\<^isub>1,Data S\<^isub>1)# \<Gamma> \<turnstile> t\<^isub>1 : T" and
+ hr:"(n\<^isub>2,Data S\<^isub>2)# \<Gamma> \<turnstile> t\<^isub>2 : T" using f by auto
+ then obtain v\<^isub>0 where ht':"\<theta><t'> \<Down> v\<^isub>0" and hS:"v\<^isub>0 \<in> V (Data (DSum S\<^isub>1 S\<^isub>2))" using prems h by blast
+ (* We distinguish between the cases InL and InR *)
+ {
+ fix v\<^isub>0'
+ assume eqc:"v\<^isub>0 = InL v\<^isub>0'" and "v\<^isub>0' \<in> V' S\<^isub>1"
+ then have inc: "v\<^isub>0' \<in> V (Data S\<^isub>1)" by auto
+ have "valid \<Gamma>" using th typing_valid by auto
+ then moreover have "valid ((n\<^isub>1,Data S\<^isub>1)#\<Gamma>)" using f by auto
+ then moreover have "(n\<^isub>1,v\<^isub>0')#\<theta> Vcloses (n\<^isub>1,Data S\<^isub>1)#\<Gamma>"
+ using inc h monotonicity by blast
+ moreover have ih:"\<And>\<Gamma> \<theta> T. \<lbrakk>\<theta> Vcloses \<Gamma>; \<Gamma> \<turnstile> t\<^isub>1 : T\<rbrakk> \<Longrightarrow>
+ \<exists>v. \<theta><t\<^isub>1> \<Down> v \<and> v \<in> V T" by fact
+ ultimately obtain v\<^isub>1 where ho:"((n\<^isub>1,v\<^isub>0')#\<theta>)<t\<^isub>1> \<Down> v\<^isub>1 \<and> v\<^isub>1 \<in> V T" using hl by blast
+ then have r:"\<theta><t\<^isub>1>[n\<^isub>1::=v\<^isub>0'] \<Down> v\<^isub>1 \<and> v\<^isub>1 \<in> V T" using psubst_subst_psubst f by simp
+ then moreover have "n\<^isub>1\<sharp>(\<theta><t'>,\<theta><t\<^isub>2>,v\<^isub>1,n\<^isub>2)"
+ proof -
+ have "n\<^isub>1\<sharp>v\<^isub>0" using ht' fresh_preserved fresh_psubst f by auto
+ then have "n\<^isub>1\<sharp>v\<^isub>0'" using eqc by auto
+ then have "n\<^isub>1\<sharp>v\<^isub>1" using f r fresh_preserved fresh_subst_fresh by blast
+ thus "n\<^isub>1\<sharp>(\<theta><t'>,\<theta><t\<^isub>2>,v\<^isub>1,n\<^isub>2)" using f by (simp add: fresh_atm fresh_psubst)
+ qed
+ moreover have "n\<^isub>2\<sharp>(\<theta><t'>,\<theta><t\<^isub>1>,v\<^isub>1,n\<^isub>1)"
+ proof -
+ have "n\<^isub>2\<sharp>v\<^isub>0" using ht' fresh_preserved fresh_psubst f by auto
+ then have "n\<^isub>2\<sharp>v\<^isub>0'" using eqc by auto
+ then have "n\<^isub>2\<sharp>((n\<^isub>1,v\<^isub>0')#\<theta>)" using f fresh_list_cons fresh_atm by force
+ then have "n\<^isub>2\<sharp>((n\<^isub>1,v\<^isub>0')#\<theta>)<t\<^isub>1>" using f fresh_psubst by auto
+ moreover then have "n\<^isub>2 \<sharp> v\<^isub>1" using fresh_preserved ho by auto
+ ultimately show "n\<^isub>2\<sharp>(\<theta><t'>,\<theta><t\<^isub>1>,v\<^isub>1,n\<^isub>1)" using f by (simp add: fresh_psubst fresh_atm)
+ qed
+ ultimately have "Case \<theta><t'> of inl n\<^isub>1 \<rightarrow> \<theta><t\<^isub>1> | inr n\<^isub>2 \<rightarrow> \<theta><t\<^isub>2> \<Down> v\<^isub>1 \<and> v\<^isub>1 \<in> V T" using ht' eqc by auto
+ moreover
+ have "Case \<theta><t'> of inl n\<^isub>1 \<rightarrow> \<theta><t\<^isub>1> | inr n\<^isub>2 \<rightarrow> \<theta><t\<^isub>2> = \<theta><Case t' of inl n\<^isub>1 \<rightarrow> t\<^isub>1 | inr n\<^isub>2 \<rightarrow> t\<^isub>2>"
+ using f by auto
+ ultimately have "\<exists>v. \<theta><Case t' of inl n\<^isub>1 \<rightarrow> t\<^isub>1 | inr n\<^isub>2 \<rightarrow> t\<^isub>2> \<Down> v \<and> v \<in> V T" by auto
+ }
+ moreover
+ {
+ fix v\<^isub>0'
+ assume eqc:"v\<^isub>0 = InR v\<^isub>0'" and "v\<^isub>0' \<in> V' S\<^isub>2"
+ then have inc:"v\<^isub>0' \<in> V (Data S\<^isub>2)" by auto
+ have "valid \<Gamma>" using th typing_valid by auto
+ then moreover have "valid ((n\<^isub>2,Data S\<^isub>2)#\<Gamma>)" using f by auto
+ then moreover have "(n\<^isub>2,v\<^isub>0')#\<theta> Vcloses (n\<^isub>2,Data S\<^isub>2)#\<Gamma>"
+ using inc h monotonicity by blast
+ moreover have ih:"\<And>\<Gamma> \<theta> T. \<lbrakk>\<theta> Vcloses \<Gamma>; \<Gamma> \<turnstile> t\<^isub>2 : T\<rbrakk> \<Longrightarrow> \<exists>v. \<theta><t\<^isub>2> \<Down> v \<and> v \<in> V T" by fact
+ ultimately obtain v\<^isub>2 where ho:"((n\<^isub>2,v\<^isub>0')#\<theta>)<t\<^isub>2> \<Down> v\<^isub>2 \<and> v\<^isub>2 \<in> V T" using hr by blast
+ then have r:"\<theta><t\<^isub>2>[n\<^isub>2::=v\<^isub>0'] \<Down> v\<^isub>2 \<and> v\<^isub>2 \<in> V T" using psubst_subst_psubst f by simp
+ moreover have "n\<^isub>1\<sharp>(\<theta><t'>,\<theta><t\<^isub>2>,v\<^isub>2,n\<^isub>2)"
+ proof -
+ have "n\<^isub>1\<sharp>\<theta><t'>" using fresh_psubst f by simp
+ then have "n\<^isub>1\<sharp>v\<^isub>0" using ht' fresh_preserved by auto
+ then have "n\<^isub>1\<sharp>v\<^isub>0'" using eqc by auto
+ then have "n\<^isub>1\<sharp>((n\<^isub>2,v\<^isub>0')#\<theta>)" using f fresh_list_cons fresh_atm by force
+ then have "n\<^isub>1\<sharp>((n\<^isub>2,v\<^isub>0')#\<theta>)<t\<^isub>2>" using f fresh_psubst by auto
+ moreover then have "n\<^isub>1\<sharp>v\<^isub>2" using fresh_preserved ho by auto
+ ultimately show "n\<^isub>1 \<sharp> (\<theta><t'>,\<theta><t\<^isub>2>,v\<^isub>2,n\<^isub>2)" using f by (simp add: fresh_psubst fresh_atm)
+ qed
+ moreover have "n\<^isub>2 \<sharp> (\<theta><t'>,\<theta><t\<^isub>1>,v\<^isub>2,n\<^isub>1)"
+ proof -
+ have "n\<^isub>2\<sharp>\<theta><t'>" using fresh_psubst f by simp
+ then have "n\<^isub>2\<sharp>v\<^isub>0" using ht' fresh_preserved by auto
+ then have "n\<^isub>2\<sharp>v\<^isub>0'" using eqc by auto
+ then have "n\<^isub>2\<sharp>\<theta><t\<^isub>2>[n\<^isub>2::=v\<^isub>0']" using f fresh_subst_fresh by auto
+ then have "n\<^isub>2\<sharp>v\<^isub>2" using f fresh_preserved r by blast
+ then show "n\<^isub>2\<sharp>(\<theta><t'>,\<theta><t\<^isub>1>,v\<^isub>2,n\<^isub>1)" using f by (simp add: fresh_atm fresh_psubst)
+ qed
+ ultimately have "Case \<theta><t'> of inl n\<^isub>1 \<rightarrow> \<theta><t\<^isub>1> | inr n\<^isub>2 \<rightarrow> \<theta><t\<^isub>2> \<Down> v\<^isub>2 \<and> v\<^isub>2 \<in> V T" using ht' eqc by auto
+ then have "\<exists>v. \<theta><Case t' of inl n\<^isub>1 \<rightarrow> t\<^isub>1 | inr n\<^isub>2 \<rightarrow> t\<^isub>2> \<Down> v \<and> v \<in> V T" using f by auto
+}
+ ultimately show "\<exists>v. \<theta><Case t' of inl n\<^isub>1 \<rightarrow> t\<^isub>1 | inr n\<^isub>2 \<rightarrow> t\<^isub>2> \<Down> v \<and> v \<in> V T" using hS V_sum by blast
+qed (force)+
+
+theorem termination_of_evaluation:
+ assumes a: "[] \<turnstile> e : T"
+ shows "\<exists>v. e \<Down> v \<and> val v"
+proof -
+ from a have "\<exists>v. (([]::(name \<times> trm) list)<e>) \<Down> v \<and> v \<in> V T"
+ by (rule termination_aux) (auto)
+ thus "\<exists>v. e \<Down> v \<and> val v" using V_are_values by auto
+qed
+
+end