extensionality rule fset_eqI
authorhaftmann
Mon, 21 Jun 2010 09:06:14 +0200
changeset 37473 013f78aed840
parent 37472 de4a8298c6f3
child 37474 ce943f9edf5e
extensionality rule fset_eqI
src/HOL/Library/Dlist.thy
src/HOL/Library/Fset.thy
--- a/src/HOL/Library/Dlist.thy	Sun Jun 20 22:01:22 2010 +0200
+++ b/src/HOL/Library/Dlist.thy	Mon Jun 21 09:06:14 2010 +0200
@@ -3,7 +3,7 @@
 header {* Lists with elements distinct as canonical example for datatype invariants *}
 
 theory Dlist
-imports Main More_List Fset
+imports Main Fset
 begin
 
 section {* The type of distinct lists *}
@@ -181,11 +181,11 @@
 
 lemma Set_Dlist [simp]:
   "Set (Dlist xs) = Fset (set xs)"
-  by (simp add: Set_def Fset.Set_def)
+  by (rule fset_eqI) (simp add: Set_def)
 
 lemma Coset_Dlist [simp]:
   "Coset (Dlist xs) = Fset (- set xs)"
-  by (simp add: Coset_def Fset.Coset_def)
+  by (rule fset_eqI) (simp add: Coset_def)
 
 lemma member_Set [simp]:
   "Fset.member (Set dxs) = List.member (list_of_dlist dxs)"
@@ -197,11 +197,11 @@
 
 lemma Set_dlist_of_list [code]:
   "Fset.Set xs = Set (dlist_of_list xs)"
-  by simp
+  by (rule fset_eqI) simp
 
 lemma Coset_dlist_of_list [code]:
   "Fset.Coset xs = Coset (dlist_of_list xs)"
-  by simp
+  by (rule fset_eqI) simp
 
 lemma is_empty_Set [code]:
   "Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs"
@@ -233,15 +233,15 @@
 lemma compl_code [code]:
   "- Set dxs = Coset dxs"
   "- Coset dxs = Set dxs"
-  by (simp_all add: not_set_compl member_set)
+  by (rule fset_eqI, simp add: member_set not_set_compl)+
 
 lemma map_code [code]:
   "Fset.map f (Set dxs) = Set (map f dxs)"
-  by (simp add: member_set)
+  by (rule fset_eqI) (simp add: member_set)
   
 lemma filter_code [code]:
   "Fset.filter f (Set dxs) = Set (filter f dxs)"
-  by (simp add: member_set)
+  by (rule fset_eqI) (simp add: member_set)
 
 lemma forall_Set [code]:
   "Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"
--- a/src/HOL/Library/Fset.thy	Sun Jun 20 22:01:22 2010 +0200
+++ b/src/HOL/Library/Fset.thy	Mon Jun 21 09:06:14 2010 +0200
@@ -26,6 +26,10 @@
   "Fset A = Fset B \<longleftrightarrow> A = B"
   by (simp add: Fset_inject)
 
+lemma fset_eqI:
+  "member A = member B \<Longrightarrow> A = B"
+  by simp
+
 declare mem_def [simp]
 
 definition Set :: "'a list \<Rightarrow> 'a fset" where