merged
authorhuffman
Thu, 19 Feb 2009 05:50:26 -0800
changeset 29989 bdf83fc2c8ba
parent 29988 747f0c519090 (diff)
parent 29984 015c56cc1864 (current diff)
child 29990 b11793ea15a3
merged
--- a/src/HOL/Complex_Main.thy	Thu Feb 19 23:55:10 2009 +1100
+++ b/src/HOL/Complex_Main.thy	Thu Feb 19 05:50:26 2009 -0800
@@ -9,7 +9,6 @@
   Ln
   Taylor
   Integration
-  FrechetDeriv
 begin
 
 end
--- a/src/HOL/Deriv.thy	Thu Feb 19 23:55:10 2009 +1100
+++ b/src/HOL/Deriv.thy	Thu Feb 19 05:50:26 2009 -0800
@@ -9,7 +9,7 @@
 header{* Differentiation *}
 
 theory Deriv
-imports Lim Polynomial
+imports Lim
 begin
 
 text{*Standard Definitions*}
@@ -1457,311 +1457,6 @@
 qed
 
 
-subsection {* Derivatives of univariate polynomials *}
-
-definition
-  pderiv :: "'a::real_normed_field poly \<Rightarrow> 'a poly" where
-  "pderiv = poly_rec 0 (\<lambda>a p p'. p + pCons 0 p')"
-
-lemma pderiv_0 [simp]: "pderiv 0 = 0"
-  unfolding pderiv_def by (simp add: poly_rec_0)
-
-lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)"
-  unfolding pderiv_def by (simp add: poly_rec_pCons)
-
-lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)"
-  apply (induct p arbitrary: n, simp)
-  apply (simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split)
-  done
-
-lemma pderiv_eq_0_iff: "pderiv p = 0 \<longleftrightarrow> degree p = 0"
-  apply (rule iffI)
-  apply (cases p, simp)
-  apply (simp add: expand_poly_eq coeff_pderiv del: of_nat_Suc)
-  apply (simp add: expand_poly_eq coeff_pderiv coeff_eq_0)
-  done
-
-lemma degree_pderiv: "degree (pderiv p) = degree p - 1"
-  apply (rule order_antisym [OF degree_le])
-  apply (simp add: coeff_pderiv coeff_eq_0)
-  apply (cases "degree p", simp)
-  apply (rule le_degree)
-  apply (simp add: coeff_pderiv del: of_nat_Suc)
-  apply (rule subst, assumption)
-  apply (rule leading_coeff_neq_0, clarsimp)
-  done
-
-lemma pderiv_singleton [simp]: "pderiv [:a:] = 0"
-by (simp add: pderiv_pCons)
-
-lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q"
-by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
-
-lemma pderiv_minus: "pderiv (- p) = - pderiv p"
-by (rule poly_ext, simp add: coeff_pderiv)
-
-lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q"
-by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
-
-lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)"
-by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
-
-lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p"
-apply (induct p)
-apply simp
-apply (simp add: pderiv_add pderiv_smult pderiv_pCons algebra_simps)
-done
-
-lemma pderiv_power_Suc:
-  "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p"
-apply (induct n)
-apply simp
-apply (subst power_Suc)
-apply (subst pderiv_mult)
-apply (erule ssubst)
-apply (simp add: smult_add_left algebra_simps)
-done
-
-lemma DERIV_cmult2: "DERIV f x :> D ==> DERIV (%x. (f x) * c :: real) x :> D * c"
-by (simp add: DERIV_cmult mult_commute [of _ c])
-
-lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)"
-by (rule lemma_DERIV_subst, rule DERIV_pow, simp)
-declare DERIV_pow2 [simp] DERIV_pow [simp]
-
-lemma DERIV_add_const: "DERIV f x :> D ==>  DERIV (%x. a + f x :: 'a::real_normed_field) x :> D"
-by (rule lemma_DERIV_subst, rule DERIV_add, auto)
-
-lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x"
-apply (induct p)
-apply simp
-apply (simp add: pderiv_pCons)
-apply (rule lemma_DERIV_subst)
-apply (rule DERIV_add DERIV_mult DERIV_const DERIV_ident | assumption)+
-apply simp
-done
-
-text{* Consequences of the derivative theorem above*}
-
-lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (x::real)"
-apply (simp add: differentiable_def)
-apply (blast intro: poly_DERIV)
-done
-
-lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)"
-by (rule poly_DERIV [THEN DERIV_isCont])
-
-lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |]
-      ==> \<exists>x. a < x & x < b & (poly p x = 0)"
-apply (cut_tac f = "%x. poly p x" and a = a and b = b and y = 0 in IVT_objl)
-apply (auto simp add: order_le_less)
-done
-
-lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |]
-      ==> \<exists>x. a < x & x < b & (poly p x = 0)"
-by (insert poly_IVT_pos [where p = "- p" ]) simp
-
-lemma poly_MVT: "(a::real) < b ==>
-     \<exists>x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)"
-apply (drule_tac f = "poly p" in MVT, auto)
-apply (rule_tac x = z in exI)
-apply (auto simp add: real_mult_left_cancel poly_DERIV [THEN DERIV_unique])
-done
-
-text{*Lemmas for Derivatives*}
-
-lemma order_unique_lemma:
-  fixes p :: "'a::idom poly"
-  assumes "[:-a, 1:] ^ n dvd p \<and> \<not> [:-a, 1:] ^ Suc n dvd p"
-  shows "n = order a p"
-unfolding Polynomial.order_def
-apply (rule Least_equality [symmetric])
-apply (rule assms [THEN conjunct2])
-apply (erule contrapos_np)
-apply (rule power_le_dvd)
-apply (rule assms [THEN conjunct1])
-apply simp
-done
-
-lemma lemma_order_pderiv1:
-  "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q +
-    smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)"
-apply (simp only: pderiv_mult pderiv_power_Suc)
-apply (simp del: power_poly_Suc of_nat_Suc add: pderiv_pCons)
-done
-
-lemma dvd_add_cancel1:
-  fixes a b c :: "'a::comm_ring_1"
-  shows "a dvd b + c \<Longrightarrow> a dvd b \<Longrightarrow> a dvd c"
-  by (drule (1) Ring_and_Field.dvd_diff, simp)
-
-lemma lemma_order_pderiv [rule_format]:
-     "\<forall>p q a. 0 < n &
-       pderiv p \<noteq> 0 &
-       p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q
-       --> n = Suc (order a (pderiv p))"
- apply (cases "n", safe, rename_tac n p q a)
- apply (rule order_unique_lemma)
- apply (rule conjI)
-  apply (subst lemma_order_pderiv1)
-  apply (rule dvd_add)
-   apply (rule dvd_mult2)
-   apply (rule le_imp_power_dvd, simp)
-  apply (rule dvd_smult)
-  apply (rule dvd_mult)
-  apply (rule dvd_refl)
- apply (subst lemma_order_pderiv1)
- apply (erule contrapos_nn) back
- apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n")
-  apply (simp del: mult_pCons_left)
- apply (drule dvd_add_cancel1)
-  apply (simp del: mult_pCons_left)
- apply (drule dvd_smult_cancel, simp del: of_nat_Suc)
- apply assumption
-done
-
-lemma order_decomp:
-     "p \<noteq> 0
-      ==> \<exists>q. p = [:-a, 1:] ^ (order a p) * q &
-                ~([:-a, 1:] dvd q)"
-apply (drule order [where a=a])
-apply (erule conjE)
-apply (erule dvdE)
-apply (rule exI)
-apply (rule conjI, assumption)
-apply (erule contrapos_nn)
-apply (erule ssubst) back
-apply (subst power_Suc2)
-apply (erule mult_dvd_mono [OF dvd_refl])
-done
-
-lemma order_pderiv: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
-      ==> (order a p = Suc (order a (pderiv p)))"
-apply (case_tac "p = 0", simp)
-apply (drule_tac a = a and p = p in order_decomp)
-using neq0_conv
-apply (blast intro: lemma_order_pderiv)
-done
-
-lemma order_mult: "p * q \<noteq> 0 \<Longrightarrow> order a (p * q) = order a p + order a q"
-proof -
-  def i \<equiv> "order a p"
-  def j \<equiv> "order a q"
-  def t \<equiv> "[:-a, 1:]"
-  have t_dvd_iff: "\<And>u. t dvd u \<longleftrightarrow> poly u a = 0"
-    unfolding t_def by (simp add: dvd_iff_poly_eq_0)
-  assume "p * q \<noteq> 0"
-  then show "order a (p * q) = i + j"
-    apply clarsimp
-    apply (drule order [where a=a and p=p, folded i_def t_def])
-    apply (drule order [where a=a and p=q, folded j_def t_def])
-    apply clarify
-    apply (rule order_unique_lemma [symmetric], fold t_def)
-    apply (erule dvdE)+
-    apply (simp add: power_add t_dvd_iff)
-    done
-qed
-
-text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *}
-
-lemma order_divides: "[:-a, 1:] ^ n dvd p \<longleftrightarrow> p = 0 \<or> n \<le> order a p"
-apply (cases "p = 0", auto)
-apply (drule order_2 [where a=a and p=p])
-apply (erule contrapos_np)
-apply (erule power_le_dvd)
-apply simp
-apply (erule power_le_dvd [OF order_1])
-done
-
-lemma poly_squarefree_decomp_order:
-  assumes "pderiv p \<noteq> 0"
-  and p: "p = q * d"
-  and p': "pderiv p = e * d"
-  and d: "d = r * p + s * pderiv p"
-  shows "order a q = (if order a p = 0 then 0 else 1)"
-proof (rule classical)
-  assume 1: "order a q \<noteq> (if order a p = 0 then 0 else 1)"
-  from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto
-  with p have "order a p = order a q + order a d"
-    by (simp add: order_mult)
-  with 1 have "order a p \<noteq> 0" by (auto split: if_splits)
-  have "order a (pderiv p) = order a e + order a d"
-    using `pderiv p \<noteq> 0` `pderiv p = e * d` by (simp add: order_mult)
-  have "order a p = Suc (order a (pderiv p))"
-    using `pderiv p \<noteq> 0` `order a p \<noteq> 0` by (rule order_pderiv)
-  have "d \<noteq> 0" using `p \<noteq> 0` `p = q * d` by simp
-  have "([:-a, 1:] ^ (order a (pderiv p))) dvd d"
-    apply (simp add: d)
-    apply (rule dvd_add)
-    apply (rule dvd_mult)
-    apply (simp add: order_divides `p \<noteq> 0`
-           `order a p = Suc (order a (pderiv p))`)
-    apply (rule dvd_mult)
-    apply (simp add: order_divides)
-    done
-  then have "order a (pderiv p) \<le> order a d"
-    using `d \<noteq> 0` by (simp add: order_divides)
-  show ?thesis
-    using `order a p = order a q + order a d`
-    using `order a (pderiv p) = order a e + order a d`
-    using `order a p = Suc (order a (pderiv p))`
-    using `order a (pderiv p) \<le> order a d`
-    by auto
-qed
-
-lemma poly_squarefree_decomp_order2: "[| pderiv p \<noteq> 0;
-         p = q * d;
-         pderiv p = e * d;
-         d = r * p + s * pderiv p
-      |] ==> \<forall>a. order a q = (if order a p = 0 then 0 else 1)"
-apply (blast intro: poly_squarefree_decomp_order)
-done
-
-lemma order_pderiv2: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
-      ==> (order a (pderiv p) = n) = (order a p = Suc n)"
-apply (auto dest: order_pderiv)
-done
-
-definition
-  rsquarefree :: "'a::idom poly => bool" where
-  "rsquarefree p = (p \<noteq> 0 & (\<forall>a. (order a p = 0) | (order a p = 1)))"
-
-lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h:]"
-apply (simp add: pderiv_eq_0_iff)
-apply (case_tac p, auto split: if_splits)
-done
-
-lemma rsquarefree_roots:
-  "rsquarefree p = (\<forall>a. ~(poly p a = 0 & poly (pderiv p) a = 0))"
-apply (simp add: rsquarefree_def)
-apply (case_tac "p = 0", simp, simp)
-apply (case_tac "pderiv p = 0")
-apply simp
-apply (drule pderiv_iszero, clarify)
-apply simp
-apply (rule allI)
-apply (cut_tac p = "[:h:]" and a = a in order_root)
-apply simp
-apply (auto simp add: order_root order_pderiv2)
-apply (erule_tac x="a" in allE, simp)
-done
-
-lemma poly_squarefree_decomp:
-  assumes "pderiv p \<noteq> 0"
-    and "p = q * d"
-    and "pderiv p = e * d"
-    and "d = r * p + s * pderiv p"
-  shows "rsquarefree q & (\<forall>a. (poly q a = 0) = (poly p a = 0))"
-proof -
-  from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto
-  with `p = q * d` have "q \<noteq> 0" by simp
-  have "\<forall>a. order a q = (if order a p = 0 then 0 else 1)"
-    using assms by (rule poly_squarefree_decomp_order2)
-  with `p \<noteq> 0` `q \<noteq> 0` show ?thesis
-    by (simp add: rsquarefree_def order_root)
-qed
-
-
 subsection {* Theorems about Limits *}
 
 (* need to rename second isCont_inverse *)
--- a/src/HOL/FrechetDeriv.thy	Thu Feb 19 23:55:10 2009 +1100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,503 +0,0 @@
-(*  Title       : FrechetDeriv.thy
-    ID          : $Id$
-    Author      : Brian Huffman
-*)
-
-header {* Frechet Derivative *}
-
-theory FrechetDeriv
-imports Lim
-begin
-
-definition
-  fderiv ::
-  "['a::real_normed_vector \<Rightarrow> 'b::real_normed_vector, 'a, 'a \<Rightarrow> 'b] \<Rightarrow> bool"
-    -- {* Frechet derivative: D is derivative of function f at x *}
-          ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
-  "FDERIV f x :> D = (bounded_linear D \<and>
-    (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0)"
-
-lemma FDERIV_I:
-  "\<lbrakk>bounded_linear D; (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0\<rbrakk>
-   \<Longrightarrow> FDERIV f x :> D"
-by (simp add: fderiv_def)
-
-lemma FDERIV_D:
-  "FDERIV f x :> D \<Longrightarrow> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0"
-by (simp add: fderiv_def)
-
-lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D"
-by (simp add: fderiv_def)
-
-lemma bounded_linear_zero:
-  "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)"
-proof
-  show "(0::'b) = 0 + 0" by simp
-  fix r show "(0::'b) = scaleR r 0" by simp
-  have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp
-  thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" ..
-qed
-
-lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)"
-by (simp add: fderiv_def bounded_linear_zero)
-
-lemma bounded_linear_ident:
-  "bounded_linear (\<lambda>x::'a::real_normed_vector. x)"
-proof
-  fix x y :: 'a show "x + y = x + y" by simp
-  fix r and x :: 'a show "scaleR r x = scaleR r x" by simp
-  have "\<forall>x::'a. norm x \<le> norm x * 1" by simp
-  thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" ..
-qed
-
-lemma FDERIV_ident: "FDERIV (\<lambda>x. x) x :> (\<lambda>h. h)"
-by (simp add: fderiv_def bounded_linear_ident)
-
-subsection {* Addition *}
-
-lemma add_diff_add:
-  fixes a b c d :: "'a::ab_group_add"
-  shows "(a + c) - (b + d) = (a - b) + (c - d)"
-by simp
-
-lemma bounded_linear_add:
-  assumes "bounded_linear f"
-  assumes "bounded_linear g"
-  shows "bounded_linear (\<lambda>x. f x + g x)"
-proof -
-  interpret f: bounded_linear f by fact
-  interpret g: bounded_linear g by fact
-  show ?thesis apply (unfold_locales)
-    apply (simp only: f.add g.add add_ac)
-    apply (simp only: f.scaleR g.scaleR scaleR_right_distrib)
-    apply (rule f.pos_bounded [THEN exE], rename_tac Kf)
-    apply (rule g.pos_bounded [THEN exE], rename_tac Kg)
-    apply (rule_tac x="Kf + Kg" in exI, safe)
-    apply (subst right_distrib)
-    apply (rule order_trans [OF norm_triangle_ineq])
-    apply (rule add_mono, erule spec, erule spec)
-    done
-qed
-
-lemma norm_ratio_ineq:
-  fixes x y :: "'a::real_normed_vector"
-  fixes h :: "'b::real_normed_vector"
-  shows "norm (x + y) / norm h \<le> norm x / norm h + norm y / norm h"
-apply (rule ord_le_eq_trans)
-apply (rule divide_right_mono)
-apply (rule norm_triangle_ineq)
-apply (rule norm_ge_zero)
-apply (rule add_divide_distrib)
-done
-
-lemma FDERIV_add:
-  assumes f: "FDERIV f x :> F"
-  assumes g: "FDERIV g x :> G"
-  shows "FDERIV (\<lambda>x. f x + g x) x :> (\<lambda>h. F h + G h)"
-proof (rule FDERIV_I)
-  show "bounded_linear (\<lambda>h. F h + G h)"
-    apply (rule bounded_linear_add)
-    apply (rule FDERIV_bounded_linear [OF f])
-    apply (rule FDERIV_bounded_linear [OF g])
-    done
-next
-  have f': "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
-    using f by (rule FDERIV_D)
-  have g': "(\<lambda>h. norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
-    using g by (rule FDERIV_D)
-  from f' g'
-  have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h
-           + norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
-    by (rule LIM_add_zero)
-  thus "(\<lambda>h. norm (f (x + h) + g (x + h) - (f x + g x) - (F h + G h))
-           / norm h) -- 0 --> 0"
-    apply (rule real_LIM_sandwich_zero)
-     apply (simp add: divide_nonneg_pos)
-    apply (simp only: add_diff_add)
-    apply (rule norm_ratio_ineq)
-    done
-qed
-
-subsection {* Subtraction *}
-
-lemma bounded_linear_minus:
-  assumes "bounded_linear f"
-  shows "bounded_linear (\<lambda>x. - f x)"
-proof -
-  interpret f: bounded_linear f by fact
-  show ?thesis apply (unfold_locales)
-    apply (simp add: f.add)
-    apply (simp add: f.scaleR)
-    apply (simp add: f.bounded)
-    done
-qed
-
-lemma FDERIV_minus:
-  "FDERIV f x :> F \<Longrightarrow> FDERIV (\<lambda>x. - f x) x :> (\<lambda>h. - F h)"
-apply (rule FDERIV_I)
-apply (rule bounded_linear_minus)
-apply (erule FDERIV_bounded_linear)
-apply (simp only: fderiv_def minus_diff_minus norm_minus_cancel)
-done
-
-lemma FDERIV_diff:
-  "\<lbrakk>FDERIV f x :> F; FDERIV g x :> G\<rbrakk>
-   \<Longrightarrow> FDERIV (\<lambda>x. f x - g x) x :> (\<lambda>h. F h - G h)"
-by (simp only: diff_minus FDERIV_add FDERIV_minus)
-
-subsection {* Continuity *}
-
-lemma FDERIV_isCont:
-  assumes f: "FDERIV f x :> F"
-  shows "isCont f x"
-proof -
-  from f interpret F: bounded_linear "F" by (rule FDERIV_bounded_linear)
-  have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
-    by (rule FDERIV_D [OF f])
-  hence "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h * norm h) -- 0 --> 0"
-    by (intro LIM_mult_zero LIM_norm_zero LIM_ident)
-  hence "(\<lambda>h. norm (f (x + h) - f x - F h)) -- 0 --> 0"
-    by (simp cong: LIM_cong)
-  hence "(\<lambda>h. f (x + h) - f x - F h) -- 0 --> 0"
-    by (rule LIM_norm_zero_cancel)
-  hence "(\<lambda>h. f (x + h) - f x - F h + F h) -- 0 --> 0"
-    by (intro LIM_add_zero F.LIM_zero LIM_ident)
-  hence "(\<lambda>h. f (x + h) - f x) -- 0 --> 0"
-    by simp
-  thus "isCont f x"
-    unfolding isCont_iff by (rule LIM_zero_cancel)
-qed
-
-subsection {* Composition *}
-
-lemma real_divide_cancel_lemma:
-  fixes a b c :: real
-  shows "(b = 0 \<Longrightarrow> a = 0) \<Longrightarrow> (a / b) * (b / c) = a / c"
-by simp
-
-lemma bounded_linear_compose:
-  assumes "bounded_linear f"
-  assumes "bounded_linear g"
-  shows "bounded_linear (\<lambda>x. f (g x))"
-proof -
-  interpret f: bounded_linear f by fact
-  interpret g: bounded_linear g by fact
-  show ?thesis proof (unfold_locales)
-    fix x y show "f (g (x + y)) = f (g x) + f (g y)"
-      by (simp only: f.add g.add)
-  next
-    fix r x show "f (g (scaleR r x)) = scaleR r (f (g x))"
-      by (simp only: f.scaleR g.scaleR)
-  next
-    from f.pos_bounded
-    obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" by fast
-    from g.pos_bounded
-    obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" by fast
-    show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K"
-    proof (intro exI allI)
-      fix x
-      have "norm (f (g x)) \<le> norm (g x) * Kf"
-	using f .
-      also have "\<dots> \<le> (norm x * Kg) * Kf"
-	using g Kf [THEN order_less_imp_le] by (rule mult_right_mono)
-      also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)"
-	by (rule mult_assoc)
-      finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" .
-    qed
-  qed
-qed
-
-lemma FDERIV_compose:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
-  fixes g :: "'b::real_normed_vector \<Rightarrow> 'c::real_normed_vector"
-  assumes f: "FDERIV f x :> F"
-  assumes g: "FDERIV g (f x) :> G"
-  shows "FDERIV (\<lambda>x. g (f x)) x :> (\<lambda>h. G (F h))"
-proof (rule FDERIV_I)
-  from FDERIV_bounded_linear [OF g] FDERIV_bounded_linear [OF f]
-  show "bounded_linear (\<lambda>h. G (F h))"
-    by (rule bounded_linear_compose)
-next
-  let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
-  let ?Rg = "\<lambda>k. g (f x + k) - g (f x) - G k"
-  let ?k = "\<lambda>h. f (x + h) - f x"
-  let ?Nf = "\<lambda>h. norm (?Rf h) / norm h"
-  let ?Ng = "\<lambda>h. norm (?Rg (?k h)) / norm (?k h)"
-  from f interpret F!: bounded_linear "F" by (rule FDERIV_bounded_linear)
-  from g interpret G!: bounded_linear "G" by (rule FDERIV_bounded_linear)
-  from F.bounded obtain kF where kF: "\<And>x. norm (F x) \<le> norm x * kF" by fast
-  from G.bounded obtain kG where kG: "\<And>x. norm (G x) \<le> norm x * kG" by fast
-
-  let ?fun2 = "\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)"
-
-  show "(\<lambda>h. norm (g (f (x + h)) - g (f x) - G (F h)) / norm h) -- 0 --> 0"
-  proof (rule real_LIM_sandwich_zero)
-    have Nf: "?Nf -- 0 --> 0"
-      using FDERIV_D [OF f] .
-
-    have Ng1: "isCont (\<lambda>k. norm (?Rg k) / norm k) 0"
-      by (simp add: isCont_def FDERIV_D [OF g])
-    have Ng2: "?k -- 0 --> 0"
-      apply (rule LIM_zero)
-      apply (fold isCont_iff)
-      apply (rule FDERIV_isCont [OF f])
-      done
-    have Ng: "?Ng -- 0 --> 0"
-      using isCont_LIM_compose [OF Ng1 Ng2] by simp
-
-    have "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF))
-           -- 0 --> 0 * kG + 0 * (0 + kF)"
-      by (intro LIM_add LIM_mult LIM_const Nf Ng)
-    thus "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)) -- 0 --> 0"
-      by simp
-  next
-    fix h::'a assume h: "h \<noteq> 0"
-    thus "0 \<le> norm (g (f (x + h)) - g (f x) - G (F h)) / norm h"
-      by (simp add: divide_nonneg_pos)
-  next
-    fix h::'a assume h: "h \<noteq> 0"
-    have "g (f (x + h)) - g (f x) - G (F h) = G (?Rf h) + ?Rg (?k h)"
-      by (simp add: G.diff)
-    hence "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
-           = norm (G (?Rf h) + ?Rg (?k h)) / norm h"
-      by (rule arg_cong)
-    also have "\<dots> \<le> norm (G (?Rf h)) / norm h + norm (?Rg (?k h)) / norm h"
-      by (rule norm_ratio_ineq)
-    also have "\<dots> \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)"
-    proof (rule add_mono)
-      show "norm (G (?Rf h)) / norm h \<le> ?Nf h * kG"
-        apply (rule ord_le_eq_trans)
-        apply (rule divide_right_mono [OF kG norm_ge_zero])
-        apply simp
-        done
-    next
-      have "norm (?Rg (?k h)) / norm h = ?Ng h * (norm (?k h) / norm h)"
-        apply (rule real_divide_cancel_lemma [symmetric])
-        apply (simp add: G.zero)
-        done
-      also have "\<dots> \<le> ?Ng h * (?Nf h + kF)"
-      proof (rule mult_left_mono)
-        have "norm (?k h) / norm h = norm (?Rf h + F h) / norm h"
-          by simp
-        also have "\<dots> \<le> ?Nf h + norm (F h) / norm h"
-          by (rule norm_ratio_ineq)
-        also have "\<dots> \<le> ?Nf h + kF"
-          apply (rule add_left_mono)
-          apply (subst pos_divide_le_eq, simp add: h)
-          apply (subst mult_commute)
-          apply (rule kF)
-          done
-        finally show "norm (?k h) / norm h \<le> ?Nf h + kF" .
-      next
-        show "0 \<le> ?Ng h"
-        apply (case_tac "f (x + h) - f x = 0", simp)
-        apply (rule divide_nonneg_pos [OF norm_ge_zero])
-        apply simp
-        done
-      qed
-      finally show "norm (?Rg (?k h)) / norm h \<le> ?Ng h * (?Nf h + kF)" .
-    qed
-    finally show "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
-        \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)" .
-  qed
-qed
-
-subsection {* Product Rule *}
-
-lemma (in bounded_bilinear) FDERIV_lemma:
-  "a' ** b' - a ** b - (a ** B + A ** b)
-   = a ** (b' - b - B) + (a' - a - A) ** b' + A ** (b' - b)"
-by (simp add: diff_left diff_right)
-
-lemma (in bounded_bilinear) FDERIV:
-  fixes x :: "'d::real_normed_vector"
-  assumes f: "FDERIV f x :> F"
-  assumes g: "FDERIV g x :> G"
-  shows "FDERIV (\<lambda>x. f x ** g x) x :> (\<lambda>h. f x ** G h + F h ** g x)"
-proof (rule FDERIV_I)
-  show "bounded_linear (\<lambda>h. f x ** G h + F h ** g x)"
-    apply (rule bounded_linear_add)
-    apply (rule bounded_linear_compose [OF bounded_linear_right])
-    apply (rule FDERIV_bounded_linear [OF g])
-    apply (rule bounded_linear_compose [OF bounded_linear_left])
-    apply (rule FDERIV_bounded_linear [OF f])
-    done
-next
-  from bounded_linear.bounded [OF FDERIV_bounded_linear [OF f]]
-  obtain KF where norm_F: "\<And>x. norm (F x) \<le> norm x * KF" by fast
-
-  from pos_bounded obtain K where K: "0 < K" and norm_prod:
-    "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" by fast
-
-  let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
-  let ?Rg = "\<lambda>h. g (x + h) - g x - G h"
-
-  let ?fun1 = "\<lambda>h.
-        norm (f x ** ?Rg h + ?Rf h ** g (x + h) + F h ** (g (x + h) - g x)) /
-        norm h"
-
-  let ?fun2 = "\<lambda>h.
-        norm (f x) * (norm (?Rg h) / norm h) * K +
-        norm (?Rf h) / norm h * norm (g (x + h)) * K +
-        KF * norm (g (x + h) - g x) * K"
-
-  have "?fun1 -- 0 --> 0"
-  proof (rule real_LIM_sandwich_zero)
-    from f g isCont_iff [THEN iffD1, OF FDERIV_isCont [OF g]]
-    have "?fun2 -- 0 -->
-          norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K"
-      by (intro LIM_add LIM_mult LIM_const LIM_norm LIM_zero FDERIV_D)
-    thus "?fun2 -- 0 --> 0"
-      by simp
-  next
-    fix h::'d assume "h \<noteq> 0"
-    thus "0 \<le> ?fun1 h"
-      by (simp add: divide_nonneg_pos)
-  next
-    fix h::'d assume "h \<noteq> 0"
-    have "?fun1 h \<le> (norm (f x) * norm (?Rg h) * K +
-         norm (?Rf h) * norm (g (x + h)) * K +
-         norm h * KF * norm (g (x + h) - g x) * K) / norm h"
-      by (intro
-        divide_right_mono mult_mono'
-        order_trans [OF norm_triangle_ineq add_mono]
-        order_trans [OF norm_prod mult_right_mono]
-        mult_nonneg_nonneg order_refl norm_ge_zero norm_F
-        K [THEN order_less_imp_le]
-      )
-    also have "\<dots> = ?fun2 h"
-      by (simp add: add_divide_distrib)
-    finally show "?fun1 h \<le> ?fun2 h" .
-  qed
-  thus "(\<lambda>h.
-    norm (f (x + h) ** g (x + h) - f x ** g x - (f x ** G h + F h ** g x))
-    / norm h) -- 0 --> 0"
-    by (simp only: FDERIV_lemma)
-qed
-
-lemmas FDERIV_mult = mult.FDERIV
-
-lemmas FDERIV_scaleR = scaleR.FDERIV
-
-
-subsection {* Powers *}
-
-lemma FDERIV_power_Suc:
-  fixes x :: "'a::{real_normed_algebra,recpower,comm_ring_1}"
-  shows "FDERIV (\<lambda>x. x ^ Suc n) x :> (\<lambda>h. (1 + of_nat n) * x ^ n * h)"
- apply (induct n)
-  apply (simp add: power_Suc FDERIV_ident)
- apply (drule FDERIV_mult [OF FDERIV_ident])
- apply (simp only: of_nat_Suc left_distrib mult_1_left)
- apply (simp only: power_Suc right_distrib add_ac mult_ac)
-done
-
-lemma FDERIV_power:
-  fixes x :: "'a::{real_normed_algebra,recpower,comm_ring_1}"
-  shows "FDERIV (\<lambda>x. x ^ n) x :> (\<lambda>h. of_nat n * x ^ (n - 1) * h)"
-  apply (cases n)
-   apply (simp add: FDERIV_const)
-  apply (simp add: FDERIV_power_Suc)
-  done
-
-
-subsection {* Inverse *}
-
-lemma inverse_diff_inverse:
-  "\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk>
-   \<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
-by (simp add: right_diff_distrib left_diff_distrib mult_assoc)
-
-lemmas bounded_linear_mult_const =
-  mult.bounded_linear_left [THEN bounded_linear_compose]
-
-lemmas bounded_linear_const_mult =
-  mult.bounded_linear_right [THEN bounded_linear_compose]
-
-lemma FDERIV_inverse:
-  fixes x :: "'a::real_normed_div_algebra"
-  assumes x: "x \<noteq> 0"
-  shows "FDERIV inverse x :> (\<lambda>h. - (inverse x * h * inverse x))"
-        (is "FDERIV ?inv _ :> _")
-proof (rule FDERIV_I)
-  show "bounded_linear (\<lambda>h. - (?inv x * h * ?inv x))"
-    apply (rule bounded_linear_minus)
-    apply (rule bounded_linear_mult_const)
-    apply (rule bounded_linear_const_mult)
-    apply (rule bounded_linear_ident)
-    done
-next
-  show "(\<lambda>h. norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h)
-        -- 0 --> 0"
-  proof (rule LIM_equal2)
-    show "0 < norm x" using x by simp
-  next
-    fix h::'a
-    assume 1: "h \<noteq> 0"
-    assume "norm (h - 0) < norm x"
-    hence "h \<noteq> -x" by clarsimp
-    hence 2: "x + h \<noteq> 0"
-      apply (rule contrapos_nn)
-      apply (rule sym)
-      apply (erule equals_zero_I)
-      done
-    show "norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h
-          = norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
-      apply (subst inverse_diff_inverse [OF 2 x])
-      apply (subst minus_diff_minus)
-      apply (subst norm_minus_cancel)
-      apply (simp add: left_diff_distrib)
-      done
-  next
-    show "(\<lambda>h. norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h)
-          -- 0 --> 0"
-    proof (rule real_LIM_sandwich_zero)
-      show "(\<lambda>h. norm (?inv (x + h) - ?inv x) * norm (?inv x))
-            -- 0 --> 0"
-        apply (rule LIM_mult_left_zero)
-        apply (rule LIM_norm_zero)
-        apply (rule LIM_zero)
-        apply (rule LIM_offset_zero)
-        apply (rule LIM_inverse)
-        apply (rule LIM_ident)
-        apply (rule x)
-        done
-    next
-      fix h::'a assume h: "h \<noteq> 0"
-      show "0 \<le> norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
-        apply (rule divide_nonneg_pos)
-        apply (rule norm_ge_zero)
-        apply (simp add: h)
-        done
-    next
-      fix h::'a assume h: "h \<noteq> 0"
-      have "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
-            \<le> norm (?inv (x + h) - ?inv x) * norm h * norm (?inv x) / norm h"
-        apply (rule divide_right_mono [OF _ norm_ge_zero])
-        apply (rule order_trans [OF norm_mult_ineq])
-        apply (rule mult_right_mono [OF _ norm_ge_zero])
-        apply (rule norm_mult_ineq)
-        done
-      also have "\<dots> = norm (?inv (x + h) - ?inv x) * norm (?inv x)"
-        by simp
-      finally show "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
-            \<le> norm (?inv (x + h) - ?inv x) * norm (?inv x)" .   
-    qed
-  qed
-qed
-
-subsection {* Alternate definition *}
-
-lemma field_fderiv_def:
-  fixes x :: "'a::real_normed_field" shows
-  "FDERIV f x :> (\<lambda>h. h * D) = (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
- apply (unfold fderiv_def)
- apply (simp add: mult.bounded_linear_left)
- apply (simp cong: LIM_cong add: nonzero_norm_divide [symmetric])
- apply (subst diff_divide_distrib)
- apply (subst times_divide_eq_left [symmetric])
- apply (simp cong: LIM_cong)
- apply (simp add: LIM_norm_zero_iff LIM_zero_iff)
-done
-
-end
--- a/src/HOL/IsaMakefile	Thu Feb 19 23:55:10 2009 +1100
+++ b/src/HOL/IsaMakefile	Thu Feb 19 05:50:26 2009 -0800
@@ -271,7 +271,6 @@
   Complex.thy \
   Deriv.thy \
   Fact.thy \
-  FrechetDeriv.thy \
   Integration.thy \
   Lim.thy \
   Ln.thy \
@@ -285,7 +284,6 @@
   GCD.thy \
   Parity.thy \
   Lubs.thy \
-  Polynomial.thy \
   PReal.thy \
   Rational.thy \
   RComplete.thy \
@@ -315,6 +313,7 @@
   Library/Executable_Set.thy Library/Infinite_Set.thy			\
   Library/FuncSet.thy Library/Permutations.thy Library/Determinants.thy\
   Library/Finite_Cartesian_Product.thy \
+  Library/FrechetDeriv.thy \
   Library/Fundamental_Theorem_Algebra.thy \
   Library/Library.thy Library/List_Prefix.thy Library/State_Monad.thy	\
   Library/Nat_Int_Bij.thy Library/Multiset.thy Library/Permutation.thy	\
@@ -336,6 +335,8 @@
   Library/Boolean_Algebra.thy Library/Countable.thy	\
   Library/RBT.thy	Library/Univ_Poly.thy	\
   Library/Random.thy	Library/Quickcheck.thy	\
+  Library/Poly_Deriv.thy \
+  Library/Polynomial.thy \
   Library/Enum.thy Library/Float.thy $(SRC)/Tools/float.ML $(SRC)/HOL/Tools/float_arith.ML \
   Library/reify_data.ML Library/reflection.ML
 	@cd Library; $(ISABELLE_TOOL) usedir $(OUT)/HOL Library
--- a/src/HOL/Library/Float.thy	Thu Feb 19 23:55:10 2009 +1100
+++ b/src/HOL/Library/Float.thy	Thu Feb 19 05:50:26 2009 -0800
@@ -1,7 +1,10 @@
 (* Title:    HOL/Library/Float.thy
  * Author:   Steven Obua 2008
- *           Johannes Hölzl, TU Muenchen <hoelzl@in.tum.de> 2008 / 2009
+ *           Johannes HÃ\<paragraph>lzl, TU Muenchen <hoelzl@in.tum.de> 2008 / 2009
  *)
+
+header {* Floating-Point Numbers *}
+
 theory Float
 imports Complex_Main
 begin
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/FrechetDeriv.thy	Thu Feb 19 05:50:26 2009 -0800
@@ -0,0 +1,503 @@
+(*  Title       : FrechetDeriv.thy
+    ID          : $Id$
+    Author      : Brian Huffman
+*)
+
+header {* Frechet Derivative *}
+
+theory FrechetDeriv
+imports Lim
+begin
+
+definition
+  fderiv ::
+  "['a::real_normed_vector \<Rightarrow> 'b::real_normed_vector, 'a, 'a \<Rightarrow> 'b] \<Rightarrow> bool"
+    -- {* Frechet derivative: D is derivative of function f at x *}
+          ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
+  "FDERIV f x :> D = (bounded_linear D \<and>
+    (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0)"
+
+lemma FDERIV_I:
+  "\<lbrakk>bounded_linear D; (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0\<rbrakk>
+   \<Longrightarrow> FDERIV f x :> D"
+by (simp add: fderiv_def)
+
+lemma FDERIV_D:
+  "FDERIV f x :> D \<Longrightarrow> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0"
+by (simp add: fderiv_def)
+
+lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D"
+by (simp add: fderiv_def)
+
+lemma bounded_linear_zero:
+  "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)"
+proof
+  show "(0::'b) = 0 + 0" by simp
+  fix r show "(0::'b) = scaleR r 0" by simp
+  have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp
+  thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" ..
+qed
+
+lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)"
+by (simp add: fderiv_def bounded_linear_zero)
+
+lemma bounded_linear_ident:
+  "bounded_linear (\<lambda>x::'a::real_normed_vector. x)"
+proof
+  fix x y :: 'a show "x + y = x + y" by simp
+  fix r and x :: 'a show "scaleR r x = scaleR r x" by simp
+  have "\<forall>x::'a. norm x \<le> norm x * 1" by simp
+  thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" ..
+qed
+
+lemma FDERIV_ident: "FDERIV (\<lambda>x. x) x :> (\<lambda>h. h)"
+by (simp add: fderiv_def bounded_linear_ident)
+
+subsection {* Addition *}
+
+lemma add_diff_add:
+  fixes a b c d :: "'a::ab_group_add"
+  shows "(a + c) - (b + d) = (a - b) + (c - d)"
+by simp
+
+lemma bounded_linear_add:
+  assumes "bounded_linear f"
+  assumes "bounded_linear g"
+  shows "bounded_linear (\<lambda>x. f x + g x)"
+proof -
+  interpret f: bounded_linear f by fact
+  interpret g: bounded_linear g by fact
+  show ?thesis apply (unfold_locales)
+    apply (simp only: f.add g.add add_ac)
+    apply (simp only: f.scaleR g.scaleR scaleR_right_distrib)
+    apply (rule f.pos_bounded [THEN exE], rename_tac Kf)
+    apply (rule g.pos_bounded [THEN exE], rename_tac Kg)
+    apply (rule_tac x="Kf + Kg" in exI, safe)
+    apply (subst right_distrib)
+    apply (rule order_trans [OF norm_triangle_ineq])
+    apply (rule add_mono, erule spec, erule spec)
+    done
+qed
+
+lemma norm_ratio_ineq:
+  fixes x y :: "'a::real_normed_vector"
+  fixes h :: "'b::real_normed_vector"
+  shows "norm (x + y) / norm h \<le> norm x / norm h + norm y / norm h"
+apply (rule ord_le_eq_trans)
+apply (rule divide_right_mono)
+apply (rule norm_triangle_ineq)
+apply (rule norm_ge_zero)
+apply (rule add_divide_distrib)
+done
+
+lemma FDERIV_add:
+  assumes f: "FDERIV f x :> F"
+  assumes g: "FDERIV g x :> G"
+  shows "FDERIV (\<lambda>x. f x + g x) x :> (\<lambda>h. F h + G h)"
+proof (rule FDERIV_I)
+  show "bounded_linear (\<lambda>h. F h + G h)"
+    apply (rule bounded_linear_add)
+    apply (rule FDERIV_bounded_linear [OF f])
+    apply (rule FDERIV_bounded_linear [OF g])
+    done
+next
+  have f': "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
+    using f by (rule FDERIV_D)
+  have g': "(\<lambda>h. norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
+    using g by (rule FDERIV_D)
+  from f' g'
+  have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h
+           + norm (g (x + h) - g x - G h) / norm h) -- 0 --> 0"
+    by (rule LIM_add_zero)
+  thus "(\<lambda>h. norm (f (x + h) + g (x + h) - (f x + g x) - (F h + G h))
+           / norm h) -- 0 --> 0"
+    apply (rule real_LIM_sandwich_zero)
+     apply (simp add: divide_nonneg_pos)
+    apply (simp only: add_diff_add)
+    apply (rule norm_ratio_ineq)
+    done
+qed
+
+subsection {* Subtraction *}
+
+lemma bounded_linear_minus:
+  assumes "bounded_linear f"
+  shows "bounded_linear (\<lambda>x. - f x)"
+proof -
+  interpret f: bounded_linear f by fact
+  show ?thesis apply (unfold_locales)
+    apply (simp add: f.add)
+    apply (simp add: f.scaleR)
+    apply (simp add: f.bounded)
+    done
+qed
+
+lemma FDERIV_minus:
+  "FDERIV f x :> F \<Longrightarrow> FDERIV (\<lambda>x. - f x) x :> (\<lambda>h. - F h)"
+apply (rule FDERIV_I)
+apply (rule bounded_linear_minus)
+apply (erule FDERIV_bounded_linear)
+apply (simp only: fderiv_def minus_diff_minus norm_minus_cancel)
+done
+
+lemma FDERIV_diff:
+  "\<lbrakk>FDERIV f x :> F; FDERIV g x :> G\<rbrakk>
+   \<Longrightarrow> FDERIV (\<lambda>x. f x - g x) x :> (\<lambda>h. F h - G h)"
+by (simp only: diff_minus FDERIV_add FDERIV_minus)
+
+subsection {* Continuity *}
+
+lemma FDERIV_isCont:
+  assumes f: "FDERIV f x :> F"
+  shows "isCont f x"
+proof -
+  from f interpret F: bounded_linear "F" by (rule FDERIV_bounded_linear)
+  have "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h) -- 0 --> 0"
+    by (rule FDERIV_D [OF f])
+  hence "(\<lambda>h. norm (f (x + h) - f x - F h) / norm h * norm h) -- 0 --> 0"
+    by (intro LIM_mult_zero LIM_norm_zero LIM_ident)
+  hence "(\<lambda>h. norm (f (x + h) - f x - F h)) -- 0 --> 0"
+    by (simp cong: LIM_cong)
+  hence "(\<lambda>h. f (x + h) - f x - F h) -- 0 --> 0"
+    by (rule LIM_norm_zero_cancel)
+  hence "(\<lambda>h. f (x + h) - f x - F h + F h) -- 0 --> 0"
+    by (intro LIM_add_zero F.LIM_zero LIM_ident)
+  hence "(\<lambda>h. f (x + h) - f x) -- 0 --> 0"
+    by simp
+  thus "isCont f x"
+    unfolding isCont_iff by (rule LIM_zero_cancel)
+qed
+
+subsection {* Composition *}
+
+lemma real_divide_cancel_lemma:
+  fixes a b c :: real
+  shows "(b = 0 \<Longrightarrow> a = 0) \<Longrightarrow> (a / b) * (b / c) = a / c"
+by simp
+
+lemma bounded_linear_compose:
+  assumes "bounded_linear f"
+  assumes "bounded_linear g"
+  shows "bounded_linear (\<lambda>x. f (g x))"
+proof -
+  interpret f: bounded_linear f by fact
+  interpret g: bounded_linear g by fact
+  show ?thesis proof (unfold_locales)
+    fix x y show "f (g (x + y)) = f (g x) + f (g y)"
+      by (simp only: f.add g.add)
+  next
+    fix r x show "f (g (scaleR r x)) = scaleR r (f (g x))"
+      by (simp only: f.scaleR g.scaleR)
+  next
+    from f.pos_bounded
+    obtain Kf where f: "\<And>x. norm (f x) \<le> norm x * Kf" and Kf: "0 < Kf" by fast
+    from g.pos_bounded
+    obtain Kg where g: "\<And>x. norm (g x) \<le> norm x * Kg" by fast
+    show "\<exists>K. \<forall>x. norm (f (g x)) \<le> norm x * K"
+    proof (intro exI allI)
+      fix x
+      have "norm (f (g x)) \<le> norm (g x) * Kf"
+	using f .
+      also have "\<dots> \<le> (norm x * Kg) * Kf"
+	using g Kf [THEN order_less_imp_le] by (rule mult_right_mono)
+      also have "(norm x * Kg) * Kf = norm x * (Kg * Kf)"
+	by (rule mult_assoc)
+      finally show "norm (f (g x)) \<le> norm x * (Kg * Kf)" .
+    qed
+  qed
+qed
+
+lemma FDERIV_compose:
+  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
+  fixes g :: "'b::real_normed_vector \<Rightarrow> 'c::real_normed_vector"
+  assumes f: "FDERIV f x :> F"
+  assumes g: "FDERIV g (f x) :> G"
+  shows "FDERIV (\<lambda>x. g (f x)) x :> (\<lambda>h. G (F h))"
+proof (rule FDERIV_I)
+  from FDERIV_bounded_linear [OF g] FDERIV_bounded_linear [OF f]
+  show "bounded_linear (\<lambda>h. G (F h))"
+    by (rule bounded_linear_compose)
+next
+  let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
+  let ?Rg = "\<lambda>k. g (f x + k) - g (f x) - G k"
+  let ?k = "\<lambda>h. f (x + h) - f x"
+  let ?Nf = "\<lambda>h. norm (?Rf h) / norm h"
+  let ?Ng = "\<lambda>h. norm (?Rg (?k h)) / norm (?k h)"
+  from f interpret F!: bounded_linear "F" by (rule FDERIV_bounded_linear)
+  from g interpret G!: bounded_linear "G" by (rule FDERIV_bounded_linear)
+  from F.bounded obtain kF where kF: "\<And>x. norm (F x) \<le> norm x * kF" by fast
+  from G.bounded obtain kG where kG: "\<And>x. norm (G x) \<le> norm x * kG" by fast
+
+  let ?fun2 = "\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)"
+
+  show "(\<lambda>h. norm (g (f (x + h)) - g (f x) - G (F h)) / norm h) -- 0 --> 0"
+  proof (rule real_LIM_sandwich_zero)
+    have Nf: "?Nf -- 0 --> 0"
+      using FDERIV_D [OF f] .
+
+    have Ng1: "isCont (\<lambda>k. norm (?Rg k) / norm k) 0"
+      by (simp add: isCont_def FDERIV_D [OF g])
+    have Ng2: "?k -- 0 --> 0"
+      apply (rule LIM_zero)
+      apply (fold isCont_iff)
+      apply (rule FDERIV_isCont [OF f])
+      done
+    have Ng: "?Ng -- 0 --> 0"
+      using isCont_LIM_compose [OF Ng1 Ng2] by simp
+
+    have "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF))
+           -- 0 --> 0 * kG + 0 * (0 + kF)"
+      by (intro LIM_add LIM_mult LIM_const Nf Ng)
+    thus "(\<lambda>h. ?Nf h * kG + ?Ng h * (?Nf h + kF)) -- 0 --> 0"
+      by simp
+  next
+    fix h::'a assume h: "h \<noteq> 0"
+    thus "0 \<le> norm (g (f (x + h)) - g (f x) - G (F h)) / norm h"
+      by (simp add: divide_nonneg_pos)
+  next
+    fix h::'a assume h: "h \<noteq> 0"
+    have "g (f (x + h)) - g (f x) - G (F h) = G (?Rf h) + ?Rg (?k h)"
+      by (simp add: G.diff)
+    hence "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
+           = norm (G (?Rf h) + ?Rg (?k h)) / norm h"
+      by (rule arg_cong)
+    also have "\<dots> \<le> norm (G (?Rf h)) / norm h + norm (?Rg (?k h)) / norm h"
+      by (rule norm_ratio_ineq)
+    also have "\<dots> \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)"
+    proof (rule add_mono)
+      show "norm (G (?Rf h)) / norm h \<le> ?Nf h * kG"
+        apply (rule ord_le_eq_trans)
+        apply (rule divide_right_mono [OF kG norm_ge_zero])
+        apply simp
+        done
+    next
+      have "norm (?Rg (?k h)) / norm h = ?Ng h * (norm (?k h) / norm h)"
+        apply (rule real_divide_cancel_lemma [symmetric])
+        apply (simp add: G.zero)
+        done
+      also have "\<dots> \<le> ?Ng h * (?Nf h + kF)"
+      proof (rule mult_left_mono)
+        have "norm (?k h) / norm h = norm (?Rf h + F h) / norm h"
+          by simp
+        also have "\<dots> \<le> ?Nf h + norm (F h) / norm h"
+          by (rule norm_ratio_ineq)
+        also have "\<dots> \<le> ?Nf h + kF"
+          apply (rule add_left_mono)
+          apply (subst pos_divide_le_eq, simp add: h)
+          apply (subst mult_commute)
+          apply (rule kF)
+          done
+        finally show "norm (?k h) / norm h \<le> ?Nf h + kF" .
+      next
+        show "0 \<le> ?Ng h"
+        apply (case_tac "f (x + h) - f x = 0", simp)
+        apply (rule divide_nonneg_pos [OF norm_ge_zero])
+        apply simp
+        done
+      qed
+      finally show "norm (?Rg (?k h)) / norm h \<le> ?Ng h * (?Nf h + kF)" .
+    qed
+    finally show "norm (g (f (x + h)) - g (f x) - G (F h)) / norm h
+        \<le> ?Nf h * kG + ?Ng h * (?Nf h + kF)" .
+  qed
+qed
+
+subsection {* Product Rule *}
+
+lemma (in bounded_bilinear) FDERIV_lemma:
+  "a' ** b' - a ** b - (a ** B + A ** b)
+   = a ** (b' - b - B) + (a' - a - A) ** b' + A ** (b' - b)"
+by (simp add: diff_left diff_right)
+
+lemma (in bounded_bilinear) FDERIV:
+  fixes x :: "'d::real_normed_vector"
+  assumes f: "FDERIV f x :> F"
+  assumes g: "FDERIV g x :> G"
+  shows "FDERIV (\<lambda>x. f x ** g x) x :> (\<lambda>h. f x ** G h + F h ** g x)"
+proof (rule FDERIV_I)
+  show "bounded_linear (\<lambda>h. f x ** G h + F h ** g x)"
+    apply (rule bounded_linear_add)
+    apply (rule bounded_linear_compose [OF bounded_linear_right])
+    apply (rule FDERIV_bounded_linear [OF g])
+    apply (rule bounded_linear_compose [OF bounded_linear_left])
+    apply (rule FDERIV_bounded_linear [OF f])
+    done
+next
+  from bounded_linear.bounded [OF FDERIV_bounded_linear [OF f]]
+  obtain KF where norm_F: "\<And>x. norm (F x) \<le> norm x * KF" by fast
+
+  from pos_bounded obtain K where K: "0 < K" and norm_prod:
+    "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" by fast
+
+  let ?Rf = "\<lambda>h. f (x + h) - f x - F h"
+  let ?Rg = "\<lambda>h. g (x + h) - g x - G h"
+
+  let ?fun1 = "\<lambda>h.
+        norm (f x ** ?Rg h + ?Rf h ** g (x + h) + F h ** (g (x + h) - g x)) /
+        norm h"
+
+  let ?fun2 = "\<lambda>h.
+        norm (f x) * (norm (?Rg h) / norm h) * K +
+        norm (?Rf h) / norm h * norm (g (x + h)) * K +
+        KF * norm (g (x + h) - g x) * K"
+
+  have "?fun1 -- 0 --> 0"
+  proof (rule real_LIM_sandwich_zero)
+    from f g isCont_iff [THEN iffD1, OF FDERIV_isCont [OF g]]
+    have "?fun2 -- 0 -->
+          norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K"
+      by (intro LIM_add LIM_mult LIM_const LIM_norm LIM_zero FDERIV_D)
+    thus "?fun2 -- 0 --> 0"
+      by simp
+  next
+    fix h::'d assume "h \<noteq> 0"
+    thus "0 \<le> ?fun1 h"
+      by (simp add: divide_nonneg_pos)
+  next
+    fix h::'d assume "h \<noteq> 0"
+    have "?fun1 h \<le> (norm (f x) * norm (?Rg h) * K +
+         norm (?Rf h) * norm (g (x + h)) * K +
+         norm h * KF * norm (g (x + h) - g x) * K) / norm h"
+      by (intro
+        divide_right_mono mult_mono'
+        order_trans [OF norm_triangle_ineq add_mono]
+        order_trans [OF norm_prod mult_right_mono]
+        mult_nonneg_nonneg order_refl norm_ge_zero norm_F
+        K [THEN order_less_imp_le]
+      )
+    also have "\<dots> = ?fun2 h"
+      by (simp add: add_divide_distrib)
+    finally show "?fun1 h \<le> ?fun2 h" .
+  qed
+  thus "(\<lambda>h.
+    norm (f (x + h) ** g (x + h) - f x ** g x - (f x ** G h + F h ** g x))
+    / norm h) -- 0 --> 0"
+    by (simp only: FDERIV_lemma)
+qed
+
+lemmas FDERIV_mult = mult.FDERIV
+
+lemmas FDERIV_scaleR = scaleR.FDERIV
+
+
+subsection {* Powers *}
+
+lemma FDERIV_power_Suc:
+  fixes x :: "'a::{real_normed_algebra,recpower,comm_ring_1}"
+  shows "FDERIV (\<lambda>x. x ^ Suc n) x :> (\<lambda>h. (1 + of_nat n) * x ^ n * h)"
+ apply (induct n)
+  apply (simp add: power_Suc FDERIV_ident)
+ apply (drule FDERIV_mult [OF FDERIV_ident])
+ apply (simp only: of_nat_Suc left_distrib mult_1_left)
+ apply (simp only: power_Suc right_distrib add_ac mult_ac)
+done
+
+lemma FDERIV_power:
+  fixes x :: "'a::{real_normed_algebra,recpower,comm_ring_1}"
+  shows "FDERIV (\<lambda>x. x ^ n) x :> (\<lambda>h. of_nat n * x ^ (n - 1) * h)"
+  apply (cases n)
+   apply (simp add: FDERIV_const)
+  apply (simp add: FDERIV_power_Suc)
+  done
+
+
+subsection {* Inverse *}
+
+lemma inverse_diff_inverse:
+  "\<lbrakk>(a::'a::division_ring) \<noteq> 0; b \<noteq> 0\<rbrakk>
+   \<Longrightarrow> inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
+by (simp add: right_diff_distrib left_diff_distrib mult_assoc)
+
+lemmas bounded_linear_mult_const =
+  mult.bounded_linear_left [THEN bounded_linear_compose]
+
+lemmas bounded_linear_const_mult =
+  mult.bounded_linear_right [THEN bounded_linear_compose]
+
+lemma FDERIV_inverse:
+  fixes x :: "'a::real_normed_div_algebra"
+  assumes x: "x \<noteq> 0"
+  shows "FDERIV inverse x :> (\<lambda>h. - (inverse x * h * inverse x))"
+        (is "FDERIV ?inv _ :> _")
+proof (rule FDERIV_I)
+  show "bounded_linear (\<lambda>h. - (?inv x * h * ?inv x))"
+    apply (rule bounded_linear_minus)
+    apply (rule bounded_linear_mult_const)
+    apply (rule bounded_linear_const_mult)
+    apply (rule bounded_linear_ident)
+    done
+next
+  show "(\<lambda>h. norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h)
+        -- 0 --> 0"
+  proof (rule LIM_equal2)
+    show "0 < norm x" using x by simp
+  next
+    fix h::'a
+    assume 1: "h \<noteq> 0"
+    assume "norm (h - 0) < norm x"
+    hence "h \<noteq> -x" by clarsimp
+    hence 2: "x + h \<noteq> 0"
+      apply (rule contrapos_nn)
+      apply (rule sym)
+      apply (erule equals_zero_I)
+      done
+    show "norm (?inv (x + h) - ?inv x - - (?inv x * h * ?inv x)) / norm h
+          = norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
+      apply (subst inverse_diff_inverse [OF 2 x])
+      apply (subst minus_diff_minus)
+      apply (subst norm_minus_cancel)
+      apply (simp add: left_diff_distrib)
+      done
+  next
+    show "(\<lambda>h. norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h)
+          -- 0 --> 0"
+    proof (rule real_LIM_sandwich_zero)
+      show "(\<lambda>h. norm (?inv (x + h) - ?inv x) * norm (?inv x))
+            -- 0 --> 0"
+        apply (rule LIM_mult_left_zero)
+        apply (rule LIM_norm_zero)
+        apply (rule LIM_zero)
+        apply (rule LIM_offset_zero)
+        apply (rule LIM_inverse)
+        apply (rule LIM_ident)
+        apply (rule x)
+        done
+    next
+      fix h::'a assume h: "h \<noteq> 0"
+      show "0 \<le> norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h"
+        apply (rule divide_nonneg_pos)
+        apply (rule norm_ge_zero)
+        apply (simp add: h)
+        done
+    next
+      fix h::'a assume h: "h \<noteq> 0"
+      have "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
+            \<le> norm (?inv (x + h) - ?inv x) * norm h * norm (?inv x) / norm h"
+        apply (rule divide_right_mono [OF _ norm_ge_zero])
+        apply (rule order_trans [OF norm_mult_ineq])
+        apply (rule mult_right_mono [OF _ norm_ge_zero])
+        apply (rule norm_mult_ineq)
+        done
+      also have "\<dots> = norm (?inv (x + h) - ?inv x) * norm (?inv x)"
+        by simp
+      finally show "norm ((?inv (x + h) - ?inv x) * h * ?inv x) / norm h
+            \<le> norm (?inv (x + h) - ?inv x) * norm (?inv x)" .   
+    qed
+  qed
+qed
+
+subsection {* Alternate definition *}
+
+lemma field_fderiv_def:
+  fixes x :: "'a::real_normed_field" shows
+  "FDERIV f x :> (\<lambda>h. h * D) = (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
+ apply (unfold fderiv_def)
+ apply (simp add: mult.bounded_linear_left)
+ apply (simp cong: LIM_cong add: nonzero_norm_divide [symmetric])
+ apply (subst diff_divide_distrib)
+ apply (subst times_divide_eq_left [symmetric])
+ apply (simp cong: LIM_cong)
+ apply (simp add: LIM_norm_zero_iff LIM_zero_iff)
+done
+
+end
--- a/src/HOL/Library/Library.thy	Thu Feb 19 23:55:10 2009 +1100
+++ b/src/HOL/Library/Library.thy	Thu Feb 19 05:50:26 2009 -0800
@@ -22,6 +22,7 @@
   Executable_Set
   Float
   Formal_Power_Series
+  FrechetDeriv
   FuncSet
   Fundamental_Theorem_Algebra
   Infinite_Set
@@ -35,6 +36,8 @@
   Option_ord
   Permutation
   Pocklington
+  Poly_Deriv
+  Polynomial
   Primes
   Quickcheck
   Quicksort
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Poly_Deriv.thy	Thu Feb 19 05:50:26 2009 -0800
@@ -0,0 +1,316 @@
+(*  Title:      Poly_Deriv.thy
+    Author:     Amine Chaieb
+                Ported to new Polynomial library by Brian Huffman
+*)
+
+header{* Polynomials and Differentiation *}
+
+theory Poly_Deriv
+imports Deriv Polynomial
+begin
+
+subsection {* Derivatives of univariate polynomials *}
+
+definition
+  pderiv :: "'a::real_normed_field poly \<Rightarrow> 'a poly" where
+  "pderiv = poly_rec 0 (\<lambda>a p p'. p + pCons 0 p')"
+
+lemma pderiv_0 [simp]: "pderiv 0 = 0"
+  unfolding pderiv_def by (simp add: poly_rec_0)
+
+lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)"
+  unfolding pderiv_def by (simp add: poly_rec_pCons)
+
+lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)"
+  apply (induct p arbitrary: n, simp)
+  apply (simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split)
+  done
+
+lemma pderiv_eq_0_iff: "pderiv p = 0 \<longleftrightarrow> degree p = 0"
+  apply (rule iffI)
+  apply (cases p, simp)
+  apply (simp add: expand_poly_eq coeff_pderiv del: of_nat_Suc)
+  apply (simp add: expand_poly_eq coeff_pderiv coeff_eq_0)
+  done
+
+lemma degree_pderiv: "degree (pderiv p) = degree p - 1"
+  apply (rule order_antisym [OF degree_le])
+  apply (simp add: coeff_pderiv coeff_eq_0)
+  apply (cases "degree p", simp)
+  apply (rule le_degree)
+  apply (simp add: coeff_pderiv del: of_nat_Suc)
+  apply (rule subst, assumption)
+  apply (rule leading_coeff_neq_0, clarsimp)
+  done
+
+lemma pderiv_singleton [simp]: "pderiv [:a:] = 0"
+by (simp add: pderiv_pCons)
+
+lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q"
+by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
+
+lemma pderiv_minus: "pderiv (- p) = - pderiv p"
+by (rule poly_ext, simp add: coeff_pderiv)
+
+lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q"
+by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
+
+lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)"
+by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
+
+lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p"
+apply (induct p)
+apply simp
+apply (simp add: pderiv_add pderiv_smult pderiv_pCons algebra_simps)
+done
+
+lemma pderiv_power_Suc:
+  "pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p"
+apply (induct n)
+apply simp
+apply (subst power_Suc)
+apply (subst pderiv_mult)
+apply (erule ssubst)
+apply (simp add: smult_add_left algebra_simps)
+done
+
+lemma DERIV_cmult2: "DERIV f x :> D ==> DERIV (%x. (f x) * c :: real) x :> D * c"
+by (simp add: DERIV_cmult mult_commute [of _ c])
+
+lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)"
+by (rule lemma_DERIV_subst, rule DERIV_pow, simp)
+declare DERIV_pow2 [simp] DERIV_pow [simp]
+
+lemma DERIV_add_const: "DERIV f x :> D ==>  DERIV (%x. a + f x :: 'a::real_normed_field) x :> D"
+by (rule lemma_DERIV_subst, rule DERIV_add, auto)
+
+lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x"
+apply (induct p)
+apply simp
+apply (simp add: pderiv_pCons)
+apply (rule lemma_DERIV_subst)
+apply (rule DERIV_add DERIV_mult DERIV_const DERIV_ident | assumption)+
+apply simp
+done
+
+text{* Consequences of the derivative theorem above*}
+
+lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (x::real)"
+apply (simp add: differentiable_def)
+apply (blast intro: poly_DERIV)
+done
+
+lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)"
+by (rule poly_DERIV [THEN DERIV_isCont])
+
+lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |]
+      ==> \<exists>x. a < x & x < b & (poly p x = 0)"
+apply (cut_tac f = "%x. poly p x" and a = a and b = b and y = 0 in IVT_objl)
+apply (auto simp add: order_le_less)
+done
+
+lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |]
+      ==> \<exists>x. a < x & x < b & (poly p x = 0)"
+by (insert poly_IVT_pos [where p = "- p" ]) simp
+
+lemma poly_MVT: "(a::real) < b ==>
+     \<exists>x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)"
+apply (drule_tac f = "poly p" in MVT, auto)
+apply (rule_tac x = z in exI)
+apply (auto simp add: real_mult_left_cancel poly_DERIV [THEN DERIV_unique])
+done
+
+text{*Lemmas for Derivatives*}
+
+lemma order_unique_lemma:
+  fixes p :: "'a::idom poly"
+  assumes "[:-a, 1:] ^ n dvd p \<and> \<not> [:-a, 1:] ^ Suc n dvd p"
+  shows "n = order a p"
+unfolding Polynomial.order_def
+apply (rule Least_equality [symmetric])
+apply (rule assms [THEN conjunct2])
+apply (erule contrapos_np)
+apply (rule power_le_dvd)
+apply (rule assms [THEN conjunct1])
+apply simp
+done
+
+lemma lemma_order_pderiv1:
+  "pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q +
+    smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)"
+apply (simp only: pderiv_mult pderiv_power_Suc)
+apply (simp del: power_poly_Suc of_nat_Suc add: pderiv_pCons)
+done
+
+lemma dvd_add_cancel1:
+  fixes a b c :: "'a::comm_ring_1"
+  shows "a dvd b + c \<Longrightarrow> a dvd b \<Longrightarrow> a dvd c"
+  by (drule (1) Ring_and_Field.dvd_diff, simp)
+
+lemma lemma_order_pderiv [rule_format]:
+     "\<forall>p q a. 0 < n &
+       pderiv p \<noteq> 0 &
+       p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q
+       --> n = Suc (order a (pderiv p))"
+ apply (cases "n", safe, rename_tac n p q a)
+ apply (rule order_unique_lemma)
+ apply (rule conjI)
+  apply (subst lemma_order_pderiv1)
+  apply (rule dvd_add)
+   apply (rule dvd_mult2)
+   apply (rule le_imp_power_dvd, simp)
+  apply (rule dvd_smult)
+  apply (rule dvd_mult)
+  apply (rule dvd_refl)
+ apply (subst lemma_order_pderiv1)
+ apply (erule contrapos_nn) back
+ apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n")
+  apply (simp del: mult_pCons_left)
+ apply (drule dvd_add_cancel1)
+  apply (simp del: mult_pCons_left)
+ apply (drule dvd_smult_cancel, simp del: of_nat_Suc)
+ apply assumption
+done
+
+lemma order_decomp:
+     "p \<noteq> 0
+      ==> \<exists>q. p = [:-a, 1:] ^ (order a p) * q &
+                ~([:-a, 1:] dvd q)"
+apply (drule order [where a=a])
+apply (erule conjE)
+apply (erule dvdE)
+apply (rule exI)
+apply (rule conjI, assumption)
+apply (erule contrapos_nn)
+apply (erule ssubst) back
+apply (subst power_Suc2)
+apply (erule mult_dvd_mono [OF dvd_refl])
+done
+
+lemma order_pderiv: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
+      ==> (order a p = Suc (order a (pderiv p)))"
+apply (case_tac "p = 0", simp)
+apply (drule_tac a = a and p = p in order_decomp)
+using neq0_conv
+apply (blast intro: lemma_order_pderiv)
+done
+
+lemma order_mult: "p * q \<noteq> 0 \<Longrightarrow> order a (p * q) = order a p + order a q"
+proof -
+  def i \<equiv> "order a p"
+  def j \<equiv> "order a q"
+  def t \<equiv> "[:-a, 1:]"
+  have t_dvd_iff: "\<And>u. t dvd u \<longleftrightarrow> poly u a = 0"
+    unfolding t_def by (simp add: dvd_iff_poly_eq_0)
+  assume "p * q \<noteq> 0"
+  then show "order a (p * q) = i + j"
+    apply clarsimp
+    apply (drule order [where a=a and p=p, folded i_def t_def])
+    apply (drule order [where a=a and p=q, folded j_def t_def])
+    apply clarify
+    apply (rule order_unique_lemma [symmetric], fold t_def)
+    apply (erule dvdE)+
+    apply (simp add: power_add t_dvd_iff)
+    done
+qed
+
+text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *}
+
+lemma order_divides: "[:-a, 1:] ^ n dvd p \<longleftrightarrow> p = 0 \<or> n \<le> order a p"
+apply (cases "p = 0", auto)
+apply (drule order_2 [where a=a and p=p])
+apply (erule contrapos_np)
+apply (erule power_le_dvd)
+apply simp
+apply (erule power_le_dvd [OF order_1])
+done
+
+lemma poly_squarefree_decomp_order:
+  assumes "pderiv p \<noteq> 0"
+  and p: "p = q * d"
+  and p': "pderiv p = e * d"
+  and d: "d = r * p + s * pderiv p"
+  shows "order a q = (if order a p = 0 then 0 else 1)"
+proof (rule classical)
+  assume 1: "order a q \<noteq> (if order a p = 0 then 0 else 1)"
+  from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto
+  with p have "order a p = order a q + order a d"
+    by (simp add: order_mult)
+  with 1 have "order a p \<noteq> 0" by (auto split: if_splits)
+  have "order a (pderiv p) = order a e + order a d"
+    using `pderiv p \<noteq> 0` `pderiv p = e * d` by (simp add: order_mult)
+  have "order a p = Suc (order a (pderiv p))"
+    using `pderiv p \<noteq> 0` `order a p \<noteq> 0` by (rule order_pderiv)
+  have "d \<noteq> 0" using `p \<noteq> 0` `p = q * d` by simp
+  have "([:-a, 1:] ^ (order a (pderiv p))) dvd d"
+    apply (simp add: d)
+    apply (rule dvd_add)
+    apply (rule dvd_mult)
+    apply (simp add: order_divides `p \<noteq> 0`
+           `order a p = Suc (order a (pderiv p))`)
+    apply (rule dvd_mult)
+    apply (simp add: order_divides)
+    done
+  then have "order a (pderiv p) \<le> order a d"
+    using `d \<noteq> 0` by (simp add: order_divides)
+  show ?thesis
+    using `order a p = order a q + order a d`
+    using `order a (pderiv p) = order a e + order a d`
+    using `order a p = Suc (order a (pderiv p))`
+    using `order a (pderiv p) \<le> order a d`
+    by auto
+qed
+
+lemma poly_squarefree_decomp_order2: "[| pderiv p \<noteq> 0;
+         p = q * d;
+         pderiv p = e * d;
+         d = r * p + s * pderiv p
+      |] ==> \<forall>a. order a q = (if order a p = 0 then 0 else 1)"
+apply (blast intro: poly_squarefree_decomp_order)
+done
+
+lemma order_pderiv2: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
+      ==> (order a (pderiv p) = n) = (order a p = Suc n)"
+apply (auto dest: order_pderiv)
+done
+
+definition
+  rsquarefree :: "'a::idom poly => bool" where
+  "rsquarefree p = (p \<noteq> 0 & (\<forall>a. (order a p = 0) | (order a p = 1)))"
+
+lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h:]"
+apply (simp add: pderiv_eq_0_iff)
+apply (case_tac p, auto split: if_splits)
+done
+
+lemma rsquarefree_roots:
+  "rsquarefree p = (\<forall>a. ~(poly p a = 0 & poly (pderiv p) a = 0))"
+apply (simp add: rsquarefree_def)
+apply (case_tac "p = 0", simp, simp)
+apply (case_tac "pderiv p = 0")
+apply simp
+apply (drule pderiv_iszero, clarify)
+apply simp
+apply (rule allI)
+apply (cut_tac p = "[:h:]" and a = a in order_root)
+apply simp
+apply (auto simp add: order_root order_pderiv2)
+apply (erule_tac x="a" in allE, simp)
+done
+
+lemma poly_squarefree_decomp:
+  assumes "pderiv p \<noteq> 0"
+    and "p = q * d"
+    and "pderiv p = e * d"
+    and "d = r * p + s * pderiv p"
+  shows "rsquarefree q & (\<forall>a. (poly q a = 0) = (poly p a = 0))"
+proof -
+  from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto
+  with `p = q * d` have "q \<noteq> 0" by simp
+  have "\<forall>a. order a q = (if order a p = 0 then 0 else 1)"
+    using assms by (rule poly_squarefree_decomp_order2)
+  with `p \<noteq> 0` `q \<noteq> 0` show ?thesis
+    by (simp add: rsquarefree_def order_root)
+qed
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Polynomial.thy	Thu Feb 19 05:50:26 2009 -0800
@@ -0,0 +1,1441 @@
+(*  Title:      HOL/Polynomial.thy
+    Author:     Brian Huffman
+                Based on an earlier development by Clemens Ballarin
+*)
+
+header {* Univariate Polynomials *}
+
+theory Polynomial
+imports Plain SetInterval Main
+begin
+
+subsection {* Definition of type @{text poly} *}
+
+typedef (Poly) 'a poly = "{f::nat \<Rightarrow> 'a::zero. \<exists>n. \<forall>i>n. f i = 0}"
+  morphisms coeff Abs_poly
+  by auto
+
+lemma expand_poly_eq: "p = q \<longleftrightarrow> (\<forall>n. coeff p n = coeff q n)"
+by (simp add: coeff_inject [symmetric] expand_fun_eq)
+
+lemma poly_ext: "(\<And>n. coeff p n = coeff q n) \<Longrightarrow> p = q"
+by (simp add: expand_poly_eq)
+
+
+subsection {* Degree of a polynomial *}
+
+definition
+  degree :: "'a::zero poly \<Rightarrow> nat" where
+  "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)"
+
+lemma coeff_eq_0: "degree p < n \<Longrightarrow> coeff p n = 0"
+proof -
+  have "coeff p \<in> Poly"
+    by (rule coeff)
+  hence "\<exists>n. \<forall>i>n. coeff p i = 0"
+    unfolding Poly_def by simp
+  hence "\<forall>i>degree p. coeff p i = 0"
+    unfolding degree_def by (rule LeastI_ex)
+  moreover assume "degree p < n"
+  ultimately show ?thesis by simp
+qed
+
+lemma le_degree: "coeff p n \<noteq> 0 \<Longrightarrow> n \<le> degree p"
+  by (erule contrapos_np, rule coeff_eq_0, simp)
+
+lemma degree_le: "\<forall>i>n. coeff p i = 0 \<Longrightarrow> degree p \<le> n"
+  unfolding degree_def by (erule Least_le)
+
+lemma less_degree_imp: "n < degree p \<Longrightarrow> \<exists>i>n. coeff p i \<noteq> 0"
+  unfolding degree_def by (drule not_less_Least, simp)
+
+
+subsection {* The zero polynomial *}
+
+instantiation poly :: (zero) zero
+begin
+
+definition
+  zero_poly_def: "0 = Abs_poly (\<lambda>n. 0)"
+
+instance ..
+end
+
+lemma coeff_0 [simp]: "coeff 0 n = 0"
+  unfolding zero_poly_def
+  by (simp add: Abs_poly_inverse Poly_def)
+
+lemma degree_0 [simp]: "degree 0 = 0"
+  by (rule order_antisym [OF degree_le le0]) simp
+
+lemma leading_coeff_neq_0:
+  assumes "p \<noteq> 0" shows "coeff p (degree p) \<noteq> 0"
+proof (cases "degree p")
+  case 0
+  from `p \<noteq> 0` have "\<exists>n. coeff p n \<noteq> 0"
+    by (simp add: expand_poly_eq)
+  then obtain n where "coeff p n \<noteq> 0" ..
+  hence "n \<le> degree p" by (rule le_degree)
+  with `coeff p n \<noteq> 0` and `degree p = 0`
+  show "coeff p (degree p) \<noteq> 0" by simp
+next
+  case (Suc n)
+  from `degree p = Suc n` have "n < degree p" by simp
+  hence "\<exists>i>n. coeff p i \<noteq> 0" by (rule less_degree_imp)
+  then obtain i where "n < i" and "coeff p i \<noteq> 0" by fast
+  from `degree p = Suc n` and `n < i` have "degree p \<le> i" by simp
+  also from `coeff p i \<noteq> 0` have "i \<le> degree p" by (rule le_degree)
+  finally have "degree p = i" .
+  with `coeff p i \<noteq> 0` show "coeff p (degree p) \<noteq> 0" by simp
+qed
+
+lemma leading_coeff_0_iff [simp]: "coeff p (degree p) = 0 \<longleftrightarrow> p = 0"
+  by (cases "p = 0", simp, simp add: leading_coeff_neq_0)
+
+
+subsection {* List-style constructor for polynomials *}
+
+definition
+  pCons :: "'a::zero \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
+where
+  [code del]: "pCons a p = Abs_poly (nat_case a (coeff p))"
+
+syntax
+  "_poly" :: "args \<Rightarrow> 'a poly"  ("[:(_):]")
+
+translations
+  "[:x, xs:]" == "CONST pCons x [:xs:]"
+  "[:x:]" == "CONST pCons x 0"
+
+lemma Poly_nat_case: "f \<in> Poly \<Longrightarrow> nat_case a f \<in> Poly"
+  unfolding Poly_def by (auto split: nat.split)
+
+lemma coeff_pCons:
+  "coeff (pCons a p) = nat_case a (coeff p)"
+  unfolding pCons_def
+  by (simp add: Abs_poly_inverse Poly_nat_case coeff)
+
+lemma coeff_pCons_0 [simp]: "coeff (pCons a p) 0 = a"
+  by (simp add: coeff_pCons)
+
+lemma coeff_pCons_Suc [simp]: "coeff (pCons a p) (Suc n) = coeff p n"
+  by (simp add: coeff_pCons)
+
+lemma degree_pCons_le: "degree (pCons a p) \<le> Suc (degree p)"
+by (rule degree_le, simp add: coeff_eq_0 coeff_pCons split: nat.split)
+
+lemma degree_pCons_eq:
+  "p \<noteq> 0 \<Longrightarrow> degree (pCons a p) = Suc (degree p)"
+apply (rule order_antisym [OF degree_pCons_le])
+apply (rule le_degree, simp)
+done
+
+lemma degree_pCons_0: "degree (pCons a 0) = 0"
+apply (rule order_antisym [OF _ le0])
+apply (rule degree_le, simp add: coeff_pCons split: nat.split)
+done
+
+lemma degree_pCons_eq_if [simp]:
+  "degree (pCons a p) = (if p = 0 then 0 else Suc (degree p))"
+apply (cases "p = 0", simp_all)
+apply (rule order_antisym [OF _ le0])
+apply (rule degree_le, simp add: coeff_pCons split: nat.split)
+apply (rule order_antisym [OF degree_pCons_le])
+apply (rule le_degree, simp)
+done
+
+lemma pCons_0_0 [simp]: "pCons 0 0 = 0"
+by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma pCons_eq_iff [simp]:
+  "pCons a p = pCons b q \<longleftrightarrow> a = b \<and> p = q"
+proof (safe)
+  assume "pCons a p = pCons b q"
+  then have "coeff (pCons a p) 0 = coeff (pCons b q) 0" by simp
+  then show "a = b" by simp
+next
+  assume "pCons a p = pCons b q"
+  then have "\<forall>n. coeff (pCons a p) (Suc n) =
+                 coeff (pCons b q) (Suc n)" by simp
+  then show "p = q" by (simp add: expand_poly_eq)
+qed
+
+lemma pCons_eq_0_iff [simp]: "pCons a p = 0 \<longleftrightarrow> a = 0 \<and> p = 0"
+  using pCons_eq_iff [of a p 0 0] by simp
+
+lemma Poly_Suc: "f \<in> Poly \<Longrightarrow> (\<lambda>n. f (Suc n)) \<in> Poly"
+  unfolding Poly_def
+  by (clarify, rule_tac x=n in exI, simp)
+
+lemma pCons_cases [cases type: poly]:
+  obtains (pCons) a q where "p = pCons a q"
+proof
+  show "p = pCons (coeff p 0) (Abs_poly (\<lambda>n. coeff p (Suc n)))"
+    by (rule poly_ext)
+       (simp add: Abs_poly_inverse Poly_Suc coeff coeff_pCons
+             split: nat.split)
+qed
+
+lemma pCons_induct [case_names 0 pCons, induct type: poly]:
+  assumes zero: "P 0"
+  assumes pCons: "\<And>a p. P p \<Longrightarrow> P (pCons a p)"
+  shows "P p"
+proof (induct p rule: measure_induct_rule [where f=degree])
+  case (less p)
+  obtain a q where "p = pCons a q" by (rule pCons_cases)
+  have "P q"
+  proof (cases "q = 0")
+    case True
+    then show "P q" by (simp add: zero)
+  next
+    case False
+    then have "degree (pCons a q) = Suc (degree q)"
+      by (rule degree_pCons_eq)
+    then have "degree q < degree p"
+      using `p = pCons a q` by simp
+    then show "P q"
+      by (rule less.hyps)
+  qed
+  then have "P (pCons a q)"
+    by (rule pCons)
+  then show ?case
+    using `p = pCons a q` by simp
+qed
+
+
+subsection {* Recursion combinator for polynomials *}
+
+function
+  poly_rec :: "'b \<Rightarrow> ('a::zero \<Rightarrow> 'a poly \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a poly \<Rightarrow> 'b"
+where
+  poly_rec_pCons_eq_if [simp del, code del]:
+    "poly_rec z f (pCons a p) = f a p (if p = 0 then z else poly_rec z f p)"
+by (case_tac x, rename_tac q, case_tac q, auto)
+
+termination poly_rec
+by (relation "measure (degree \<circ> snd \<circ> snd)", simp)
+   (simp add: degree_pCons_eq)
+
+lemma poly_rec_0:
+  "f 0 0 z = z \<Longrightarrow> poly_rec z f 0 = z"
+  using poly_rec_pCons_eq_if [of z f 0 0] by simp
+
+lemma poly_rec_pCons:
+  "f 0 0 z = z \<Longrightarrow> poly_rec z f (pCons a p) = f a p (poly_rec z f p)"
+  by (simp add: poly_rec_pCons_eq_if poly_rec_0)
+
+
+subsection {* Monomials *}
+
+definition
+  monom :: "'a \<Rightarrow> nat \<Rightarrow> 'a::zero poly" where
+  "monom a m = Abs_poly (\<lambda>n. if m = n then a else 0)"
+
+lemma coeff_monom [simp]: "coeff (monom a m) n = (if m=n then a else 0)"
+  unfolding monom_def
+  by (subst Abs_poly_inverse, auto simp add: Poly_def)
+
+lemma monom_0: "monom a 0 = pCons a 0"
+  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma monom_Suc: "monom a (Suc n) = pCons 0 (monom a n)"
+  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma monom_eq_0 [simp]: "monom 0 n = 0"
+  by (rule poly_ext) simp
+
+lemma monom_eq_0_iff [simp]: "monom a n = 0 \<longleftrightarrow> a = 0"
+  by (simp add: expand_poly_eq)
+
+lemma monom_eq_iff [simp]: "monom a n = monom b n \<longleftrightarrow> a = b"
+  by (simp add: expand_poly_eq)
+
+lemma degree_monom_le: "degree (monom a n) \<le> n"
+  by (rule degree_le, simp)
+
+lemma degree_monom_eq: "a \<noteq> 0 \<Longrightarrow> degree (monom a n) = n"
+  apply (rule order_antisym [OF degree_monom_le])
+  apply (rule le_degree, simp)
+  done
+
+
+subsection {* Addition and subtraction *}
+
+instantiation poly :: (comm_monoid_add) comm_monoid_add
+begin
+
+definition
+  plus_poly_def [code del]:
+    "p + q = Abs_poly (\<lambda>n. coeff p n + coeff q n)"
+
+lemma Poly_add:
+  fixes f g :: "nat \<Rightarrow> 'a"
+  shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. f n + g n) \<in> Poly"
+  unfolding Poly_def
+  apply (clarify, rename_tac m n)
+  apply (rule_tac x="max m n" in exI, simp)
+  done
+
+lemma coeff_add [simp]:
+  "coeff (p + q) n = coeff p n + coeff q n"
+  unfolding plus_poly_def
+  by (simp add: Abs_poly_inverse coeff Poly_add)
+
+instance proof
+  fix p q r :: "'a poly"
+  show "(p + q) + r = p + (q + r)"
+    by (simp add: expand_poly_eq add_assoc)
+  show "p + q = q + p"
+    by (simp add: expand_poly_eq add_commute)
+  show "0 + p = p"
+    by (simp add: expand_poly_eq)
+qed
+
+end
+
+instance poly :: (cancel_comm_monoid_add) cancel_comm_monoid_add
+proof
+  fix p q r :: "'a poly"
+  assume "p + q = p + r" thus "q = r"
+    by (simp add: expand_poly_eq)
+qed
+
+instantiation poly :: (ab_group_add) ab_group_add
+begin
+
+definition
+  uminus_poly_def [code del]:
+    "- p = Abs_poly (\<lambda>n. - coeff p n)"
+
+definition
+  minus_poly_def [code del]:
+    "p - q = Abs_poly (\<lambda>n. coeff p n - coeff q n)"
+
+lemma Poly_minus:
+  fixes f :: "nat \<Rightarrow> 'a"
+  shows "f \<in> Poly \<Longrightarrow> (\<lambda>n. - f n) \<in> Poly"
+  unfolding Poly_def by simp
+
+lemma Poly_diff:
+  fixes f g :: "nat \<Rightarrow> 'a"
+  shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. f n - g n) \<in> Poly"
+  unfolding diff_minus by (simp add: Poly_add Poly_minus)
+
+lemma coeff_minus [simp]: "coeff (- p) n = - coeff p n"
+  unfolding uminus_poly_def
+  by (simp add: Abs_poly_inverse coeff Poly_minus)
+
+lemma coeff_diff [simp]:
+  "coeff (p - q) n = coeff p n - coeff q n"
+  unfolding minus_poly_def
+  by (simp add: Abs_poly_inverse coeff Poly_diff)
+
+instance proof
+  fix p q :: "'a poly"
+  show "- p + p = 0"
+    by (simp add: expand_poly_eq)
+  show "p - q = p + - q"
+    by (simp add: expand_poly_eq diff_minus)
+qed
+
+end
+
+lemma add_pCons [simp]:
+  "pCons a p + pCons b q = pCons (a + b) (p + q)"
+  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma minus_pCons [simp]:
+  "- pCons a p = pCons (- a) (- p)"
+  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma diff_pCons [simp]:
+  "pCons a p - pCons b q = pCons (a - b) (p - q)"
+  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma degree_add_le_max: "degree (p + q) \<le> max (degree p) (degree q)"
+  by (rule degree_le, auto simp add: coeff_eq_0)
+
+lemma degree_add_le:
+  "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p + q) \<le> n"
+  by (auto intro: order_trans degree_add_le_max)
+
+lemma degree_add_less:
+  "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p + q) < n"
+  by (auto intro: le_less_trans degree_add_le_max)
+
+lemma degree_add_eq_right:
+  "degree p < degree q \<Longrightarrow> degree (p + q) = degree q"
+  apply (cases "q = 0", simp)
+  apply (rule order_antisym)
+  apply (simp add: degree_add_le)
+  apply (rule le_degree)
+  apply (simp add: coeff_eq_0)
+  done
+
+lemma degree_add_eq_left:
+  "degree q < degree p \<Longrightarrow> degree (p + q) = degree p"
+  using degree_add_eq_right [of q p]
+  by (simp add: add_commute)
+
+lemma degree_minus [simp]: "degree (- p) = degree p"
+  unfolding degree_def by simp
+
+lemma degree_diff_le_max: "degree (p - q) \<le> max (degree p) (degree q)"
+  using degree_add_le [where p=p and q="-q"]
+  by (simp add: diff_minus)
+
+lemma degree_diff_le:
+  "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p - q) \<le> n"
+  by (simp add: diff_minus degree_add_le)
+
+lemma degree_diff_less:
+  "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p - q) < n"
+  by (simp add: diff_minus degree_add_less)
+
+lemma add_monom: "monom a n + monom b n = monom (a + b) n"
+  by (rule poly_ext) simp
+
+lemma diff_monom: "monom a n - monom b n = monom (a - b) n"
+  by (rule poly_ext) simp
+
+lemma minus_monom: "- monom a n = monom (-a) n"
+  by (rule poly_ext) simp
+
+lemma coeff_setsum: "coeff (\<Sum>x\<in>A. p x) i = (\<Sum>x\<in>A. coeff (p x) i)"
+  by (cases "finite A", induct set: finite, simp_all)
+
+lemma monom_setsum: "monom (\<Sum>x\<in>A. a x) n = (\<Sum>x\<in>A. monom (a x) n)"
+  by (rule poly_ext) (simp add: coeff_setsum)
+
+
+subsection {* Multiplication by a constant *}
+
+definition
+  smult :: "'a::comm_semiring_0 \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
+  "smult a p = Abs_poly (\<lambda>n. a * coeff p n)"
+
+lemma Poly_smult:
+  fixes f :: "nat \<Rightarrow> 'a::comm_semiring_0"
+  shows "f \<in> Poly \<Longrightarrow> (\<lambda>n. a * f n) \<in> Poly"
+  unfolding Poly_def
+  by (clarify, rule_tac x=n in exI, simp)
+
+lemma coeff_smult [simp]: "coeff (smult a p) n = a * coeff p n"
+  unfolding smult_def
+  by (simp add: Abs_poly_inverse Poly_smult coeff)
+
+lemma degree_smult_le: "degree (smult a p) \<le> degree p"
+  by (rule degree_le, simp add: coeff_eq_0)
+
+lemma smult_smult [simp]: "smult a (smult b p) = smult (a * b) p"
+  by (rule poly_ext, simp add: mult_assoc)
+
+lemma smult_0_right [simp]: "smult a 0 = 0"
+  by (rule poly_ext, simp)
+
+lemma smult_0_left [simp]: "smult 0 p = 0"
+  by (rule poly_ext, simp)
+
+lemma smult_1_left [simp]: "smult (1::'a::comm_semiring_1) p = p"
+  by (rule poly_ext, simp)
+
+lemma smult_add_right:
+  "smult a (p + q) = smult a p + smult a q"
+  by (rule poly_ext, simp add: algebra_simps)
+
+lemma smult_add_left:
+  "smult (a + b) p = smult a p + smult b p"
+  by (rule poly_ext, simp add: algebra_simps)
+
+lemma smult_minus_right [simp]:
+  "smult (a::'a::comm_ring) (- p) = - smult a p"
+  by (rule poly_ext, simp)
+
+lemma smult_minus_left [simp]:
+  "smult (- a::'a::comm_ring) p = - smult a p"
+  by (rule poly_ext, simp)
+
+lemma smult_diff_right:
+  "smult (a::'a::comm_ring) (p - q) = smult a p - smult a q"
+  by (rule poly_ext, simp add: algebra_simps)
+
+lemma smult_diff_left:
+  "smult (a - b::'a::comm_ring) p = smult a p - smult b p"
+  by (rule poly_ext, simp add: algebra_simps)
+
+lemmas smult_distribs =
+  smult_add_left smult_add_right
+  smult_diff_left smult_diff_right
+
+lemma smult_pCons [simp]:
+  "smult a (pCons b p) = pCons (a * b) (smult a p)"
+  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
+
+lemma smult_monom: "smult a (monom b n) = monom (a * b) n"
+  by (induct n, simp add: monom_0, simp add: monom_Suc)
+
+lemma degree_smult_eq [simp]:
+  fixes a :: "'a::idom"
+  shows "degree (smult a p) = (if a = 0 then 0 else degree p)"
+  by (cases "a = 0", simp, simp add: degree_def)
+
+lemma smult_eq_0_iff [simp]:
+  fixes a :: "'a::idom"
+  shows "smult a p = 0 \<longleftrightarrow> a = 0 \<or> p = 0"
+  by (simp add: expand_poly_eq)
+
+
+subsection {* Multiplication of polynomials *}
+
+text {* TODO: move to SetInterval.thy *}
+lemma setsum_atMost_Suc_shift:
+  fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add"
+  shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
+proof (induct n)
+  case 0 show ?case by simp
+next
+  case (Suc n) note IH = this
+  have "(\<Sum>i\<le>Suc (Suc n). f i) = (\<Sum>i\<le>Suc n. f i) + f (Suc (Suc n))"
+    by (rule setsum_atMost_Suc)
+  also have "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
+    by (rule IH)
+  also have "f 0 + (\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) =
+             f 0 + ((\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)))"
+    by (rule add_assoc)
+  also have "(\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = (\<Sum>i\<le>Suc n. f (Suc i))"
+    by (rule setsum_atMost_Suc [symmetric])
+  finally show ?case .
+qed
+
+instantiation poly :: (comm_semiring_0) comm_semiring_0
+begin
+
+definition
+  times_poly_def [code del]:
+    "p * q = poly_rec 0 (\<lambda>a p pq. smult a q + pCons 0 pq) p"
+
+lemma mult_poly_0_left: "(0::'a poly) * q = 0"
+  unfolding times_poly_def by (simp add: poly_rec_0)
+
+lemma mult_pCons_left [simp]:
+  "pCons a p * q = smult a q + pCons 0 (p * q)"
+  unfolding times_poly_def by (simp add: poly_rec_pCons)
+
+lemma mult_poly_0_right: "p * (0::'a poly) = 0"
+  by (induct p, simp add: mult_poly_0_left, simp)
+
+lemma mult_pCons_right [simp]:
+  "p * pCons a q = smult a p + pCons 0 (p * q)"
+  by (induct p, simp add: mult_poly_0_left, simp add: algebra_simps)
+
+lemmas mult_poly_0 = mult_poly_0_left mult_poly_0_right
+
+lemma mult_smult_left [simp]: "smult a p * q = smult a (p * q)"
+  by (induct p, simp add: mult_poly_0, simp add: smult_add_right)
+
+lemma mult_smult_right [simp]: "p * smult a q = smult a (p * q)"
+  by (induct q, simp add: mult_poly_0, simp add: smult_add_right)
+
+lemma mult_poly_add_left:
+  fixes p q r :: "'a poly"
+  shows "(p + q) * r = p * r + q * r"
+  by (induct r, simp add: mult_poly_0,
+                simp add: smult_distribs algebra_simps)
+
+instance proof
+  fix p q r :: "'a poly"
+  show 0: "0 * p = 0"
+    by (rule mult_poly_0_left)
+  show "p * 0 = 0"
+    by (rule mult_poly_0_right)
+  show "(p + q) * r = p * r + q * r"
+    by (rule mult_poly_add_left)
+  show "(p * q) * r = p * (q * r)"
+    by (induct p, simp add: mult_poly_0, simp add: mult_poly_add_left)
+  show "p * q = q * p"
+    by (induct p, simp add: mult_poly_0, simp)
+qed
+
+end
+
+instance poly :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
+
+lemma coeff_mult:
+  "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
+proof (induct p arbitrary: n)
+  case 0 show ?case by simp
+next
+  case (pCons a p n) thus ?case
+    by (cases n, simp, simp add: setsum_atMost_Suc_shift
+                            del: setsum_atMost_Suc)
+qed
+
+lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
+apply (rule degree_le)
+apply (induct p)
+apply simp
+apply (simp add: coeff_eq_0 coeff_pCons split: nat.split)
+done
+
+lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)"
+  by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc)
+
+
+subsection {* The unit polynomial and exponentiation *}
+
+instantiation poly :: (comm_semiring_1) comm_semiring_1
+begin
+
+definition
+  one_poly_def:
+    "1 = pCons 1 0"
+
+instance proof
+  fix p :: "'a poly" show "1 * p = p"
+    unfolding one_poly_def
+    by simp
+next
+  show "0 \<noteq> (1::'a poly)"
+    unfolding one_poly_def by simp
+qed
+
+end
+
+instance poly :: (comm_semiring_1_cancel) comm_semiring_1_cancel ..
+
+lemma coeff_1 [simp]: "coeff 1 n = (if n = 0 then 1 else 0)"
+  unfolding one_poly_def
+  by (simp add: coeff_pCons split: nat.split)
+
+lemma degree_1 [simp]: "degree 1 = 0"
+  unfolding one_poly_def
+  by (rule degree_pCons_0)
+
+text {* Lemmas about divisibility *}
+
+lemma dvd_smult: "p dvd q \<Longrightarrow> p dvd smult a q"
+proof -
+  assume "p dvd q"
+  then obtain k where "q = p * k" ..
+  then have "smult a q = p * smult a k" by simp
+  then show "p dvd smult a q" ..
+qed
+
+lemma dvd_smult_cancel:
+  fixes a :: "'a::field"
+  shows "p dvd smult a q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> p dvd q"
+  by (drule dvd_smult [where a="inverse a"]) simp
+
+lemma dvd_smult_iff:
+  fixes a :: "'a::field"
+  shows "a \<noteq> 0 \<Longrightarrow> p dvd smult a q \<longleftrightarrow> p dvd q"
+  by (safe elim!: dvd_smult dvd_smult_cancel)
+
+instantiation poly :: (comm_semiring_1) recpower
+begin
+
+primrec power_poly where
+  power_poly_0: "(p::'a poly) ^ 0 = 1"
+| power_poly_Suc: "(p::'a poly) ^ (Suc n) = p * p ^ n"
+
+instance
+  by default simp_all
+
+end
+
+lemma degree_power_le: "degree (p ^ n) \<le> degree p * n"
+by (induct n, simp, auto intro: order_trans degree_mult_le)
+
+instance poly :: (comm_ring) comm_ring ..
+
+instance poly :: (comm_ring_1) comm_ring_1 ..
+
+instantiation poly :: (comm_ring_1) number_ring
+begin
+
+definition
+  "number_of k = (of_int k :: 'a poly)"
+
+instance
+  by default (rule number_of_poly_def)
+
+end
+
+
+subsection {* Polynomials form an integral domain *}
+
+lemma coeff_mult_degree_sum:
+  "coeff (p * q) (degree p + degree q) =
+   coeff p (degree p) * coeff q (degree q)"
+  by (induct p, simp, simp add: coeff_eq_0)
+
+instance poly :: (idom) idom
+proof
+  fix p q :: "'a poly"
+  assume "p \<noteq> 0" and "q \<noteq> 0"
+  have "coeff (p * q) (degree p + degree q) =
+        coeff p (degree p) * coeff q (degree q)"
+    by (rule coeff_mult_degree_sum)
+  also have "coeff p (degree p) * coeff q (degree q) \<noteq> 0"
+    using `p \<noteq> 0` and `q \<noteq> 0` by simp
+  finally have "\<exists>n. coeff (p * q) n \<noteq> 0" ..
+  thus "p * q \<noteq> 0" by (simp add: expand_poly_eq)
+qed
+
+lemma degree_mult_eq:
+  fixes p q :: "'a::idom poly"
+  shows "\<lbrakk>p \<noteq> 0; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree (p * q) = degree p + degree q"
+apply (rule order_antisym [OF degree_mult_le le_degree])
+apply (simp add: coeff_mult_degree_sum)
+done
+
+lemma dvd_imp_degree_le:
+  fixes p q :: "'a::idom poly"
+  shows "\<lbrakk>p dvd q; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree p \<le> degree q"
+  by (erule dvdE, simp add: degree_mult_eq)
+
+
+subsection {* Polynomials form an ordered integral domain *}
+
+definition
+  pos_poly :: "'a::ordered_idom poly \<Rightarrow> bool"
+where
+  "pos_poly p \<longleftrightarrow> 0 < coeff p (degree p)"
+
+lemma pos_poly_pCons:
+  "pos_poly (pCons a p) \<longleftrightarrow> pos_poly p \<or> (p = 0 \<and> 0 < a)"
+  unfolding pos_poly_def by simp
+
+lemma not_pos_poly_0 [simp]: "\<not> pos_poly 0"
+  unfolding pos_poly_def by simp
+
+lemma pos_poly_add: "\<lbrakk>pos_poly p; pos_poly q\<rbrakk> \<Longrightarrow> pos_poly (p + q)"
+  apply (induct p arbitrary: q, simp)
+  apply (case_tac q, force simp add: pos_poly_pCons add_pos_pos)
+  done
+
+lemma pos_poly_mult: "\<lbrakk>pos_poly p; pos_poly q\<rbrakk> \<Longrightarrow> pos_poly (p * q)"
+  unfolding pos_poly_def
+  apply (subgoal_tac "p \<noteq> 0 \<and> q \<noteq> 0")
+  apply (simp add: degree_mult_eq coeff_mult_degree_sum mult_pos_pos)
+  apply auto
+  done
+
+lemma pos_poly_total: "p = 0 \<or> pos_poly p \<or> pos_poly (- p)"
+by (induct p) (auto simp add: pos_poly_pCons)
+
+instantiation poly :: (ordered_idom) ordered_idom
+begin
+
+definition
+  [code del]:
+    "x < y \<longleftrightarrow> pos_poly (y - x)"
+
+definition
+  [code del]:
+    "x \<le> y \<longleftrightarrow> x = y \<or> pos_poly (y - x)"
+
+definition
+  [code del]:
+    "abs (x::'a poly) = (if x < 0 then - x else x)"
+
+definition
+  [code del]:
+    "sgn (x::'a poly) = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
+
+instance proof
+  fix x y :: "'a poly"
+  show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
+    unfolding less_eq_poly_def less_poly_def
+    apply safe
+    apply simp
+    apply (drule (1) pos_poly_add)
+    apply simp
+    done
+next
+  fix x :: "'a poly" show "x \<le> x"
+    unfolding less_eq_poly_def by simp
+next
+  fix x y z :: "'a poly"
+  assume "x \<le> y" and "y \<le> z" thus "x \<le> z"
+    unfolding less_eq_poly_def
+    apply safe
+    apply (drule (1) pos_poly_add)
+    apply (simp add: algebra_simps)
+    done
+next
+  fix x y :: "'a poly"
+  assume "x \<le> y" and "y \<le> x" thus "x = y"
+    unfolding less_eq_poly_def
+    apply safe
+    apply (drule (1) pos_poly_add)
+    apply simp
+    done
+next
+  fix x y z :: "'a poly"
+  assume "x \<le> y" thus "z + x \<le> z + y"
+    unfolding less_eq_poly_def
+    apply safe
+    apply (simp add: algebra_simps)
+    done
+next
+  fix x y :: "'a poly"
+  show "x \<le> y \<or> y \<le> x"
+    unfolding less_eq_poly_def
+    using pos_poly_total [of "x - y"]
+    by auto
+next
+  fix x y z :: "'a poly"
+  assume "x < y" and "0 < z"
+  thus "z * x < z * y"
+    unfolding less_poly_def
+    by (simp add: right_diff_distrib [symmetric] pos_poly_mult)
+next
+  fix x :: "'a poly"
+  show "\<bar>x\<bar> = (if x < 0 then - x else x)"
+    by (rule abs_poly_def)
+next
+  fix x :: "'a poly"
+  show "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
+    by (rule sgn_poly_def)
+qed
+
+end
+
+text {* TODO: Simplification rules for comparisons *}
+
+
+subsection {* Long division of polynomials *}
+
+definition
+  pdivmod_rel :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> bool"
+where
+  [code del]:
+  "pdivmod_rel x y q r \<longleftrightarrow>
+    x = q * y + r \<and> (if y = 0 then q = 0 else r = 0 \<or> degree r < degree y)"
+
+lemma pdivmod_rel_0:
+  "pdivmod_rel 0 y 0 0"
+  unfolding pdivmod_rel_def by simp
+
+lemma pdivmod_rel_by_0:
+  "pdivmod_rel x 0 0 x"
+  unfolding pdivmod_rel_def by simp
+
+lemma eq_zero_or_degree_less:
+  assumes "degree p \<le> n" and "coeff p n = 0"
+  shows "p = 0 \<or> degree p < n"
+proof (cases n)
+  case 0
+  with `degree p \<le> n` and `coeff p n = 0`
+  have "coeff p (degree p) = 0" by simp
+  then have "p = 0" by simp
+  then show ?thesis ..
+next
+  case (Suc m)
+  have "\<forall>i>n. coeff p i = 0"
+    using `degree p \<le> n` by (simp add: coeff_eq_0)
+  then have "\<forall>i\<ge>n. coeff p i = 0"
+    using `coeff p n = 0` by (simp add: le_less)
+  then have "\<forall>i>m. coeff p i = 0"
+    using `n = Suc m` by (simp add: less_eq_Suc_le)
+  then have "degree p \<le> m"
+    by (rule degree_le)
+  then have "degree p < n"
+    using `n = Suc m` by (simp add: less_Suc_eq_le)
+  then show ?thesis ..
+qed
+
+lemma pdivmod_rel_pCons:
+  assumes rel: "pdivmod_rel x y q r"
+  assumes y: "y \<noteq> 0"
+  assumes b: "b = coeff (pCons a r) (degree y) / coeff y (degree y)"
+  shows "pdivmod_rel (pCons a x) y (pCons b q) (pCons a r - smult b y)"
+    (is "pdivmod_rel ?x y ?q ?r")
+proof -
+  have x: "x = q * y + r" and r: "r = 0 \<or> degree r < degree y"
+    using assms unfolding pdivmod_rel_def by simp_all
+
+  have 1: "?x = ?q * y + ?r"
+    using b x by simp
+
+  have 2: "?r = 0 \<or> degree ?r < degree y"
+  proof (rule eq_zero_or_degree_less)
+    show "degree ?r \<le> degree y"
+    proof (rule degree_diff_le)
+      show "degree (pCons a r) \<le> degree y"
+        using r by auto
+      show "degree (smult b y) \<le> degree y"
+        by (rule degree_smult_le)
+    qed
+  next
+    show "coeff ?r (degree y) = 0"
+      using `y \<noteq> 0` unfolding b by simp
+  qed
+
+  from 1 2 show ?thesis
+    unfolding pdivmod_rel_def
+    using `y \<noteq> 0` by simp
+qed
+
+lemma pdivmod_rel_exists: "\<exists>q r. pdivmod_rel x y q r"
+apply (cases "y = 0")
+apply (fast intro!: pdivmod_rel_by_0)
+apply (induct x)
+apply (fast intro!: pdivmod_rel_0)
+apply (fast intro!: pdivmod_rel_pCons)
+done
+
+lemma pdivmod_rel_unique:
+  assumes 1: "pdivmod_rel x y q1 r1"
+  assumes 2: "pdivmod_rel x y q2 r2"
+  shows "q1 = q2 \<and> r1 = r2"
+proof (cases "y = 0")
+  assume "y = 0" with assms show ?thesis
+    by (simp add: pdivmod_rel_def)
+next
+  assume [simp]: "y \<noteq> 0"
+  from 1 have q1: "x = q1 * y + r1" and r1: "r1 = 0 \<or> degree r1 < degree y"
+    unfolding pdivmod_rel_def by simp_all
+  from 2 have q2: "x = q2 * y + r2" and r2: "r2 = 0 \<or> degree r2 < degree y"
+    unfolding pdivmod_rel_def by simp_all
+  from q1 q2 have q3: "(q1 - q2) * y = r2 - r1"
+    by (simp add: algebra_simps)
+  from r1 r2 have r3: "(r2 - r1) = 0 \<or> degree (r2 - r1) < degree y"
+    by (auto intro: degree_diff_less)
+
+  show "q1 = q2 \<and> r1 = r2"
+  proof (rule ccontr)
+    assume "\<not> (q1 = q2 \<and> r1 = r2)"
+    with q3 have "q1 \<noteq> q2" and "r1 \<noteq> r2" by auto
+    with r3 have "degree (r2 - r1) < degree y" by simp
+    also have "degree y \<le> degree (q1 - q2) + degree y" by simp
+    also have "\<dots> = degree ((q1 - q2) * y)"
+      using `q1 \<noteq> q2` by (simp add: degree_mult_eq)
+    also have "\<dots> = degree (r2 - r1)"
+      using q3 by simp
+    finally have "degree (r2 - r1) < degree (r2 - r1)" .
+    then show "False" by simp
+  qed
+qed
+
+lemma pdivmod_rel_0_iff: "pdivmod_rel 0 y q r \<longleftrightarrow> q = 0 \<and> r = 0"
+by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_0)
+
+lemma pdivmod_rel_by_0_iff: "pdivmod_rel x 0 q r \<longleftrightarrow> q = 0 \<and> r = x"
+by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_by_0)
+
+lemmas pdivmod_rel_unique_div =
+  pdivmod_rel_unique [THEN conjunct1, standard]
+
+lemmas pdivmod_rel_unique_mod =
+  pdivmod_rel_unique [THEN conjunct2, standard]
+
+instantiation poly :: (field) ring_div
+begin
+
+definition div_poly where
+  [code del]: "x div y = (THE q. \<exists>r. pdivmod_rel x y q r)"
+
+definition mod_poly where
+  [code del]: "x mod y = (THE r. \<exists>q. pdivmod_rel x y q r)"
+
+lemma div_poly_eq:
+  "pdivmod_rel x y q r \<Longrightarrow> x div y = q"
+unfolding div_poly_def
+by (fast elim: pdivmod_rel_unique_div)
+
+lemma mod_poly_eq:
+  "pdivmod_rel x y q r \<Longrightarrow> x mod y = r"
+unfolding mod_poly_def
+by (fast elim: pdivmod_rel_unique_mod)
+
+lemma pdivmod_rel:
+  "pdivmod_rel x y (x div y) (x mod y)"
+proof -
+  from pdivmod_rel_exists
+    obtain q r where "pdivmod_rel x y q r" by fast
+  thus ?thesis
+    by (simp add: div_poly_eq mod_poly_eq)
+qed
+
+instance proof
+  fix x y :: "'a poly"
+  show "x div y * y + x mod y = x"
+    using pdivmod_rel [of x y]
+    by (simp add: pdivmod_rel_def)
+next
+  fix x :: "'a poly"
+  have "pdivmod_rel x 0 0 x"
+    by (rule pdivmod_rel_by_0)
+  thus "x div 0 = 0"
+    by (rule div_poly_eq)
+next
+  fix y :: "'a poly"
+  have "pdivmod_rel 0 y 0 0"
+    by (rule pdivmod_rel_0)
+  thus "0 div y = 0"
+    by (rule div_poly_eq)
+next
+  fix x y z :: "'a poly"
+  assume "y \<noteq> 0"
+  hence "pdivmod_rel (x + z * y) y (z + x div y) (x mod y)"
+    using pdivmod_rel [of x y]
+    by (simp add: pdivmod_rel_def left_distrib)
+  thus "(x + z * y) div y = z + x div y"
+    by (rule div_poly_eq)
+qed
+
+end
+
+lemma degree_mod_less:
+  "y \<noteq> 0 \<Longrightarrow> x mod y = 0 \<or> degree (x mod y) < degree y"
+  using pdivmod_rel [of x y]
+  unfolding pdivmod_rel_def by simp
+
+lemma div_poly_less: "degree x < degree y \<Longrightarrow> x div y = 0"
+proof -
+  assume "degree x < degree y"
+  hence "pdivmod_rel x y 0 x"
+    by (simp add: pdivmod_rel_def)
+  thus "x div y = 0" by (rule div_poly_eq)
+qed
+
+lemma mod_poly_less: "degree x < degree y \<Longrightarrow> x mod y = x"
+proof -
+  assume "degree x < degree y"
+  hence "pdivmod_rel x y 0 x"
+    by (simp add: pdivmod_rel_def)
+  thus "x mod y = x" by (rule mod_poly_eq)
+qed
+
+lemma pdivmod_rel_smult_left:
+  "pdivmod_rel x y q r
+    \<Longrightarrow> pdivmod_rel (smult a x) y (smult a q) (smult a r)"
+  unfolding pdivmod_rel_def by (simp add: smult_add_right)
+
+lemma div_smult_left: "(smult a x) div y = smult a (x div y)"
+  by (rule div_poly_eq, rule pdivmod_rel_smult_left, rule pdivmod_rel)
+
+lemma mod_smult_left: "(smult a x) mod y = smult a (x mod y)"
+  by (rule mod_poly_eq, rule pdivmod_rel_smult_left, rule pdivmod_rel)
+
+lemma pdivmod_rel_smult_right:
+  "\<lbrakk>a \<noteq> 0; pdivmod_rel x y q r\<rbrakk>
+    \<Longrightarrow> pdivmod_rel x (smult a y) (smult (inverse a) q) r"
+  unfolding pdivmod_rel_def by simp
+
+lemma div_smult_right:
+  "a \<noteq> 0 \<Longrightarrow> x div (smult a y) = smult (inverse a) (x div y)"
+  by (rule div_poly_eq, erule pdivmod_rel_smult_right, rule pdivmod_rel)
+
+lemma mod_smult_right: "a \<noteq> 0 \<Longrightarrow> x mod (smult a y) = x mod y"
+  by (rule mod_poly_eq, erule pdivmod_rel_smult_right, rule pdivmod_rel)
+
+lemma pdivmod_rel_mult:
+  "\<lbrakk>pdivmod_rel x y q r; pdivmod_rel q z q' r'\<rbrakk>
+    \<Longrightarrow> pdivmod_rel x (y * z) q' (y * r' + r)"
+apply (cases "z = 0", simp add: pdivmod_rel_def)
+apply (cases "y = 0", simp add: pdivmod_rel_by_0_iff pdivmod_rel_0_iff)
+apply (cases "r = 0")
+apply (cases "r' = 0")
+apply (simp add: pdivmod_rel_def)
+apply (simp add: pdivmod_rel_def ring_simps degree_mult_eq)
+apply (cases "r' = 0")
+apply (simp add: pdivmod_rel_def degree_mult_eq)
+apply (simp add: pdivmod_rel_def ring_simps)
+apply (simp add: degree_mult_eq degree_add_less)
+done
+
+lemma poly_div_mult_right:
+  fixes x y z :: "'a::field poly"
+  shows "x div (y * z) = (x div y) div z"
+  by (rule div_poly_eq, rule pdivmod_rel_mult, (rule pdivmod_rel)+)
+
+lemma poly_mod_mult_right:
+  fixes x y z :: "'a::field poly"
+  shows "x mod (y * z) = y * (x div y mod z) + x mod y"
+  by (rule mod_poly_eq, rule pdivmod_rel_mult, (rule pdivmod_rel)+)
+
+lemma mod_pCons:
+  fixes a and x
+  assumes y: "y \<noteq> 0"
+  defines b: "b \<equiv> coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)"
+  shows "(pCons a x) mod y = (pCons a (x mod y) - smult b y)"
+unfolding b
+apply (rule mod_poly_eq)
+apply (rule pdivmod_rel_pCons [OF pdivmod_rel y refl])
+done
+
+
+subsection {* Evaluation of polynomials *}
+
+definition
+  poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a" where
+  "poly = poly_rec (\<lambda>x. 0) (\<lambda>a p f x. a + x * f x)"
+
+lemma poly_0 [simp]: "poly 0 x = 0"
+  unfolding poly_def by (simp add: poly_rec_0)
+
+lemma poly_pCons [simp]: "poly (pCons a p) x = a + x * poly p x"
+  unfolding poly_def by (simp add: poly_rec_pCons)
+
+lemma poly_1 [simp]: "poly 1 x = 1"
+  unfolding one_poly_def by simp
+
+lemma poly_monom:
+  fixes a x :: "'a::{comm_semiring_1,recpower}"
+  shows "poly (monom a n) x = a * x ^ n"
+  by (induct n, simp add: monom_0, simp add: monom_Suc power_Suc mult_ac)
+
+lemma poly_add [simp]: "poly (p + q) x = poly p x + poly q x"
+  apply (induct p arbitrary: q, simp)
+  apply (case_tac q, simp, simp add: algebra_simps)
+  done
+
+lemma poly_minus [simp]:
+  fixes x :: "'a::comm_ring"
+  shows "poly (- p) x = - poly p x"
+  by (induct p, simp_all)
+
+lemma poly_diff [simp]:
+  fixes x :: "'a::comm_ring"
+  shows "poly (p - q) x = poly p x - poly q x"
+  by (simp add: diff_minus)
+
+lemma poly_setsum: "poly (\<Sum>k\<in>A. p k) x = (\<Sum>k\<in>A. poly (p k) x)"
+  by (cases "finite A", induct set: finite, simp_all)
+
+lemma poly_smult [simp]: "poly (smult a p) x = a * poly p x"
+  by (induct p, simp, simp add: algebra_simps)
+
+lemma poly_mult [simp]: "poly (p * q) x = poly p x * poly q x"
+  by (induct p, simp_all, simp add: algebra_simps)
+
+lemma poly_power [simp]:
+  fixes p :: "'a::{comm_semiring_1,recpower} poly"
+  shows "poly (p ^ n) x = poly p x ^ n"
+  by (induct n, simp, simp add: power_Suc)
+
+
+subsection {* Synthetic division *}
+
+text {*
+  Synthetic division is simply division by the
+  linear polynomial @{term "x - c"}.
+*}
+
+definition
+  synthetic_divmod :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly \<times> 'a"
+where [code del]:
+  "synthetic_divmod p c =
+    poly_rec (0, 0) (\<lambda>a p (q, r). (pCons r q, a + c * r)) p"
+
+definition
+  synthetic_div :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"
+where
+  "synthetic_div p c = fst (synthetic_divmod p c)"
+
+lemma synthetic_divmod_0 [simp]:
+  "synthetic_divmod 0 c = (0, 0)"
+  unfolding synthetic_divmod_def
+  by (simp add: poly_rec_0)
+
+lemma synthetic_divmod_pCons [simp]:
+  "synthetic_divmod (pCons a p) c =
+    (\<lambda>(q, r). (pCons r q, a + c * r)) (synthetic_divmod p c)"
+  unfolding synthetic_divmod_def
+  by (simp add: poly_rec_pCons)
+
+lemma snd_synthetic_divmod: "snd (synthetic_divmod p c) = poly p c"
+  by (induct p, simp, simp add: split_def)
+
+lemma synthetic_div_0 [simp]: "synthetic_div 0 c = 0"
+  unfolding synthetic_div_def by simp
+
+lemma synthetic_div_pCons [simp]:
+  "synthetic_div (pCons a p) c = pCons (poly p c) (synthetic_div p c)"
+  unfolding synthetic_div_def
+  by (simp add: split_def snd_synthetic_divmod)
+
+lemma synthetic_div_eq_0_iff:
+  "synthetic_div p c = 0 \<longleftrightarrow> degree p = 0"
+  by (induct p, simp, case_tac p, simp)
+
+lemma degree_synthetic_div:
+  "degree (synthetic_div p c) = degree p - 1"
+  by (induct p, simp, simp add: synthetic_div_eq_0_iff)
+
+lemma synthetic_div_correct:
+  "p + smult c (synthetic_div p c) = pCons (poly p c) (synthetic_div p c)"
+  by (induct p) simp_all
+
+lemma synthetic_div_unique_lemma: "smult c p = pCons a p \<Longrightarrow> p = 0"
+by (induct p arbitrary: a) simp_all
+
+lemma synthetic_div_unique:
+  "p + smult c q = pCons r q \<Longrightarrow> r = poly p c \<and> q = synthetic_div p c"
+apply (induct p arbitrary: q r)
+apply (simp, frule synthetic_div_unique_lemma, simp)
+apply (case_tac q, force)
+done
+
+lemma synthetic_div_correct':
+  fixes c :: "'a::comm_ring_1"
+  shows "[:-c, 1:] * synthetic_div p c + [:poly p c:] = p"
+  using synthetic_div_correct [of p c]
+  by (simp add: algebra_simps)
+
+lemma poly_eq_0_iff_dvd:
+  fixes c :: "'a::idom"
+  shows "poly p c = 0 \<longleftrightarrow> [:-c, 1:] dvd p"
+proof
+  assume "poly p c = 0"
+  with synthetic_div_correct' [of c p]
+  have "p = [:-c, 1:] * synthetic_div p c" by simp
+  then show "[:-c, 1:] dvd p" ..
+next
+  assume "[:-c, 1:] dvd p"
+  then obtain k where "p = [:-c, 1:] * k" by (rule dvdE)
+  then show "poly p c = 0" by simp
+qed
+
+lemma dvd_iff_poly_eq_0:
+  fixes c :: "'a::idom"
+  shows "[:c, 1:] dvd p \<longleftrightarrow> poly p (-c) = 0"
+  by (simp add: poly_eq_0_iff_dvd)
+
+lemma poly_roots_finite:
+  fixes p :: "'a::idom poly"
+  shows "p \<noteq> 0 \<Longrightarrow> finite {x. poly p x = 0}"
+proof (induct n \<equiv> "degree p" arbitrary: p)
+  case (0 p)
+  then obtain a where "a \<noteq> 0" and "p = [:a:]"
+    by (cases p, simp split: if_splits)
+  then show "finite {x. poly p x = 0}" by simp
+next
+  case (Suc n p)
+  show "finite {x. poly p x = 0}"
+  proof (cases "\<exists>x. poly p x = 0")
+    case False
+    then show "finite {x. poly p x = 0}" by simp
+  next
+    case True
+    then obtain a where "poly p a = 0" ..
+    then have "[:-a, 1:] dvd p" by (simp only: poly_eq_0_iff_dvd)
+    then obtain k where k: "p = [:-a, 1:] * k" ..
+    with `p \<noteq> 0` have "k \<noteq> 0" by auto
+    with k have "degree p = Suc (degree k)"
+      by (simp add: degree_mult_eq del: mult_pCons_left)
+    with `Suc n = degree p` have "n = degree k" by simp
+    with `k \<noteq> 0` have "finite {x. poly k x = 0}" by (rule Suc.hyps)
+    then have "finite (insert a {x. poly k x = 0})" by simp
+    then show "finite {x. poly p x = 0}"
+      by (simp add: k uminus_add_conv_diff Collect_disj_eq
+               del: mult_pCons_left)
+  qed
+qed
+
+lemma poly_zero:
+  fixes p :: "'a::{idom,ring_char_0} poly"
+  shows "poly p = poly 0 \<longleftrightarrow> p = 0"
+apply (cases "p = 0", simp_all)
+apply (drule poly_roots_finite)
+apply (auto simp add: infinite_UNIV_char_0)
+done
+
+lemma poly_eq_iff:
+  fixes p q :: "'a::{idom,ring_char_0} poly"
+  shows "poly p = poly q \<longleftrightarrow> p = q"
+  using poly_zero [of "p - q"]
+  by (simp add: expand_fun_eq)
+
+
+subsection {* Composition of polynomials *}
+
+definition
+  pcompose :: "'a::comm_semiring_0 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
+where
+  "pcompose p q = poly_rec 0 (\<lambda>a _ c. [:a:] + q * c) p"
+
+lemma pcompose_0 [simp]: "pcompose 0 q = 0"
+  unfolding pcompose_def by (simp add: poly_rec_0)
+
+lemma pcompose_pCons:
+  "pcompose (pCons a p) q = [:a:] + q * pcompose p q"
+  unfolding pcompose_def by (simp add: poly_rec_pCons)
+
+lemma poly_pcompose: "poly (pcompose p q) x = poly p (poly q x)"
+  by (induct p) (simp_all add: pcompose_pCons)
+
+lemma degree_pcompose_le:
+  "degree (pcompose p q) \<le> degree p * degree q"
+apply (induct p, simp)
+apply (simp add: pcompose_pCons, clarify)
+apply (rule degree_add_le, simp)
+apply (rule order_trans [OF degree_mult_le], simp)
+done
+
+
+subsection {* Order of polynomial roots *}
+
+definition
+  order :: "'a::idom \<Rightarrow> 'a poly \<Rightarrow> nat"
+where
+  [code del]:
+  "order a p = (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)"
+
+lemma coeff_linear_power:
+  fixes a :: "'a::comm_semiring_1"
+  shows "coeff ([:a, 1:] ^ n) n = 1"
+apply (induct n, simp_all)
+apply (subst coeff_eq_0)
+apply (auto intro: le_less_trans degree_power_le)
+done
+
+lemma degree_linear_power:
+  fixes a :: "'a::comm_semiring_1"
+  shows "degree ([:a, 1:] ^ n) = n"
+apply (rule order_antisym)
+apply (rule ord_le_eq_trans [OF degree_power_le], simp)
+apply (rule le_degree, simp add: coeff_linear_power)
+done
+
+lemma order_1: "[:-a, 1:] ^ order a p dvd p"
+apply (cases "p = 0", simp)
+apply (cases "order a p", simp)
+apply (subgoal_tac "nat < (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)")
+apply (drule not_less_Least, simp)
+apply (fold order_def, simp)
+done
+
+lemma order_2: "p \<noteq> 0 \<Longrightarrow> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
+unfolding order_def
+apply (rule LeastI_ex)
+apply (rule_tac x="degree p" in exI)
+apply (rule notI)
+apply (drule (1) dvd_imp_degree_le)
+apply (simp only: degree_linear_power)
+done
+
+lemma order:
+  "p \<noteq> 0 \<Longrightarrow> [:-a, 1:] ^ order a p dvd p \<and> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
+by (rule conjI [OF order_1 order_2])
+
+lemma order_degree:
+  assumes p: "p \<noteq> 0"
+  shows "order a p \<le> degree p"
+proof -
+  have "order a p = degree ([:-a, 1:] ^ order a p)"
+    by (simp only: degree_linear_power)
+  also have "\<dots> \<le> degree p"
+    using order_1 p by (rule dvd_imp_degree_le)
+  finally show ?thesis .
+qed
+
+lemma order_root: "poly p a = 0 \<longleftrightarrow> p = 0 \<or> order a p \<noteq> 0"
+apply (cases "p = 0", simp_all)
+apply (rule iffI)
+apply (rule ccontr, simp)
+apply (frule order_2 [where a=a], simp)
+apply (simp add: poly_eq_0_iff_dvd)
+apply (simp add: poly_eq_0_iff_dvd)
+apply (simp only: order_def)
+apply (drule not_less_Least, simp)
+done
+
+
+subsection {* Configuration of the code generator *}
+
+code_datatype "0::'a::zero poly" pCons
+
+declare pCons_0_0 [code post]
+
+instantiation poly :: ("{zero,eq}") eq
+begin
+
+definition [code del]:
+  "eq_class.eq (p::'a poly) q \<longleftrightarrow> p = q"
+
+instance
+  by default (rule eq_poly_def)
+
+end
+
+lemma eq_poly_code [code]:
+  "eq_class.eq (0::_ poly) (0::_ poly) \<longleftrightarrow> True"
+  "eq_class.eq (0::_ poly) (pCons b q) \<longleftrightarrow> eq_class.eq 0 b \<and> eq_class.eq 0 q"
+  "eq_class.eq (pCons a p) (0::_ poly) \<longleftrightarrow> eq_class.eq a 0 \<and> eq_class.eq p 0"
+  "eq_class.eq (pCons a p) (pCons b q) \<longleftrightarrow> eq_class.eq a b \<and> eq_class.eq p q"
+unfolding eq by simp_all
+
+lemmas coeff_code [code] =
+  coeff_0 coeff_pCons_0 coeff_pCons_Suc
+
+lemmas degree_code [code] =
+  degree_0 degree_pCons_eq_if
+
+lemmas monom_poly_code [code] =
+  monom_0 monom_Suc
+
+lemma add_poly_code [code]:
+  "0 + q = (q :: _ poly)"
+  "p + 0 = (p :: _ poly)"
+  "pCons a p + pCons b q = pCons (a + b) (p + q)"
+by simp_all
+
+lemma minus_poly_code [code]:
+  "- 0 = (0 :: _ poly)"
+  "- pCons a p = pCons (- a) (- p)"
+by simp_all
+
+lemma diff_poly_code [code]:
+  "0 - q = (- q :: _ poly)"
+  "p - 0 = (p :: _ poly)"
+  "pCons a p - pCons b q = pCons (a - b) (p - q)"
+by simp_all
+
+lemmas smult_poly_code [code] =
+  smult_0_right smult_pCons
+
+lemma mult_poly_code [code]:
+  "0 * q = (0 :: _ poly)"
+  "pCons a p * q = smult a q + pCons 0 (p * q)"
+by simp_all
+
+lemmas poly_code [code] =
+  poly_0 poly_pCons
+
+lemmas synthetic_divmod_code [code] =
+  synthetic_divmod_0 synthetic_divmod_pCons
+
+text {* code generator setup for div and mod *}
+
+definition
+  pdivmod :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<times> 'a poly"
+where
+  [code del]: "pdivmod x y = (x div y, x mod y)"
+
+lemma div_poly_code [code]: "x div y = fst (pdivmod x y)"
+  unfolding pdivmod_def by simp
+
+lemma mod_poly_code [code]: "x mod y = snd (pdivmod x y)"
+  unfolding pdivmod_def by simp
+
+lemma pdivmod_0 [code]: "pdivmod 0 y = (0, 0)"
+  unfolding pdivmod_def by simp
+
+lemma pdivmod_pCons [code]:
+  "pdivmod (pCons a x) y =
+    (if y = 0 then (0, pCons a x) else
+      (let (q, r) = pdivmod x y;
+           b = coeff (pCons a r) (degree y) / coeff y (degree y)
+        in (pCons b q, pCons a r - smult b y)))"
+apply (simp add: pdivmod_def Let_def, safe)
+apply (rule div_poly_eq)
+apply (erule pdivmod_rel_pCons [OF pdivmod_rel _ refl])
+apply (rule mod_poly_eq)
+apply (erule pdivmod_rel_pCons [OF pdivmod_rel _ refl])
+done
+
+end
--- a/src/HOL/Polynomial.thy	Thu Feb 19 23:55:10 2009 +1100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1441 +0,0 @@
-(*  Title:      HOL/Polynomial.thy
-    Author:     Brian Huffman
-                Based on an earlier development by Clemens Ballarin
-*)
-
-header {* Univariate Polynomials *}
-
-theory Polynomial
-imports Plain SetInterval Main
-begin
-
-subsection {* Definition of type @{text poly} *}
-
-typedef (Poly) 'a poly = "{f::nat \<Rightarrow> 'a::zero. \<exists>n. \<forall>i>n. f i = 0}"
-  morphisms coeff Abs_poly
-  by auto
-
-lemma expand_poly_eq: "p = q \<longleftrightarrow> (\<forall>n. coeff p n = coeff q n)"
-by (simp add: coeff_inject [symmetric] expand_fun_eq)
-
-lemma poly_ext: "(\<And>n. coeff p n = coeff q n) \<Longrightarrow> p = q"
-by (simp add: expand_poly_eq)
-
-
-subsection {* Degree of a polynomial *}
-
-definition
-  degree :: "'a::zero poly \<Rightarrow> nat" where
-  "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)"
-
-lemma coeff_eq_0: "degree p < n \<Longrightarrow> coeff p n = 0"
-proof -
-  have "coeff p \<in> Poly"
-    by (rule coeff)
-  hence "\<exists>n. \<forall>i>n. coeff p i = 0"
-    unfolding Poly_def by simp
-  hence "\<forall>i>degree p. coeff p i = 0"
-    unfolding degree_def by (rule LeastI_ex)
-  moreover assume "degree p < n"
-  ultimately show ?thesis by simp
-qed
-
-lemma le_degree: "coeff p n \<noteq> 0 \<Longrightarrow> n \<le> degree p"
-  by (erule contrapos_np, rule coeff_eq_0, simp)
-
-lemma degree_le: "\<forall>i>n. coeff p i = 0 \<Longrightarrow> degree p \<le> n"
-  unfolding degree_def by (erule Least_le)
-
-lemma less_degree_imp: "n < degree p \<Longrightarrow> \<exists>i>n. coeff p i \<noteq> 0"
-  unfolding degree_def by (drule not_less_Least, simp)
-
-
-subsection {* The zero polynomial *}
-
-instantiation poly :: (zero) zero
-begin
-
-definition
-  zero_poly_def: "0 = Abs_poly (\<lambda>n. 0)"
-
-instance ..
-end
-
-lemma coeff_0 [simp]: "coeff 0 n = 0"
-  unfolding zero_poly_def
-  by (simp add: Abs_poly_inverse Poly_def)
-
-lemma degree_0 [simp]: "degree 0 = 0"
-  by (rule order_antisym [OF degree_le le0]) simp
-
-lemma leading_coeff_neq_0:
-  assumes "p \<noteq> 0" shows "coeff p (degree p) \<noteq> 0"
-proof (cases "degree p")
-  case 0
-  from `p \<noteq> 0` have "\<exists>n. coeff p n \<noteq> 0"
-    by (simp add: expand_poly_eq)
-  then obtain n where "coeff p n \<noteq> 0" ..
-  hence "n \<le> degree p" by (rule le_degree)
-  with `coeff p n \<noteq> 0` and `degree p = 0`
-  show "coeff p (degree p) \<noteq> 0" by simp
-next
-  case (Suc n)
-  from `degree p = Suc n` have "n < degree p" by simp
-  hence "\<exists>i>n. coeff p i \<noteq> 0" by (rule less_degree_imp)
-  then obtain i where "n < i" and "coeff p i \<noteq> 0" by fast
-  from `degree p = Suc n` and `n < i` have "degree p \<le> i" by simp
-  also from `coeff p i \<noteq> 0` have "i \<le> degree p" by (rule le_degree)
-  finally have "degree p = i" .
-  with `coeff p i \<noteq> 0` show "coeff p (degree p) \<noteq> 0" by simp
-qed
-
-lemma leading_coeff_0_iff [simp]: "coeff p (degree p) = 0 \<longleftrightarrow> p = 0"
-  by (cases "p = 0", simp, simp add: leading_coeff_neq_0)
-
-
-subsection {* List-style constructor for polynomials *}
-
-definition
-  pCons :: "'a::zero \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
-where
-  [code del]: "pCons a p = Abs_poly (nat_case a (coeff p))"
-
-syntax
-  "_poly" :: "args \<Rightarrow> 'a poly"  ("[:(_):]")
-
-translations
-  "[:x, xs:]" == "CONST pCons x [:xs:]"
-  "[:x:]" == "CONST pCons x 0"
-
-lemma Poly_nat_case: "f \<in> Poly \<Longrightarrow> nat_case a f \<in> Poly"
-  unfolding Poly_def by (auto split: nat.split)
-
-lemma coeff_pCons:
-  "coeff (pCons a p) = nat_case a (coeff p)"
-  unfolding pCons_def
-  by (simp add: Abs_poly_inverse Poly_nat_case coeff)
-
-lemma coeff_pCons_0 [simp]: "coeff (pCons a p) 0 = a"
-  by (simp add: coeff_pCons)
-
-lemma coeff_pCons_Suc [simp]: "coeff (pCons a p) (Suc n) = coeff p n"
-  by (simp add: coeff_pCons)
-
-lemma degree_pCons_le: "degree (pCons a p) \<le> Suc (degree p)"
-by (rule degree_le, simp add: coeff_eq_0 coeff_pCons split: nat.split)
-
-lemma degree_pCons_eq:
-  "p \<noteq> 0 \<Longrightarrow> degree (pCons a p) = Suc (degree p)"
-apply (rule order_antisym [OF degree_pCons_le])
-apply (rule le_degree, simp)
-done
-
-lemma degree_pCons_0: "degree (pCons a 0) = 0"
-apply (rule order_antisym [OF _ le0])
-apply (rule degree_le, simp add: coeff_pCons split: nat.split)
-done
-
-lemma degree_pCons_eq_if [simp]:
-  "degree (pCons a p) = (if p = 0 then 0 else Suc (degree p))"
-apply (cases "p = 0", simp_all)
-apply (rule order_antisym [OF _ le0])
-apply (rule degree_le, simp add: coeff_pCons split: nat.split)
-apply (rule order_antisym [OF degree_pCons_le])
-apply (rule le_degree, simp)
-done
-
-lemma pCons_0_0 [simp]: "pCons 0 0 = 0"
-by (rule poly_ext, simp add: coeff_pCons split: nat.split)
-
-lemma pCons_eq_iff [simp]:
-  "pCons a p = pCons b q \<longleftrightarrow> a = b \<and> p = q"
-proof (safe)
-  assume "pCons a p = pCons b q"
-  then have "coeff (pCons a p) 0 = coeff (pCons b q) 0" by simp
-  then show "a = b" by simp
-next
-  assume "pCons a p = pCons b q"
-  then have "\<forall>n. coeff (pCons a p) (Suc n) =
-                 coeff (pCons b q) (Suc n)" by simp
-  then show "p = q" by (simp add: expand_poly_eq)
-qed
-
-lemma pCons_eq_0_iff [simp]: "pCons a p = 0 \<longleftrightarrow> a = 0 \<and> p = 0"
-  using pCons_eq_iff [of a p 0 0] by simp
-
-lemma Poly_Suc: "f \<in> Poly \<Longrightarrow> (\<lambda>n. f (Suc n)) \<in> Poly"
-  unfolding Poly_def
-  by (clarify, rule_tac x=n in exI, simp)
-
-lemma pCons_cases [cases type: poly]:
-  obtains (pCons) a q where "p = pCons a q"
-proof
-  show "p = pCons (coeff p 0) (Abs_poly (\<lambda>n. coeff p (Suc n)))"
-    by (rule poly_ext)
-       (simp add: Abs_poly_inverse Poly_Suc coeff coeff_pCons
-             split: nat.split)
-qed
-
-lemma pCons_induct [case_names 0 pCons, induct type: poly]:
-  assumes zero: "P 0"
-  assumes pCons: "\<And>a p. P p \<Longrightarrow> P (pCons a p)"
-  shows "P p"
-proof (induct p rule: measure_induct_rule [where f=degree])
-  case (less p)
-  obtain a q where "p = pCons a q" by (rule pCons_cases)
-  have "P q"
-  proof (cases "q = 0")
-    case True
-    then show "P q" by (simp add: zero)
-  next
-    case False
-    then have "degree (pCons a q) = Suc (degree q)"
-      by (rule degree_pCons_eq)
-    then have "degree q < degree p"
-      using `p = pCons a q` by simp
-    then show "P q"
-      by (rule less.hyps)
-  qed
-  then have "P (pCons a q)"
-    by (rule pCons)
-  then show ?case
-    using `p = pCons a q` by simp
-qed
-
-
-subsection {* Recursion combinator for polynomials *}
-
-function
-  poly_rec :: "'b \<Rightarrow> ('a::zero \<Rightarrow> 'a poly \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a poly \<Rightarrow> 'b"
-where
-  poly_rec_pCons_eq_if [simp del, code del]:
-    "poly_rec z f (pCons a p) = f a p (if p = 0 then z else poly_rec z f p)"
-by (case_tac x, rename_tac q, case_tac q, auto)
-
-termination poly_rec
-by (relation "measure (degree \<circ> snd \<circ> snd)", simp)
-   (simp add: degree_pCons_eq)
-
-lemma poly_rec_0:
-  "f 0 0 z = z \<Longrightarrow> poly_rec z f 0 = z"
-  using poly_rec_pCons_eq_if [of z f 0 0] by simp
-
-lemma poly_rec_pCons:
-  "f 0 0 z = z \<Longrightarrow> poly_rec z f (pCons a p) = f a p (poly_rec z f p)"
-  by (simp add: poly_rec_pCons_eq_if poly_rec_0)
-
-
-subsection {* Monomials *}
-
-definition
-  monom :: "'a \<Rightarrow> nat \<Rightarrow> 'a::zero poly" where
-  "monom a m = Abs_poly (\<lambda>n. if m = n then a else 0)"
-
-lemma coeff_monom [simp]: "coeff (monom a m) n = (if m=n then a else 0)"
-  unfolding monom_def
-  by (subst Abs_poly_inverse, auto simp add: Poly_def)
-
-lemma monom_0: "monom a 0 = pCons a 0"
-  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
-
-lemma monom_Suc: "monom a (Suc n) = pCons 0 (monom a n)"
-  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
-
-lemma monom_eq_0 [simp]: "monom 0 n = 0"
-  by (rule poly_ext) simp
-
-lemma monom_eq_0_iff [simp]: "monom a n = 0 \<longleftrightarrow> a = 0"
-  by (simp add: expand_poly_eq)
-
-lemma monom_eq_iff [simp]: "monom a n = monom b n \<longleftrightarrow> a = b"
-  by (simp add: expand_poly_eq)
-
-lemma degree_monom_le: "degree (monom a n) \<le> n"
-  by (rule degree_le, simp)
-
-lemma degree_monom_eq: "a \<noteq> 0 \<Longrightarrow> degree (monom a n) = n"
-  apply (rule order_antisym [OF degree_monom_le])
-  apply (rule le_degree, simp)
-  done
-
-
-subsection {* Addition and subtraction *}
-
-instantiation poly :: (comm_monoid_add) comm_monoid_add
-begin
-
-definition
-  plus_poly_def [code del]:
-    "p + q = Abs_poly (\<lambda>n. coeff p n + coeff q n)"
-
-lemma Poly_add:
-  fixes f g :: "nat \<Rightarrow> 'a"
-  shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. f n + g n) \<in> Poly"
-  unfolding Poly_def
-  apply (clarify, rename_tac m n)
-  apply (rule_tac x="max m n" in exI, simp)
-  done
-
-lemma coeff_add [simp]:
-  "coeff (p + q) n = coeff p n + coeff q n"
-  unfolding plus_poly_def
-  by (simp add: Abs_poly_inverse coeff Poly_add)
-
-instance proof
-  fix p q r :: "'a poly"
-  show "(p + q) + r = p + (q + r)"
-    by (simp add: expand_poly_eq add_assoc)
-  show "p + q = q + p"
-    by (simp add: expand_poly_eq add_commute)
-  show "0 + p = p"
-    by (simp add: expand_poly_eq)
-qed
-
-end
-
-instance poly :: (cancel_comm_monoid_add) cancel_comm_monoid_add
-proof
-  fix p q r :: "'a poly"
-  assume "p + q = p + r" thus "q = r"
-    by (simp add: expand_poly_eq)
-qed
-
-instantiation poly :: (ab_group_add) ab_group_add
-begin
-
-definition
-  uminus_poly_def [code del]:
-    "- p = Abs_poly (\<lambda>n. - coeff p n)"
-
-definition
-  minus_poly_def [code del]:
-    "p - q = Abs_poly (\<lambda>n. coeff p n - coeff q n)"
-
-lemma Poly_minus:
-  fixes f :: "nat \<Rightarrow> 'a"
-  shows "f \<in> Poly \<Longrightarrow> (\<lambda>n. - f n) \<in> Poly"
-  unfolding Poly_def by simp
-
-lemma Poly_diff:
-  fixes f g :: "nat \<Rightarrow> 'a"
-  shows "\<lbrakk>f \<in> Poly; g \<in> Poly\<rbrakk> \<Longrightarrow> (\<lambda>n. f n - g n) \<in> Poly"
-  unfolding diff_minus by (simp add: Poly_add Poly_minus)
-
-lemma coeff_minus [simp]: "coeff (- p) n = - coeff p n"
-  unfolding uminus_poly_def
-  by (simp add: Abs_poly_inverse coeff Poly_minus)
-
-lemma coeff_diff [simp]:
-  "coeff (p - q) n = coeff p n - coeff q n"
-  unfolding minus_poly_def
-  by (simp add: Abs_poly_inverse coeff Poly_diff)
-
-instance proof
-  fix p q :: "'a poly"
-  show "- p + p = 0"
-    by (simp add: expand_poly_eq)
-  show "p - q = p + - q"
-    by (simp add: expand_poly_eq diff_minus)
-qed
-
-end
-
-lemma add_pCons [simp]:
-  "pCons a p + pCons b q = pCons (a + b) (p + q)"
-  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
-
-lemma minus_pCons [simp]:
-  "- pCons a p = pCons (- a) (- p)"
-  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
-
-lemma diff_pCons [simp]:
-  "pCons a p - pCons b q = pCons (a - b) (p - q)"
-  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
-
-lemma degree_add_le_max: "degree (p + q) \<le> max (degree p) (degree q)"
-  by (rule degree_le, auto simp add: coeff_eq_0)
-
-lemma degree_add_le:
-  "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p + q) \<le> n"
-  by (auto intro: order_trans degree_add_le_max)
-
-lemma degree_add_less:
-  "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p + q) < n"
-  by (auto intro: le_less_trans degree_add_le_max)
-
-lemma degree_add_eq_right:
-  "degree p < degree q \<Longrightarrow> degree (p + q) = degree q"
-  apply (cases "q = 0", simp)
-  apply (rule order_antisym)
-  apply (simp add: degree_add_le)
-  apply (rule le_degree)
-  apply (simp add: coeff_eq_0)
-  done
-
-lemma degree_add_eq_left:
-  "degree q < degree p \<Longrightarrow> degree (p + q) = degree p"
-  using degree_add_eq_right [of q p]
-  by (simp add: add_commute)
-
-lemma degree_minus [simp]: "degree (- p) = degree p"
-  unfolding degree_def by simp
-
-lemma degree_diff_le_max: "degree (p - q) \<le> max (degree p) (degree q)"
-  using degree_add_le [where p=p and q="-q"]
-  by (simp add: diff_minus)
-
-lemma degree_diff_le:
-  "\<lbrakk>degree p \<le> n; degree q \<le> n\<rbrakk> \<Longrightarrow> degree (p - q) \<le> n"
-  by (simp add: diff_minus degree_add_le)
-
-lemma degree_diff_less:
-  "\<lbrakk>degree p < n; degree q < n\<rbrakk> \<Longrightarrow> degree (p - q) < n"
-  by (simp add: diff_minus degree_add_less)
-
-lemma add_monom: "monom a n + monom b n = monom (a + b) n"
-  by (rule poly_ext) simp
-
-lemma diff_monom: "monom a n - monom b n = monom (a - b) n"
-  by (rule poly_ext) simp
-
-lemma minus_monom: "- monom a n = monom (-a) n"
-  by (rule poly_ext) simp
-
-lemma coeff_setsum: "coeff (\<Sum>x\<in>A. p x) i = (\<Sum>x\<in>A. coeff (p x) i)"
-  by (cases "finite A", induct set: finite, simp_all)
-
-lemma monom_setsum: "monom (\<Sum>x\<in>A. a x) n = (\<Sum>x\<in>A. monom (a x) n)"
-  by (rule poly_ext) (simp add: coeff_setsum)
-
-
-subsection {* Multiplication by a constant *}
-
-definition
-  smult :: "'a::comm_semiring_0 \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where
-  "smult a p = Abs_poly (\<lambda>n. a * coeff p n)"
-
-lemma Poly_smult:
-  fixes f :: "nat \<Rightarrow> 'a::comm_semiring_0"
-  shows "f \<in> Poly \<Longrightarrow> (\<lambda>n. a * f n) \<in> Poly"
-  unfolding Poly_def
-  by (clarify, rule_tac x=n in exI, simp)
-
-lemma coeff_smult [simp]: "coeff (smult a p) n = a * coeff p n"
-  unfolding smult_def
-  by (simp add: Abs_poly_inverse Poly_smult coeff)
-
-lemma degree_smult_le: "degree (smult a p) \<le> degree p"
-  by (rule degree_le, simp add: coeff_eq_0)
-
-lemma smult_smult [simp]: "smult a (smult b p) = smult (a * b) p"
-  by (rule poly_ext, simp add: mult_assoc)
-
-lemma smult_0_right [simp]: "smult a 0 = 0"
-  by (rule poly_ext, simp)
-
-lemma smult_0_left [simp]: "smult 0 p = 0"
-  by (rule poly_ext, simp)
-
-lemma smult_1_left [simp]: "smult (1::'a::comm_semiring_1) p = p"
-  by (rule poly_ext, simp)
-
-lemma smult_add_right:
-  "smult a (p + q) = smult a p + smult a q"
-  by (rule poly_ext, simp add: algebra_simps)
-
-lemma smult_add_left:
-  "smult (a + b) p = smult a p + smult b p"
-  by (rule poly_ext, simp add: algebra_simps)
-
-lemma smult_minus_right [simp]:
-  "smult (a::'a::comm_ring) (- p) = - smult a p"
-  by (rule poly_ext, simp)
-
-lemma smult_minus_left [simp]:
-  "smult (- a::'a::comm_ring) p = - smult a p"
-  by (rule poly_ext, simp)
-
-lemma smult_diff_right:
-  "smult (a::'a::comm_ring) (p - q) = smult a p - smult a q"
-  by (rule poly_ext, simp add: algebra_simps)
-
-lemma smult_diff_left:
-  "smult (a - b::'a::comm_ring) p = smult a p - smult b p"
-  by (rule poly_ext, simp add: algebra_simps)
-
-lemmas smult_distribs =
-  smult_add_left smult_add_right
-  smult_diff_left smult_diff_right
-
-lemma smult_pCons [simp]:
-  "smult a (pCons b p) = pCons (a * b) (smult a p)"
-  by (rule poly_ext, simp add: coeff_pCons split: nat.split)
-
-lemma smult_monom: "smult a (monom b n) = monom (a * b) n"
-  by (induct n, simp add: monom_0, simp add: monom_Suc)
-
-lemma degree_smult_eq [simp]:
-  fixes a :: "'a::idom"
-  shows "degree (smult a p) = (if a = 0 then 0 else degree p)"
-  by (cases "a = 0", simp, simp add: degree_def)
-
-lemma smult_eq_0_iff [simp]:
-  fixes a :: "'a::idom"
-  shows "smult a p = 0 \<longleftrightarrow> a = 0 \<or> p = 0"
-  by (simp add: expand_poly_eq)
-
-
-subsection {* Multiplication of polynomials *}
-
-text {* TODO: move to SetInterval.thy *}
-lemma setsum_atMost_Suc_shift:
-  fixes f :: "nat \<Rightarrow> 'a::comm_monoid_add"
-  shows "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
-proof (induct n)
-  case 0 show ?case by simp
-next
-  case (Suc n) note IH = this
-  have "(\<Sum>i\<le>Suc (Suc n). f i) = (\<Sum>i\<le>Suc n. f i) + f (Suc (Suc n))"
-    by (rule setsum_atMost_Suc)
-  also have "(\<Sum>i\<le>Suc n. f i) = f 0 + (\<Sum>i\<le>n. f (Suc i))"
-    by (rule IH)
-  also have "f 0 + (\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) =
-             f 0 + ((\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)))"
-    by (rule add_assoc)
-  also have "(\<Sum>i\<le>n. f (Suc i)) + f (Suc (Suc n)) = (\<Sum>i\<le>Suc n. f (Suc i))"
-    by (rule setsum_atMost_Suc [symmetric])
-  finally show ?case .
-qed
-
-instantiation poly :: (comm_semiring_0) comm_semiring_0
-begin
-
-definition
-  times_poly_def [code del]:
-    "p * q = poly_rec 0 (\<lambda>a p pq. smult a q + pCons 0 pq) p"
-
-lemma mult_poly_0_left: "(0::'a poly) * q = 0"
-  unfolding times_poly_def by (simp add: poly_rec_0)
-
-lemma mult_pCons_left [simp]:
-  "pCons a p * q = smult a q + pCons 0 (p * q)"
-  unfolding times_poly_def by (simp add: poly_rec_pCons)
-
-lemma mult_poly_0_right: "p * (0::'a poly) = 0"
-  by (induct p, simp add: mult_poly_0_left, simp)
-
-lemma mult_pCons_right [simp]:
-  "p * pCons a q = smult a p + pCons 0 (p * q)"
-  by (induct p, simp add: mult_poly_0_left, simp add: algebra_simps)
-
-lemmas mult_poly_0 = mult_poly_0_left mult_poly_0_right
-
-lemma mult_smult_left [simp]: "smult a p * q = smult a (p * q)"
-  by (induct p, simp add: mult_poly_0, simp add: smult_add_right)
-
-lemma mult_smult_right [simp]: "p * smult a q = smult a (p * q)"
-  by (induct q, simp add: mult_poly_0, simp add: smult_add_right)
-
-lemma mult_poly_add_left:
-  fixes p q r :: "'a poly"
-  shows "(p + q) * r = p * r + q * r"
-  by (induct r, simp add: mult_poly_0,
-                simp add: smult_distribs algebra_simps)
-
-instance proof
-  fix p q r :: "'a poly"
-  show 0: "0 * p = 0"
-    by (rule mult_poly_0_left)
-  show "p * 0 = 0"
-    by (rule mult_poly_0_right)
-  show "(p + q) * r = p * r + q * r"
-    by (rule mult_poly_add_left)
-  show "(p * q) * r = p * (q * r)"
-    by (induct p, simp add: mult_poly_0, simp add: mult_poly_add_left)
-  show "p * q = q * p"
-    by (induct p, simp add: mult_poly_0, simp)
-qed
-
-end
-
-instance poly :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
-
-lemma coeff_mult:
-  "coeff (p * q) n = (\<Sum>i\<le>n. coeff p i * coeff q (n-i))"
-proof (induct p arbitrary: n)
-  case 0 show ?case by simp
-next
-  case (pCons a p n) thus ?case
-    by (cases n, simp, simp add: setsum_atMost_Suc_shift
-                            del: setsum_atMost_Suc)
-qed
-
-lemma degree_mult_le: "degree (p * q) \<le> degree p + degree q"
-apply (rule degree_le)
-apply (induct p)
-apply simp
-apply (simp add: coeff_eq_0 coeff_pCons split: nat.split)
-done
-
-lemma mult_monom: "monom a m * monom b n = monom (a * b) (m + n)"
-  by (induct m, simp add: monom_0 smult_monom, simp add: monom_Suc)
-
-
-subsection {* The unit polynomial and exponentiation *}
-
-instantiation poly :: (comm_semiring_1) comm_semiring_1
-begin
-
-definition
-  one_poly_def:
-    "1 = pCons 1 0"
-
-instance proof
-  fix p :: "'a poly" show "1 * p = p"
-    unfolding one_poly_def
-    by simp
-next
-  show "0 \<noteq> (1::'a poly)"
-    unfolding one_poly_def by simp
-qed
-
-end
-
-instance poly :: (comm_semiring_1_cancel) comm_semiring_1_cancel ..
-
-lemma coeff_1 [simp]: "coeff 1 n = (if n = 0 then 1 else 0)"
-  unfolding one_poly_def
-  by (simp add: coeff_pCons split: nat.split)
-
-lemma degree_1 [simp]: "degree 1 = 0"
-  unfolding one_poly_def
-  by (rule degree_pCons_0)
-
-text {* Lemmas about divisibility *}
-
-lemma dvd_smult: "p dvd q \<Longrightarrow> p dvd smult a q"
-proof -
-  assume "p dvd q"
-  then obtain k where "q = p * k" ..
-  then have "smult a q = p * smult a k" by simp
-  then show "p dvd smult a q" ..
-qed
-
-lemma dvd_smult_cancel:
-  fixes a :: "'a::field"
-  shows "p dvd smult a q \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> p dvd q"
-  by (drule dvd_smult [where a="inverse a"]) simp
-
-lemma dvd_smult_iff:
-  fixes a :: "'a::field"
-  shows "a \<noteq> 0 \<Longrightarrow> p dvd smult a q \<longleftrightarrow> p dvd q"
-  by (safe elim!: dvd_smult dvd_smult_cancel)
-
-instantiation poly :: (comm_semiring_1) recpower
-begin
-
-primrec power_poly where
-  power_poly_0: "(p::'a poly) ^ 0 = 1"
-| power_poly_Suc: "(p::'a poly) ^ (Suc n) = p * p ^ n"
-
-instance
-  by default simp_all
-
-end
-
-lemma degree_power_le: "degree (p ^ n) \<le> degree p * n"
-by (induct n, simp, auto intro: order_trans degree_mult_le)
-
-instance poly :: (comm_ring) comm_ring ..
-
-instance poly :: (comm_ring_1) comm_ring_1 ..
-
-instantiation poly :: (comm_ring_1) number_ring
-begin
-
-definition
-  "number_of k = (of_int k :: 'a poly)"
-
-instance
-  by default (rule number_of_poly_def)
-
-end
-
-
-subsection {* Polynomials form an integral domain *}
-
-lemma coeff_mult_degree_sum:
-  "coeff (p * q) (degree p + degree q) =
-   coeff p (degree p) * coeff q (degree q)"
-  by (induct p, simp, simp add: coeff_eq_0)
-
-instance poly :: (idom) idom
-proof
-  fix p q :: "'a poly"
-  assume "p \<noteq> 0" and "q \<noteq> 0"
-  have "coeff (p * q) (degree p + degree q) =
-        coeff p (degree p) * coeff q (degree q)"
-    by (rule coeff_mult_degree_sum)
-  also have "coeff p (degree p) * coeff q (degree q) \<noteq> 0"
-    using `p \<noteq> 0` and `q \<noteq> 0` by simp
-  finally have "\<exists>n. coeff (p * q) n \<noteq> 0" ..
-  thus "p * q \<noteq> 0" by (simp add: expand_poly_eq)
-qed
-
-lemma degree_mult_eq:
-  fixes p q :: "'a::idom poly"
-  shows "\<lbrakk>p \<noteq> 0; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree (p * q) = degree p + degree q"
-apply (rule order_antisym [OF degree_mult_le le_degree])
-apply (simp add: coeff_mult_degree_sum)
-done
-
-lemma dvd_imp_degree_le:
-  fixes p q :: "'a::idom poly"
-  shows "\<lbrakk>p dvd q; q \<noteq> 0\<rbrakk> \<Longrightarrow> degree p \<le> degree q"
-  by (erule dvdE, simp add: degree_mult_eq)
-
-
-subsection {* Polynomials form an ordered integral domain *}
-
-definition
-  pos_poly :: "'a::ordered_idom poly \<Rightarrow> bool"
-where
-  "pos_poly p \<longleftrightarrow> 0 < coeff p (degree p)"
-
-lemma pos_poly_pCons:
-  "pos_poly (pCons a p) \<longleftrightarrow> pos_poly p \<or> (p = 0 \<and> 0 < a)"
-  unfolding pos_poly_def by simp
-
-lemma not_pos_poly_0 [simp]: "\<not> pos_poly 0"
-  unfolding pos_poly_def by simp
-
-lemma pos_poly_add: "\<lbrakk>pos_poly p; pos_poly q\<rbrakk> \<Longrightarrow> pos_poly (p + q)"
-  apply (induct p arbitrary: q, simp)
-  apply (case_tac q, force simp add: pos_poly_pCons add_pos_pos)
-  done
-
-lemma pos_poly_mult: "\<lbrakk>pos_poly p; pos_poly q\<rbrakk> \<Longrightarrow> pos_poly (p * q)"
-  unfolding pos_poly_def
-  apply (subgoal_tac "p \<noteq> 0 \<and> q \<noteq> 0")
-  apply (simp add: degree_mult_eq coeff_mult_degree_sum mult_pos_pos)
-  apply auto
-  done
-
-lemma pos_poly_total: "p = 0 \<or> pos_poly p \<or> pos_poly (- p)"
-by (induct p) (auto simp add: pos_poly_pCons)
-
-instantiation poly :: (ordered_idom) ordered_idom
-begin
-
-definition
-  [code del]:
-    "x < y \<longleftrightarrow> pos_poly (y - x)"
-
-definition
-  [code del]:
-    "x \<le> y \<longleftrightarrow> x = y \<or> pos_poly (y - x)"
-
-definition
-  [code del]:
-    "abs (x::'a poly) = (if x < 0 then - x else x)"
-
-definition
-  [code del]:
-    "sgn (x::'a poly) = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
-
-instance proof
-  fix x y :: "'a poly"
-  show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
-    unfolding less_eq_poly_def less_poly_def
-    apply safe
-    apply simp
-    apply (drule (1) pos_poly_add)
-    apply simp
-    done
-next
-  fix x :: "'a poly" show "x \<le> x"
-    unfolding less_eq_poly_def by simp
-next
-  fix x y z :: "'a poly"
-  assume "x \<le> y" and "y \<le> z" thus "x \<le> z"
-    unfolding less_eq_poly_def
-    apply safe
-    apply (drule (1) pos_poly_add)
-    apply (simp add: algebra_simps)
-    done
-next
-  fix x y :: "'a poly"
-  assume "x \<le> y" and "y \<le> x" thus "x = y"
-    unfolding less_eq_poly_def
-    apply safe
-    apply (drule (1) pos_poly_add)
-    apply simp
-    done
-next
-  fix x y z :: "'a poly"
-  assume "x \<le> y" thus "z + x \<le> z + y"
-    unfolding less_eq_poly_def
-    apply safe
-    apply (simp add: algebra_simps)
-    done
-next
-  fix x y :: "'a poly"
-  show "x \<le> y \<or> y \<le> x"
-    unfolding less_eq_poly_def
-    using pos_poly_total [of "x - y"]
-    by auto
-next
-  fix x y z :: "'a poly"
-  assume "x < y" and "0 < z"
-  thus "z * x < z * y"
-    unfolding less_poly_def
-    by (simp add: right_diff_distrib [symmetric] pos_poly_mult)
-next
-  fix x :: "'a poly"
-  show "\<bar>x\<bar> = (if x < 0 then - x else x)"
-    by (rule abs_poly_def)
-next
-  fix x :: "'a poly"
-  show "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
-    by (rule sgn_poly_def)
-qed
-
-end
-
-text {* TODO: Simplification rules for comparisons *}
-
-
-subsection {* Long division of polynomials *}
-
-definition
-  pdivmod_rel :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> bool"
-where
-  [code del]:
-  "pdivmod_rel x y q r \<longleftrightarrow>
-    x = q * y + r \<and> (if y = 0 then q = 0 else r = 0 \<or> degree r < degree y)"
-
-lemma pdivmod_rel_0:
-  "pdivmod_rel 0 y 0 0"
-  unfolding pdivmod_rel_def by simp
-
-lemma pdivmod_rel_by_0:
-  "pdivmod_rel x 0 0 x"
-  unfolding pdivmod_rel_def by simp
-
-lemma eq_zero_or_degree_less:
-  assumes "degree p \<le> n" and "coeff p n = 0"
-  shows "p = 0 \<or> degree p < n"
-proof (cases n)
-  case 0
-  with `degree p \<le> n` and `coeff p n = 0`
-  have "coeff p (degree p) = 0" by simp
-  then have "p = 0" by simp
-  then show ?thesis ..
-next
-  case (Suc m)
-  have "\<forall>i>n. coeff p i = 0"
-    using `degree p \<le> n` by (simp add: coeff_eq_0)
-  then have "\<forall>i\<ge>n. coeff p i = 0"
-    using `coeff p n = 0` by (simp add: le_less)
-  then have "\<forall>i>m. coeff p i = 0"
-    using `n = Suc m` by (simp add: less_eq_Suc_le)
-  then have "degree p \<le> m"
-    by (rule degree_le)
-  then have "degree p < n"
-    using `n = Suc m` by (simp add: less_Suc_eq_le)
-  then show ?thesis ..
-qed
-
-lemma pdivmod_rel_pCons:
-  assumes rel: "pdivmod_rel x y q r"
-  assumes y: "y \<noteq> 0"
-  assumes b: "b = coeff (pCons a r) (degree y) / coeff y (degree y)"
-  shows "pdivmod_rel (pCons a x) y (pCons b q) (pCons a r - smult b y)"
-    (is "pdivmod_rel ?x y ?q ?r")
-proof -
-  have x: "x = q * y + r" and r: "r = 0 \<or> degree r < degree y"
-    using assms unfolding pdivmod_rel_def by simp_all
-
-  have 1: "?x = ?q * y + ?r"
-    using b x by simp
-
-  have 2: "?r = 0 \<or> degree ?r < degree y"
-  proof (rule eq_zero_or_degree_less)
-    show "degree ?r \<le> degree y"
-    proof (rule degree_diff_le)
-      show "degree (pCons a r) \<le> degree y"
-        using r by auto
-      show "degree (smult b y) \<le> degree y"
-        by (rule degree_smult_le)
-    qed
-  next
-    show "coeff ?r (degree y) = 0"
-      using `y \<noteq> 0` unfolding b by simp
-  qed
-
-  from 1 2 show ?thesis
-    unfolding pdivmod_rel_def
-    using `y \<noteq> 0` by simp
-qed
-
-lemma pdivmod_rel_exists: "\<exists>q r. pdivmod_rel x y q r"
-apply (cases "y = 0")
-apply (fast intro!: pdivmod_rel_by_0)
-apply (induct x)
-apply (fast intro!: pdivmod_rel_0)
-apply (fast intro!: pdivmod_rel_pCons)
-done
-
-lemma pdivmod_rel_unique:
-  assumes 1: "pdivmod_rel x y q1 r1"
-  assumes 2: "pdivmod_rel x y q2 r2"
-  shows "q1 = q2 \<and> r1 = r2"
-proof (cases "y = 0")
-  assume "y = 0" with assms show ?thesis
-    by (simp add: pdivmod_rel_def)
-next
-  assume [simp]: "y \<noteq> 0"
-  from 1 have q1: "x = q1 * y + r1" and r1: "r1 = 0 \<or> degree r1 < degree y"
-    unfolding pdivmod_rel_def by simp_all
-  from 2 have q2: "x = q2 * y + r2" and r2: "r2 = 0 \<or> degree r2 < degree y"
-    unfolding pdivmod_rel_def by simp_all
-  from q1 q2 have q3: "(q1 - q2) * y = r2 - r1"
-    by (simp add: algebra_simps)
-  from r1 r2 have r3: "(r2 - r1) = 0 \<or> degree (r2 - r1) < degree y"
-    by (auto intro: degree_diff_less)
-
-  show "q1 = q2 \<and> r1 = r2"
-  proof (rule ccontr)
-    assume "\<not> (q1 = q2 \<and> r1 = r2)"
-    with q3 have "q1 \<noteq> q2" and "r1 \<noteq> r2" by auto
-    with r3 have "degree (r2 - r1) < degree y" by simp
-    also have "degree y \<le> degree (q1 - q2) + degree y" by simp
-    also have "\<dots> = degree ((q1 - q2) * y)"
-      using `q1 \<noteq> q2` by (simp add: degree_mult_eq)
-    also have "\<dots> = degree (r2 - r1)"
-      using q3 by simp
-    finally have "degree (r2 - r1) < degree (r2 - r1)" .
-    then show "False" by simp
-  qed
-qed
-
-lemma pdivmod_rel_0_iff: "pdivmod_rel 0 y q r \<longleftrightarrow> q = 0 \<and> r = 0"
-by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_0)
-
-lemma pdivmod_rel_by_0_iff: "pdivmod_rel x 0 q r \<longleftrightarrow> q = 0 \<and> r = x"
-by (auto dest: pdivmod_rel_unique intro: pdivmod_rel_by_0)
-
-lemmas pdivmod_rel_unique_div =
-  pdivmod_rel_unique [THEN conjunct1, standard]
-
-lemmas pdivmod_rel_unique_mod =
-  pdivmod_rel_unique [THEN conjunct2, standard]
-
-instantiation poly :: (field) ring_div
-begin
-
-definition div_poly where
-  [code del]: "x div y = (THE q. \<exists>r. pdivmod_rel x y q r)"
-
-definition mod_poly where
-  [code del]: "x mod y = (THE r. \<exists>q. pdivmod_rel x y q r)"
-
-lemma div_poly_eq:
-  "pdivmod_rel x y q r \<Longrightarrow> x div y = q"
-unfolding div_poly_def
-by (fast elim: pdivmod_rel_unique_div)
-
-lemma mod_poly_eq:
-  "pdivmod_rel x y q r \<Longrightarrow> x mod y = r"
-unfolding mod_poly_def
-by (fast elim: pdivmod_rel_unique_mod)
-
-lemma pdivmod_rel:
-  "pdivmod_rel x y (x div y) (x mod y)"
-proof -
-  from pdivmod_rel_exists
-    obtain q r where "pdivmod_rel x y q r" by fast
-  thus ?thesis
-    by (simp add: div_poly_eq mod_poly_eq)
-qed
-
-instance proof
-  fix x y :: "'a poly"
-  show "x div y * y + x mod y = x"
-    using pdivmod_rel [of x y]
-    by (simp add: pdivmod_rel_def)
-next
-  fix x :: "'a poly"
-  have "pdivmod_rel x 0 0 x"
-    by (rule pdivmod_rel_by_0)
-  thus "x div 0 = 0"
-    by (rule div_poly_eq)
-next
-  fix y :: "'a poly"
-  have "pdivmod_rel 0 y 0 0"
-    by (rule pdivmod_rel_0)
-  thus "0 div y = 0"
-    by (rule div_poly_eq)
-next
-  fix x y z :: "'a poly"
-  assume "y \<noteq> 0"
-  hence "pdivmod_rel (x + z * y) y (z + x div y) (x mod y)"
-    using pdivmod_rel [of x y]
-    by (simp add: pdivmod_rel_def left_distrib)
-  thus "(x + z * y) div y = z + x div y"
-    by (rule div_poly_eq)
-qed
-
-end
-
-lemma degree_mod_less:
-  "y \<noteq> 0 \<Longrightarrow> x mod y = 0 \<or> degree (x mod y) < degree y"
-  using pdivmod_rel [of x y]
-  unfolding pdivmod_rel_def by simp
-
-lemma div_poly_less: "degree x < degree y \<Longrightarrow> x div y = 0"
-proof -
-  assume "degree x < degree y"
-  hence "pdivmod_rel x y 0 x"
-    by (simp add: pdivmod_rel_def)
-  thus "x div y = 0" by (rule div_poly_eq)
-qed
-
-lemma mod_poly_less: "degree x < degree y \<Longrightarrow> x mod y = x"
-proof -
-  assume "degree x < degree y"
-  hence "pdivmod_rel x y 0 x"
-    by (simp add: pdivmod_rel_def)
-  thus "x mod y = x" by (rule mod_poly_eq)
-qed
-
-lemma pdivmod_rel_smult_left:
-  "pdivmod_rel x y q r
-    \<Longrightarrow> pdivmod_rel (smult a x) y (smult a q) (smult a r)"
-  unfolding pdivmod_rel_def by (simp add: smult_add_right)
-
-lemma div_smult_left: "(smult a x) div y = smult a (x div y)"
-  by (rule div_poly_eq, rule pdivmod_rel_smult_left, rule pdivmod_rel)
-
-lemma mod_smult_left: "(smult a x) mod y = smult a (x mod y)"
-  by (rule mod_poly_eq, rule pdivmod_rel_smult_left, rule pdivmod_rel)
-
-lemma pdivmod_rel_smult_right:
-  "\<lbrakk>a \<noteq> 0; pdivmod_rel x y q r\<rbrakk>
-    \<Longrightarrow> pdivmod_rel x (smult a y) (smult (inverse a) q) r"
-  unfolding pdivmod_rel_def by simp
-
-lemma div_smult_right:
-  "a \<noteq> 0 \<Longrightarrow> x div (smult a y) = smult (inverse a) (x div y)"
-  by (rule div_poly_eq, erule pdivmod_rel_smult_right, rule pdivmod_rel)
-
-lemma mod_smult_right: "a \<noteq> 0 \<Longrightarrow> x mod (smult a y) = x mod y"
-  by (rule mod_poly_eq, erule pdivmod_rel_smult_right, rule pdivmod_rel)
-
-lemma pdivmod_rel_mult:
-  "\<lbrakk>pdivmod_rel x y q r; pdivmod_rel q z q' r'\<rbrakk>
-    \<Longrightarrow> pdivmod_rel x (y * z) q' (y * r' + r)"
-apply (cases "z = 0", simp add: pdivmod_rel_def)
-apply (cases "y = 0", simp add: pdivmod_rel_by_0_iff pdivmod_rel_0_iff)
-apply (cases "r = 0")
-apply (cases "r' = 0")
-apply (simp add: pdivmod_rel_def)
-apply (simp add: pdivmod_rel_def ring_simps degree_mult_eq)
-apply (cases "r' = 0")
-apply (simp add: pdivmod_rel_def degree_mult_eq)
-apply (simp add: pdivmod_rel_def ring_simps)
-apply (simp add: degree_mult_eq degree_add_less)
-done
-
-lemma poly_div_mult_right:
-  fixes x y z :: "'a::field poly"
-  shows "x div (y * z) = (x div y) div z"
-  by (rule div_poly_eq, rule pdivmod_rel_mult, (rule pdivmod_rel)+)
-
-lemma poly_mod_mult_right:
-  fixes x y z :: "'a::field poly"
-  shows "x mod (y * z) = y * (x div y mod z) + x mod y"
-  by (rule mod_poly_eq, rule pdivmod_rel_mult, (rule pdivmod_rel)+)
-
-lemma mod_pCons:
-  fixes a and x
-  assumes y: "y \<noteq> 0"
-  defines b: "b \<equiv> coeff (pCons a (x mod y)) (degree y) / coeff y (degree y)"
-  shows "(pCons a x) mod y = (pCons a (x mod y) - smult b y)"
-unfolding b
-apply (rule mod_poly_eq)
-apply (rule pdivmod_rel_pCons [OF pdivmod_rel y refl])
-done
-
-
-subsection {* Evaluation of polynomials *}
-
-definition
-  poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a" where
-  "poly = poly_rec (\<lambda>x. 0) (\<lambda>a p f x. a + x * f x)"
-
-lemma poly_0 [simp]: "poly 0 x = 0"
-  unfolding poly_def by (simp add: poly_rec_0)
-
-lemma poly_pCons [simp]: "poly (pCons a p) x = a + x * poly p x"
-  unfolding poly_def by (simp add: poly_rec_pCons)
-
-lemma poly_1 [simp]: "poly 1 x = 1"
-  unfolding one_poly_def by simp
-
-lemma poly_monom:
-  fixes a x :: "'a::{comm_semiring_1,recpower}"
-  shows "poly (monom a n) x = a * x ^ n"
-  by (induct n, simp add: monom_0, simp add: monom_Suc power_Suc mult_ac)
-
-lemma poly_add [simp]: "poly (p + q) x = poly p x + poly q x"
-  apply (induct p arbitrary: q, simp)
-  apply (case_tac q, simp, simp add: algebra_simps)
-  done
-
-lemma poly_minus [simp]:
-  fixes x :: "'a::comm_ring"
-  shows "poly (- p) x = - poly p x"
-  by (induct p, simp_all)
-
-lemma poly_diff [simp]:
-  fixes x :: "'a::comm_ring"
-  shows "poly (p - q) x = poly p x - poly q x"
-  by (simp add: diff_minus)
-
-lemma poly_setsum: "poly (\<Sum>k\<in>A. p k) x = (\<Sum>k\<in>A. poly (p k) x)"
-  by (cases "finite A", induct set: finite, simp_all)
-
-lemma poly_smult [simp]: "poly (smult a p) x = a * poly p x"
-  by (induct p, simp, simp add: algebra_simps)
-
-lemma poly_mult [simp]: "poly (p * q) x = poly p x * poly q x"
-  by (induct p, simp_all, simp add: algebra_simps)
-
-lemma poly_power [simp]:
-  fixes p :: "'a::{comm_semiring_1,recpower} poly"
-  shows "poly (p ^ n) x = poly p x ^ n"
-  by (induct n, simp, simp add: power_Suc)
-
-
-subsection {* Synthetic division *}
-
-text {*
-  Synthetic division is simply division by the
-  linear polynomial @{term "x - c"}.
-*}
-
-definition
-  synthetic_divmod :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly \<times> 'a"
-where [code del]:
-  "synthetic_divmod p c =
-    poly_rec (0, 0) (\<lambda>a p (q, r). (pCons r q, a + c * r)) p"
-
-definition
-  synthetic_div :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly"
-where
-  "synthetic_div p c = fst (synthetic_divmod p c)"
-
-lemma synthetic_divmod_0 [simp]:
-  "synthetic_divmod 0 c = (0, 0)"
-  unfolding synthetic_divmod_def
-  by (simp add: poly_rec_0)
-
-lemma synthetic_divmod_pCons [simp]:
-  "synthetic_divmod (pCons a p) c =
-    (\<lambda>(q, r). (pCons r q, a + c * r)) (synthetic_divmod p c)"
-  unfolding synthetic_divmod_def
-  by (simp add: poly_rec_pCons)
-
-lemma snd_synthetic_divmod: "snd (synthetic_divmod p c) = poly p c"
-  by (induct p, simp, simp add: split_def)
-
-lemma synthetic_div_0 [simp]: "synthetic_div 0 c = 0"
-  unfolding synthetic_div_def by simp
-
-lemma synthetic_div_pCons [simp]:
-  "synthetic_div (pCons a p) c = pCons (poly p c) (synthetic_div p c)"
-  unfolding synthetic_div_def
-  by (simp add: split_def snd_synthetic_divmod)
-
-lemma synthetic_div_eq_0_iff:
-  "synthetic_div p c = 0 \<longleftrightarrow> degree p = 0"
-  by (induct p, simp, case_tac p, simp)
-
-lemma degree_synthetic_div:
-  "degree (synthetic_div p c) = degree p - 1"
-  by (induct p, simp, simp add: synthetic_div_eq_0_iff)
-
-lemma synthetic_div_correct:
-  "p + smult c (synthetic_div p c) = pCons (poly p c) (synthetic_div p c)"
-  by (induct p) simp_all
-
-lemma synthetic_div_unique_lemma: "smult c p = pCons a p \<Longrightarrow> p = 0"
-by (induct p arbitrary: a) simp_all
-
-lemma synthetic_div_unique:
-  "p + smult c q = pCons r q \<Longrightarrow> r = poly p c \<and> q = synthetic_div p c"
-apply (induct p arbitrary: q r)
-apply (simp, frule synthetic_div_unique_lemma, simp)
-apply (case_tac q, force)
-done
-
-lemma synthetic_div_correct':
-  fixes c :: "'a::comm_ring_1"
-  shows "[:-c, 1:] * synthetic_div p c + [:poly p c:] = p"
-  using synthetic_div_correct [of p c]
-  by (simp add: algebra_simps)
-
-lemma poly_eq_0_iff_dvd:
-  fixes c :: "'a::idom"
-  shows "poly p c = 0 \<longleftrightarrow> [:-c, 1:] dvd p"
-proof
-  assume "poly p c = 0"
-  with synthetic_div_correct' [of c p]
-  have "p = [:-c, 1:] * synthetic_div p c" by simp
-  then show "[:-c, 1:] dvd p" ..
-next
-  assume "[:-c, 1:] dvd p"
-  then obtain k where "p = [:-c, 1:] * k" by (rule dvdE)
-  then show "poly p c = 0" by simp
-qed
-
-lemma dvd_iff_poly_eq_0:
-  fixes c :: "'a::idom"
-  shows "[:c, 1:] dvd p \<longleftrightarrow> poly p (-c) = 0"
-  by (simp add: poly_eq_0_iff_dvd)
-
-lemma poly_roots_finite:
-  fixes p :: "'a::idom poly"
-  shows "p \<noteq> 0 \<Longrightarrow> finite {x. poly p x = 0}"
-proof (induct n \<equiv> "degree p" arbitrary: p)
-  case (0 p)
-  then obtain a where "a \<noteq> 0" and "p = [:a:]"
-    by (cases p, simp split: if_splits)
-  then show "finite {x. poly p x = 0}" by simp
-next
-  case (Suc n p)
-  show "finite {x. poly p x = 0}"
-  proof (cases "\<exists>x. poly p x = 0")
-    case False
-    then show "finite {x. poly p x = 0}" by simp
-  next
-    case True
-    then obtain a where "poly p a = 0" ..
-    then have "[:-a, 1:] dvd p" by (simp only: poly_eq_0_iff_dvd)
-    then obtain k where k: "p = [:-a, 1:] * k" ..
-    with `p \<noteq> 0` have "k \<noteq> 0" by auto
-    with k have "degree p = Suc (degree k)"
-      by (simp add: degree_mult_eq del: mult_pCons_left)
-    with `Suc n = degree p` have "n = degree k" by simp
-    with `k \<noteq> 0` have "finite {x. poly k x = 0}" by (rule Suc.hyps)
-    then have "finite (insert a {x. poly k x = 0})" by simp
-    then show "finite {x. poly p x = 0}"
-      by (simp add: k uminus_add_conv_diff Collect_disj_eq
-               del: mult_pCons_left)
-  qed
-qed
-
-lemma poly_zero:
-  fixes p :: "'a::{idom,ring_char_0} poly"
-  shows "poly p = poly 0 \<longleftrightarrow> p = 0"
-apply (cases "p = 0", simp_all)
-apply (drule poly_roots_finite)
-apply (auto simp add: infinite_UNIV_char_0)
-done
-
-lemma poly_eq_iff:
-  fixes p q :: "'a::{idom,ring_char_0} poly"
-  shows "poly p = poly q \<longleftrightarrow> p = q"
-  using poly_zero [of "p - q"]
-  by (simp add: expand_fun_eq)
-
-
-subsection {* Composition of polynomials *}
-
-definition
-  pcompose :: "'a::comm_semiring_0 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly"
-where
-  "pcompose p q = poly_rec 0 (\<lambda>a _ c. [:a:] + q * c) p"
-
-lemma pcompose_0 [simp]: "pcompose 0 q = 0"
-  unfolding pcompose_def by (simp add: poly_rec_0)
-
-lemma pcompose_pCons:
-  "pcompose (pCons a p) q = [:a:] + q * pcompose p q"
-  unfolding pcompose_def by (simp add: poly_rec_pCons)
-
-lemma poly_pcompose: "poly (pcompose p q) x = poly p (poly q x)"
-  by (induct p) (simp_all add: pcompose_pCons)
-
-lemma degree_pcompose_le:
-  "degree (pcompose p q) \<le> degree p * degree q"
-apply (induct p, simp)
-apply (simp add: pcompose_pCons, clarify)
-apply (rule degree_add_le, simp)
-apply (rule order_trans [OF degree_mult_le], simp)
-done
-
-
-subsection {* Order of polynomial roots *}
-
-definition
-  order :: "'a::idom \<Rightarrow> 'a poly \<Rightarrow> nat"
-where
-  [code del]:
-  "order a p = (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)"
-
-lemma coeff_linear_power:
-  fixes a :: "'a::comm_semiring_1"
-  shows "coeff ([:a, 1:] ^ n) n = 1"
-apply (induct n, simp_all)
-apply (subst coeff_eq_0)
-apply (auto intro: le_less_trans degree_power_le)
-done
-
-lemma degree_linear_power:
-  fixes a :: "'a::comm_semiring_1"
-  shows "degree ([:a, 1:] ^ n) = n"
-apply (rule order_antisym)
-apply (rule ord_le_eq_trans [OF degree_power_le], simp)
-apply (rule le_degree, simp add: coeff_linear_power)
-done
-
-lemma order_1: "[:-a, 1:] ^ order a p dvd p"
-apply (cases "p = 0", simp)
-apply (cases "order a p", simp)
-apply (subgoal_tac "nat < (LEAST n. \<not> [:-a, 1:] ^ Suc n dvd p)")
-apply (drule not_less_Least, simp)
-apply (fold order_def, simp)
-done
-
-lemma order_2: "p \<noteq> 0 \<Longrightarrow> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
-unfolding order_def
-apply (rule LeastI_ex)
-apply (rule_tac x="degree p" in exI)
-apply (rule notI)
-apply (drule (1) dvd_imp_degree_le)
-apply (simp only: degree_linear_power)
-done
-
-lemma order:
-  "p \<noteq> 0 \<Longrightarrow> [:-a, 1:] ^ order a p dvd p \<and> \<not> [:-a, 1:] ^ Suc (order a p) dvd p"
-by (rule conjI [OF order_1 order_2])
-
-lemma order_degree:
-  assumes p: "p \<noteq> 0"
-  shows "order a p \<le> degree p"
-proof -
-  have "order a p = degree ([:-a, 1:] ^ order a p)"
-    by (simp only: degree_linear_power)
-  also have "\<dots> \<le> degree p"
-    using order_1 p by (rule dvd_imp_degree_le)
-  finally show ?thesis .
-qed
-
-lemma order_root: "poly p a = 0 \<longleftrightarrow> p = 0 \<or> order a p \<noteq> 0"
-apply (cases "p = 0", simp_all)
-apply (rule iffI)
-apply (rule ccontr, simp)
-apply (frule order_2 [where a=a], simp)
-apply (simp add: poly_eq_0_iff_dvd)
-apply (simp add: poly_eq_0_iff_dvd)
-apply (simp only: order_def)
-apply (drule not_less_Least, simp)
-done
-
-
-subsection {* Configuration of the code generator *}
-
-code_datatype "0::'a::zero poly" pCons
-
-declare pCons_0_0 [code post]
-
-instantiation poly :: ("{zero,eq}") eq
-begin
-
-definition [code del]:
-  "eq_class.eq (p::'a poly) q \<longleftrightarrow> p = q"
-
-instance
-  by default (rule eq_poly_def)
-
-end
-
-lemma eq_poly_code [code]:
-  "eq_class.eq (0::_ poly) (0::_ poly) \<longleftrightarrow> True"
-  "eq_class.eq (0::_ poly) (pCons b q) \<longleftrightarrow> eq_class.eq 0 b \<and> eq_class.eq 0 q"
-  "eq_class.eq (pCons a p) (0::_ poly) \<longleftrightarrow> eq_class.eq a 0 \<and> eq_class.eq p 0"
-  "eq_class.eq (pCons a p) (pCons b q) \<longleftrightarrow> eq_class.eq a b \<and> eq_class.eq p q"
-unfolding eq by simp_all
-
-lemmas coeff_code [code] =
-  coeff_0 coeff_pCons_0 coeff_pCons_Suc
-
-lemmas degree_code [code] =
-  degree_0 degree_pCons_eq_if
-
-lemmas monom_poly_code [code] =
-  monom_0 monom_Suc
-
-lemma add_poly_code [code]:
-  "0 + q = (q :: _ poly)"
-  "p + 0 = (p :: _ poly)"
-  "pCons a p + pCons b q = pCons (a + b) (p + q)"
-by simp_all
-
-lemma minus_poly_code [code]:
-  "- 0 = (0 :: _ poly)"
-  "- pCons a p = pCons (- a) (- p)"
-by simp_all
-
-lemma diff_poly_code [code]:
-  "0 - q = (- q :: _ poly)"
-  "p - 0 = (p :: _ poly)"
-  "pCons a p - pCons b q = pCons (a - b) (p - q)"
-by simp_all
-
-lemmas smult_poly_code [code] =
-  smult_0_right smult_pCons
-
-lemma mult_poly_code [code]:
-  "0 * q = (0 :: _ poly)"
-  "pCons a p * q = smult a q + pCons 0 (p * q)"
-by simp_all
-
-lemmas poly_code [code] =
-  poly_0 poly_pCons
-
-lemmas synthetic_divmod_code [code] =
-  synthetic_divmod_0 synthetic_divmod_pCons
-
-text {* code generator setup for div and mod *}
-
-definition
-  pdivmod :: "'a::field poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<times> 'a poly"
-where
-  [code del]: "pdivmod x y = (x div y, x mod y)"
-
-lemma div_poly_code [code]: "x div y = fst (pdivmod x y)"
-  unfolding pdivmod_def by simp
-
-lemma mod_poly_code [code]: "x mod y = snd (pdivmod x y)"
-  unfolding pdivmod_def by simp
-
-lemma pdivmod_0 [code]: "pdivmod 0 y = (0, 0)"
-  unfolding pdivmod_def by simp
-
-lemma pdivmod_pCons [code]:
-  "pdivmod (pCons a x) y =
-    (if y = 0 then (0, pCons a x) else
-      (let (q, r) = pdivmod x y;
-           b = coeff (pCons a r) (degree y) / coeff y (degree y)
-        in (pCons b q, pCons a r - smult b y)))"
-apply (simp add: pdivmod_def Let_def, safe)
-apply (rule div_poly_eq)
-apply (erule pdivmod_rel_pCons [OF pdivmod_rel _ refl])
-apply (rule mod_poly_eq)
-apply (erule pdivmod_rel_pCons [OF pdivmod_rel _ refl])
-done
-
-end