--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Meson.thy Mon Oct 04 21:49:07 2010 +0200
@@ -0,0 +1,205 @@
+(* Title: HOL/Meson.thy
+ Author: Lawrence C Paulson, Tobias Nipkow
+ Copyright 2001 University of Cambridge
+*)
+
+header {* MESON Proof Procedure (Model Elimination) *}
+
+theory Meson
+imports Nat
+uses ("Tools/Meson/meson.ML")
+ ("Tools/Meson/meson_clausify.ML")
+begin
+
+section {* Negation Normal Form *}
+
+text {* de Morgan laws *}
+
+lemma meson_not_conjD: "~(P&Q) ==> ~P | ~Q"
+ and meson_not_disjD: "~(P|Q) ==> ~P & ~Q"
+ and meson_not_notD: "~~P ==> P"
+ and meson_not_allD: "!!P. ~(\<forall>x. P(x)) ==> \<exists>x. ~P(x)"
+ and meson_not_exD: "!!P. ~(\<exists>x. P(x)) ==> \<forall>x. ~P(x)"
+ by fast+
+
+text {* Removal of @{text "-->"} and @{text "<->"} (positive and
+negative occurrences) *}
+
+lemma meson_imp_to_disjD: "P-->Q ==> ~P | Q"
+ and meson_not_impD: "~(P-->Q) ==> P & ~Q"
+ and meson_iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
+ and meson_not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
+ -- {* Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF *}
+ and meson_not_refl_disj_D: "x ~= x | P ==> P"
+ by fast+
+
+
+section {* Pulling out the existential quantifiers *}
+
+text {* Conjunction *}
+
+lemma meson_conj_exD1: "!!P Q. (\<exists>x. P(x)) & Q ==> \<exists>x. P(x) & Q"
+ and meson_conj_exD2: "!!P Q. P & (\<exists>x. Q(x)) ==> \<exists>x. P & Q(x)"
+ by fast+
+
+
+text {* Disjunction *}
+
+lemma meson_disj_exD: "!!P Q. (\<exists>x. P(x)) | (\<exists>x. Q(x)) ==> \<exists>x. P(x) | Q(x)"
+ -- {* DO NOT USE with forall-Skolemization: makes fewer schematic variables!! *}
+ -- {* With ex-Skolemization, makes fewer Skolem constants *}
+ and meson_disj_exD1: "!!P Q. (\<exists>x. P(x)) | Q ==> \<exists>x. P(x) | Q"
+ and meson_disj_exD2: "!!P Q. P | (\<exists>x. Q(x)) ==> \<exists>x. P | Q(x)"
+ by fast+
+
+lemma meson_disj_assoc: "(P|Q)|R ==> P|(Q|R)"
+ and meson_disj_comm: "P|Q ==> Q|P"
+ and meson_disj_FalseD1: "False|P ==> P"
+ and meson_disj_FalseD2: "P|False ==> P"
+ by fast+
+
+
+text{* Generation of contrapositives *}
+
+text{*Inserts negated disjunct after removing the negation; P is a literal.
+ Model elimination requires assuming the negation of every attempted subgoal,
+ hence the negated disjuncts.*}
+lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"
+by blast
+
+text{*Version for Plaisted's "Postive refinement" of the Meson procedure*}
+lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"
+by blast
+
+text{*@{term P} should be a literal*}
+lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"
+by blast
+
+text{*Versions of @{text make_neg_rule} and @{text make_pos_rule} that don't
+insert new assumptions, for ordinary resolution.*}
+
+lemmas make_neg_rule' = make_refined_neg_rule
+
+lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"
+by blast
+
+text{* Generation of a goal clause -- put away the final literal *}
+
+lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"
+by blast
+
+lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"
+by blast
+
+
+section {* Lemmas for Forward Proof *}
+
+text{*There is a similarity to congruence rules*}
+
+(*NOTE: could handle conjunctions (faster?) by
+ nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)
+lemma conj_forward: "[| P'&Q'; P' ==> P; Q' ==> Q |] ==> P&Q"
+by blast
+
+lemma disj_forward: "[| P'|Q'; P' ==> P; Q' ==> Q |] ==> P|Q"
+by blast
+
+(*Version of @{text disj_forward} for removal of duplicate literals*)
+lemma disj_forward2:
+ "[| P'|Q'; P' ==> P; [| Q'; P==>False |] ==> Q |] ==> P|Q"
+apply blast
+done
+
+lemma all_forward: "[| \<forall>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<forall>x. P(x)"
+by blast
+
+lemma ex_forward: "[| \<exists>x. P'(x); !!x. P'(x) ==> P(x) |] ==> \<exists>x. P(x)"
+by blast
+
+
+section {* Clausification helper *}
+
+lemma TruepropI: "P \<equiv> Q \<Longrightarrow> Trueprop P \<equiv> Trueprop Q"
+by simp
+
+
+text{* Combinator translation helpers *}
+
+definition COMBI :: "'a \<Rightarrow> 'a" where
+[no_atp]: "COMBI P = P"
+
+definition COMBK :: "'a \<Rightarrow> 'b \<Rightarrow> 'a" where
+[no_atp]: "COMBK P Q = P"
+
+definition COMBB :: "('b => 'c) \<Rightarrow> ('a => 'b) \<Rightarrow> 'a \<Rightarrow> 'c" where [no_atp]:
+"COMBB P Q R = P (Q R)"
+
+definition COMBC :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c" where
+[no_atp]: "COMBC P Q R = P R Q"
+
+definition COMBS :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" where
+[no_atp]: "COMBS P Q R = P R (Q R)"
+
+lemma abs_S [no_atp]: "\<lambda>x. (f x) (g x) \<equiv> COMBS f g"
+apply (rule eq_reflection)
+apply (rule ext)
+apply (simp add: COMBS_def)
+done
+
+lemma abs_I [no_atp]: "\<lambda>x. x \<equiv> COMBI"
+apply (rule eq_reflection)
+apply (rule ext)
+apply (simp add: COMBI_def)
+done
+
+lemma abs_K [no_atp]: "\<lambda>x. y \<equiv> COMBK y"
+apply (rule eq_reflection)
+apply (rule ext)
+apply (simp add: COMBK_def)
+done
+
+lemma abs_B [no_atp]: "\<lambda>x. a (g x) \<equiv> COMBB a g"
+apply (rule eq_reflection)
+apply (rule ext)
+apply (simp add: COMBB_def)
+done
+
+lemma abs_C [no_atp]: "\<lambda>x. (f x) b \<equiv> COMBC f b"
+apply (rule eq_reflection)
+apply (rule ext)
+apply (simp add: COMBC_def)
+done
+
+
+section {* Skolemization helpers *}
+
+definition skolem :: "'a \<Rightarrow> 'a" where
+[no_atp]: "skolem = (\<lambda>x. x)"
+
+lemma skolem_COMBK_iff: "P \<longleftrightarrow> skolem (COMBK P (i\<Colon>nat))"
+unfolding skolem_def COMBK_def by (rule refl)
+
+lemmas skolem_COMBK_I = iffD1 [OF skolem_COMBK_iff]
+lemmas skolem_COMBK_D = iffD2 [OF skolem_COMBK_iff]
+
+
+section {* Meson package *}
+
+ML {*
+structure Meson_Choices = Named_Thms
+(
+ val name = "meson_choice"
+ val description = "choice axioms for MESON's (and Metis's) skolemizer"
+)
+*}
+
+use "Tools/Meson/meson.ML"
+use "Tools/Meson/meson_clausify.ML"
+
+setup {*
+ Meson_Choices.setup
+ #> Meson.setup
+ #> Meson_Clausify.setup
+*}
+
+end
--- a/src/HOL/Plain.thy Mon Oct 04 21:37:42 2010 +0200
+++ b/src/HOL/Plain.thy Mon Oct 04 21:49:07 2010 +0200
@@ -1,7 +1,7 @@
header {* Plain HOL *}
theory Plain
-imports Datatype FunDef Extraction
+imports Datatype FunDef Extraction Meson
begin
text {*
--- a/src/HOL/Tools/Meson/meson.ML Mon Oct 04 21:37:42 2010 +0200
+++ b/src/HOL/Tools/Meson/meson.ML Mon Oct 04 21:49:07 2010 +0200
@@ -1,5 +1,6 @@
-(* Title: HOL/Tools/meson.ML
+(* Title: HOL/Tools/Meson/meson.ML
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Author: Jasmin Blanchette, TU Muenchen
The MESON resolution proof procedure for HOL.
When making clauses, avoids using the rewriter -- instead uses RS recursively.
--- a/src/HOL/Tools/Meson/meson_clausify.ML Mon Oct 04 21:37:42 2010 +0200
+++ b/src/HOL/Tools/Meson/meson_clausify.ML Mon Oct 04 21:49:07 2010 +0200
@@ -1,8 +1,9 @@
-(* Title: HOL/Tools/Sledgehammer/meson_clausify.ML
+(* Title: HOL/Tools/Meson/meson_clausify.ML
Author: Jia Meng, Cambridge University Computer Laboratory and NICTA
Author: Jasmin Blanchette, TU Muenchen
-Transformation of axiom rules (elim/intro/etc) into CNF forms.
+Transformation of HOL theorems into CNF forms.
+The "meson" proof method for HOL.
*)
signature MESON_CLAUSIFY =
@@ -204,7 +205,7 @@
val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
val T =
case hilbert of
- Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
+ Const (_, Type (@{type_name fun}, [_, T])) => T
| _ => raise TERM ("old_skolem_theorem_from_def: expected \"Eps\"",
[hilbert])
val cex = cterm_of thy (HOLogic.exists_const T)
@@ -214,7 +215,8 @@
|> Drule.beta_conv cabs |> Thm.capply cTrueprop
fun tacf [prem] =
rewrite_goals_tac skolem_def_raw
- THEN rtac ((prem |> rewrite_rule skolem_def_raw) RS @{thm someI_ex}) 1
+ THEN rtac ((prem |> rewrite_rule skolem_def_raw)
+ RS Global_Theory.get_thm thy "someI_ex") 1
in
Goal.prove_internal [ex_tm] conc tacf
|> forall_intr_list frees