--- a/src/HOL/Rational.thy Fri Nov 20 07:23:36 2009 +0100
+++ b/src/HOL/Rational.thy Fri Nov 20 07:24:08 2009 +0100
@@ -243,6 +243,166 @@
with Fract `q = Fract a b` `b \<noteq> 0` show C by auto
qed
+subsubsection {* Function @{text normalize} *}
+
+text{*
+Decompose a fraction into normalized, i.e. coprime numerator and denominator:
+*}
+
+definition normalize :: "rat \<Rightarrow> int \<times> int" where
+"normalize x \<equiv> THE pair. x = Fract (fst pair) (snd pair) &
+ snd pair > 0 & gcd (fst pair) (snd pair) = 1"
+
+declare normalize_def[code del]
+
+lemma Fract_norm: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
+proof (cases "a = 0 | b = 0")
+ case True then show ?thesis by (auto simp add: eq_rat)
+next
+ let ?c = "gcd a b"
+ case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
+ then have "?c \<noteq> 0" by simp
+ then have "Fract ?c ?c = Fract 1 1" by (simp add: eq_rat)
+ moreover have "Fract (a div ?c * ?c + a mod ?c) (b div ?c * ?c + b mod ?c) = Fract a b"
+ by (simp add: semiring_div_class.mod_div_equality)
+ moreover have "a mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
+ moreover have "b mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
+ ultimately show ?thesis
+ by (simp add: mult_rat [symmetric])
+qed
+
+text{* Proof by Ren\'e Thiemann: *}
+lemma normalize_code[code]:
+"normalize (Fract a b) =
+ (if b > 0 then (let g = gcd a b in (a div g, b div g))
+ else if b = 0 then (0,1)
+ else (let g = - gcd a b in (a div g, b div g)))"
+proof -
+ let ?cond = "% r p. r = Fract (fst p) (snd p) & snd p > 0 &
+ gcd (fst p) (snd p) = 1"
+ show ?thesis
+ proof (cases "b = 0")
+ case True
+ thus ?thesis
+ proof (simp add: normalize_def)
+ show "(THE pair. ?cond (Fract a 0) pair) = (0,1)"
+ proof
+ show "?cond (Fract a 0) (0,1)"
+ by (simp add: rat_number_collapse)
+ next
+ fix pair
+ assume cond: "?cond (Fract a 0) pair"
+ show "pair = (0,1)"
+ proof (cases pair)
+ case (Pair den num)
+ with cond have num: "num > 0" by auto
+ with Pair cond have den: "den = 0" by (simp add: eq_rat)
+ show ?thesis
+ proof (cases "num = 1", simp add: Pair den)
+ case False
+ with num have gr: "num > 1" by auto
+ with den have "gcd den num = num" by auto
+ with Pair cond False gr show ?thesis by auto
+ qed
+ qed
+ qed
+ qed
+ next
+ { fix a b :: int assume b: "b > 0"
+ hence b0: "b \<noteq> 0" and "b >= 0" by auto
+ let ?g = "gcd a b"
+ from b0 have g0: "?g \<noteq> 0" by auto
+ then have gp: "?g > 0" by simp
+ then have gs: "?g <= b" by (metis b gcd_le2_int)
+ from gcd_dvd1_int[of a b] obtain a' where a': "a = ?g * a'"
+ unfolding dvd_def by auto
+ from gcd_dvd2_int[of a b] obtain b' where b': "b = ?g * b'"
+ unfolding dvd_def by auto
+ hence b'2: "b' * ?g = b" by (simp add: ring_simps)
+ with b0 have b'0: "b' \<noteq> 0" by auto
+ from b b' zero_less_mult_iff[of ?g b'] gp have b'p: "b' > 0" by arith
+ have "normalize (Fract a b) = (a div ?g, b div ?g)"
+ proof (simp add: normalize_def)
+ show "(THE pair. ?cond (Fract a b) pair) = (a div ?g, b div ?g)"
+ proof
+ have "1 = b div b" using b0 by auto
+ also have "\<dots> <= b div ?g" by (rule zdiv_mono2[OF `b >= 0` gp gs])
+ finally have div0: "b div ?g > 0" by simp
+ show "?cond (Fract a b) (a div ?g, b div ?g)"
+ by (simp add: b0 Fract_norm div_gcd_coprime_int div0)
+ next
+ fix pair assume cond: "?cond (Fract a b) pair"
+ show "pair = (a div ?g, b div ?g)"
+ proof (cases pair)
+ case (Pair den num)
+ with cond
+ have num: "num > 0" and num0: "num \<noteq> 0" and gcd: "gcd den num = 1"
+ by auto
+ obtain g where g: "g = ?g" by auto
+ with gp have gg0: "g > 0" by auto
+ from cond Pair eq_rat(1)[OF b0 num0]
+ have eq: "a * num = den * b" by auto
+ hence "a' * g * num = den * g * b'"
+ using a'[simplified g[symmetric]] b'[simplified g[symmetric]]
+ by simp
+ hence "a' * num * g = b' * den * g" by (simp add: algebra_simps)
+ hence eq2: "a' * num = b' * den" using gg0 by auto
+ have "a div ?g = ?g * a' div ?g" using a' by force
+ hence adiv: "a div ?g = a'" using g0 by auto
+ have "b div ?g = ?g * b' div ?g" using b' by force
+ hence bdiv: "b div ?g = b'" using g0 by auto
+ from div_gcd_coprime_int[of a b] b0
+ have "gcd (a div ?g) (b div ?g) = 1" by auto
+ with adiv bdiv have gcd2: "gcd a' b' = 1" by auto
+ from gcd have gcd3: "gcd num den = 1"
+ by (simp add: gcd_commute_int[of den num])
+ from gcd2 have gcd4: "gcd b' a' = 1"
+ by (simp add: gcd_commute_int[of a' b'])
+ have one: "num dvd b'"
+ by (rule coprime_dvd_mult_int[OF gcd3], simp add: dvd_def, rule exI[of _ a'], simp add: eq2 algebra_simps)
+ have two: "b' dvd num" by (rule coprime_dvd_mult_int[OF gcd4], simp add: dvd_def, rule exI[of _ den], simp add: eq2 algebra_simps)
+ from one two
+ obtain k k' where k: "num = b' * k" and k': "b' = num * k'"
+ unfolding dvd_def by auto
+ hence "num = num * (k * k')" by (simp add: algebra_simps)
+ with num0 have prod: "k * k' = 1" by auto
+ from zero_less_mult_iff[of b' k] b'p num k have kp: "k > 0"
+ by auto
+ from prod pos_zmult_eq_1_iff[OF kp, of k'] have "k = 1" by auto
+ with k have numb': "num = b'" by auto
+ with eq2 b'0 have "a' = den" by auto
+ with numb' adiv bdiv Pair show ?thesis by simp
+ qed
+ qed
+ qed
+ }
+ note main = this
+ assume "b \<noteq> 0"
+ hence "b > 0 | b < 0" by arith
+ thus ?thesis
+ proof
+ assume b: "b > 0" thus ?thesis by (simp add: Let_def main[OF b])
+ next
+ assume b: "b < 0"
+ thus ?thesis
+ by(simp add:main Let_def minus_rat_cancel[of a b, symmetric]
+ zdiv_zminus2 del:minus_rat_cancel)
+ qed
+ qed
+qed
+
+lemma normalize_id: "normalize (Fract a b) = (p,q) \<Longrightarrow> Fract p q = Fract a b"
+by(auto simp add: normalize_code Let_def Fract_norm dvd_div_neg rat_number_collapse
+ split:split_if_asm)
+
+lemma normalize_denom_pos: "normalize (Fract a b) = (p,q) \<Longrightarrow> q > 0"
+by(auto simp add: normalize_code Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
+ split:split_if_asm)
+
+lemma normalize_coprime: "normalize (Fract a b) = (p,q) \<Longrightarrow> coprime p q"
+by(auto simp add: normalize_code Let_def dvd_div_neg div_gcd_coprime_int
+ split:split_if_asm)
+
subsubsection {* The field of rational numbers *}
@@ -851,22 +1011,6 @@
subsection {* Implementation of rational numbers as pairs of integers *}
-lemma Fract_norm: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
-proof (cases "a = 0 \<or> b = 0")
- case True then show ?thesis by (auto simp add: eq_rat)
-next
- let ?c = "gcd a b"
- case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
- then have "?c \<noteq> 0" by simp
- then have "Fract ?c ?c = Fract 1 1" by (simp add: eq_rat)
- moreover have "Fract (a div ?c * ?c + a mod ?c) (b div ?c * ?c + b mod ?c) = Fract a b"
- by (simp add: semiring_div_class.mod_div_equality)
- moreover have "a mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
- moreover have "b mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
- ultimately show ?thesis
- by (simp add: mult_rat [symmetric])
-qed
-
definition Fract_norm :: "int \<Rightarrow> int \<Rightarrow> rat" where
[simp, code del]: "Fract_norm a b = Fract a b"