--- a/src/HOL/Library/Formal_Power_Series.thy Tue Jun 02 14:37:05 2009 +0200
+++ b/src/HOL/Library/Formal_Power_Series.thy Tue Jun 02 15:06:17 2009 +0200
@@ -329,7 +329,8 @@
lemma fps_const_add [simp]: "fps_const (c::'a\<Colon>monoid_add) + fps_const d = fps_const (c + d)"
by (simp add: fps_ext)
-
+lemma fps_const_sub [simp]: "fps_const (c::'a\<Colon>group_add) - fps_const d = fps_const (c - d)"
+ by (simp add: fps_ext)
lemma fps_const_mult[simp]: "fps_const (c::'a\<Colon>ring) * fps_const d = fps_const (c * d)"
by (simp add: fps_eq_iff fps_mult_nth setsum_0')
@@ -396,6 +397,18 @@
qed (rule number_of_fps_def)
end
+lemma number_of_fps_const: "(number_of k::('a::comm_ring_1) fps) = fps_const (of_int k)"
+
+proof(induct k rule: int_induct[where k=0])
+ case base thus ?case unfolding number_of_fps_def of_int_0 by simp
+next
+ case (step1 i) thus ?case unfolding number_of_fps_def
+ by (simp add: fps_const_add[symmetric] del: fps_const_add)
+next
+ case (step2 i) thus ?case unfolding number_of_fps_def
+ by (simp add: fps_const_sub[symmetric] del: fps_const_sub)
+qed
+
subsection{* Inverses of formal power series *}
declare setsum_cong[fundef_cong]
@@ -956,6 +969,9 @@
"fps_const (a::'a::{comm_ring_1}) oo b = fps_const (a)"
by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta)
+lemma number_of_compose[simp]: "(number_of k::('a::{comm_ring_1}) fps) oo b = number_of k"
+ unfolding number_of_fps_const by simp
+
lemma X_fps_compose_startby0[simp]: "a$0 = 0 \<Longrightarrow> X oo a = (a :: ('a :: comm_ring_1) fps)"
by (simp add: fps_eq_iff fps_compose_def mult_delta_left setsum_delta
power_Suc not_le)
@@ -2262,6 +2278,45 @@
show "?dia = inverse ?d" by simp
qed
+lemma fps_inv_idempotent:
+ assumes a0: "a$0 = 0" and a1: "a$1 \<noteq> 0"
+ shows "fps_inv (fps_inv a) = a"
+proof-
+ let ?r = "fps_inv"
+ have ra0: "?r a $ 0 = 0" by (simp add: fps_inv_def)
+ from a1 have ra1: "?r a $ 1 \<noteq> 0" by (simp add: fps_inv_def field_simps)
+ have X0: "X$0 = 0" by simp
+ from fps_inv[OF ra0 ra1] have "?r (?r a) oo ?r a = X" .
+ then have "?r (?r a) oo ?r a oo a = X oo a" by simp
+ then have "?r (?r a) oo (?r a oo a) = a"
+ unfolding X_fps_compose_startby0[OF a0]
+ unfolding fps_compose_assoc[OF a0 ra0, symmetric] .
+ then show ?thesis unfolding fps_inv[OF a0 a1] by simp
+qed
+
+lemma fps_ginv_ginv:
+ assumes a0: "a$0 = 0" and a1: "a$1 \<noteq> 0"
+ and c0: "c$0 = 0" and c1: "c$1 \<noteq> 0"
+ shows "fps_ginv b (fps_ginv c a) = b oo a oo fps_inv c"
+proof-
+ let ?r = "fps_ginv"
+ from c0 have rca0: "?r c a $0 = 0" by (simp add: fps_ginv_def)
+ from a1 c1 have rca1: "?r c a $ 1 \<noteq> 0" by (simp add: fps_ginv_def field_simps)
+ from fps_ginv[OF rca0 rca1]
+ have "?r b (?r c a) oo ?r c a = b" .
+ then have "?r b (?r c a) oo ?r c a oo a = b oo a" by simp
+ then have "?r b (?r c a) oo (?r c a oo a) = b oo a"
+ apply (subst fps_compose_assoc)
+ using a0 c0 by (auto simp add: fps_ginv_def)
+ then have "?r b (?r c a) oo c = b oo a"
+ unfolding fps_ginv[OF a0 a1] .
+ then have "?r b (?r c a) oo c oo fps_inv c= b oo a oo fps_inv c" by simp
+ then have "?r b (?r c a) oo (c oo fps_inv c) = b oo a oo fps_inv c"
+ apply (subst fps_compose_assoc)
+ using a0 c0 by (auto simp add: fps_inv_def)
+ then show ?thesis unfolding fps_inv_right[OF c0 c1] by simp
+qed
+
subsection{* Elementary series *}
subsubsection{* Exponential series *}
@@ -2330,7 +2385,6 @@
lemma E_nth_deriv[simp]: "fps_nth_deriv n (E (a::'a::field_char_0)) = (fps_const a)^n * (E a)"
by (induct n, auto simp add: power_Suc)
-
lemma X_compose_E[simp]: "X oo E (a::'a::{field}) = E a - 1"
by (simp add: fps_eq_iff X_fps_compose)
@@ -2348,10 +2402,9 @@
lemma fps_const_inverse:
- "inverse (fps_const (a::'a::{field, division_by_zero})) = fps_const (inverse a)"
+ "a \<noteq> 0 \<Longrightarrow> inverse (fps_const (a::'a::field)) = fps_const (inverse a)"
apply (auto simp add: fps_eq_iff fps_inverse_def) by (case_tac "n", auto)
-
lemma inverse_one_plus_X:
"inverse (1 + X) = Abs_fps (\<lambda>n. (- 1 ::'a::{field})^n)"
(is "inverse ?l = ?r")
@@ -2365,21 +2418,45 @@
lemma E_power_mult: "(E (c::'a::field_char_0))^n = E (of_nat n * c)"
by (induct n, auto simp add: ring_simps E_add_mult power_Suc)
-subsubsection{* Logarithmic series *}
-definition "(L::'a::field_char_0 fps)
- = Abs_fps (\<lambda>n. (- 1) ^ Suc n / of_nat n)"
+lemma assumes r: "r (Suc k) 1 = 1"
+ shows "fps_radical r (Suc k) (E (c::'a::{field_char_0})) = E (c / of_nat (Suc k))"
+proof-
+ let ?ck = "(c / of_nat (Suc k))"
+ let ?r = "fps_radical r (Suc k)"
+ have eq0[simp]: "?ck * of_nat (Suc k) = c" "of_nat (Suc k) * ?ck = c"
+ by (simp_all del: of_nat_Suc)
+ have th0: "E ?ck ^ (Suc k) = E c" unfolding E_power_mult eq0 ..
+ have th: "r (Suc k) (E c $0) ^ Suc k = E c $ 0"
+ "r (Suc k) (E c $ 0) = E ?ck $ 0" "E c $ 0 \<noteq> 0" using r by simp_all
+ from th0 radical_unique[where r=r and k=k, OF th]
+ show ?thesis by auto
+qed
-lemma fps_deriv_L: "fps_deriv L = inverse (1 + X)"
- unfolding inverse_one_plus_X
- by (simp add: L_def fps_eq_iff power_Suc del: of_nat_Suc)
+lemma Ec_E1_eq:
+ "E (1::'a::{field_char_0}) oo (fps_const c * X) = E c"
+ apply (auto simp add: fps_eq_iff E_def fps_compose_def power_mult_distrib)
+ by (simp add: cond_value_iff cond_application_beta setsum_delta' cong del: if_weak_cong)
+subsubsection{* Logarithmic series *}
-lemma L_nth: "L $ n = (- 1) ^ Suc n / of_nat n"
- by (simp add: L_def)
+lemma Abs_fps_if_0:
+ "Abs_fps(%n. if n=0 then (v::'a::ring_1) else f n) = fps_const v + X * Abs_fps (%n. f (Suc n))"
+ by (auto simp add: fps_eq_iff)
+
+definition L:: "'a::{field_char_0} \<Rightarrow> 'a fps" where
+ "L c \<equiv> fps_const (1/c) * Abs_fps (\<lambda>n. if n = 0 then 0 else (- 1) ^ (n - 1) / of_nat n)"
+lemma fps_deriv_L: "fps_deriv (L c) = fps_const (1/c) * inverse (1 + X)"
+ unfolding inverse_one_plus_X
+ by (simp add: L_def fps_eq_iff del: of_nat_Suc)
+
+lemma L_nth: "L c $ n = (if n=0 then 0 else 1/c * ((- 1) ^ (n - 1) / of_nat n))"
+ by (simp add: L_def field_simps)
+
+lemma L_0[simp]: "L c $ 0 = 0" by (simp add: L_def)
lemma L_E_inv:
- assumes a: "a \<noteq> (0::'a::{field_char_0,division_by_zero})"
- shows "L = fps_const a * fps_inv (E a - 1)" (is "?l = ?r")
+ assumes a: "a\<noteq> (0::'a::{field_char_0})"
+ shows "L a = fps_inv (E a - 1)" (is "?l = ?r")
proof-
let ?b = "E a - 1"
have b0: "?b $ 0 = 0" by simp
@@ -2391,15 +2468,29 @@
finally have eq: "fps_deriv (E a - 1) oo fps_inv (E a - 1) = fps_const a * (X + 1)" .
from fps_inv_deriv[OF b0 b1, unfolded eq]
have "fps_deriv (fps_inv ?b) = fps_const (inverse a) / (X + 1)"
+ using a
by (simp add: fps_const_inverse eq fps_divide_def fps_inverse_mult)
- hence "fps_deriv (fps_const a * fps_inv ?b) = inverse (X + 1)"
- using a by (simp add: fps_divide_def field_simps)
hence "fps_deriv ?l = fps_deriv ?r"
- by (simp add: fps_deriv_L add_commute)
+ by (simp add: fps_deriv_L add_commute fps_divide_def divide_inverse)
then show ?thesis unfolding fps_deriv_eq_iff
by (simp add: L_nth fps_inv_def)
qed
+lemma L_mult_add:
+ assumes c0: "c\<noteq>0" and d0: "d\<noteq>0"
+ shows "L c + L d = fps_const (c+d) * L (c*d)"
+ (is "?r = ?l")
+proof-
+ from c0 d0 have eq: "1/c + 1/d = (c+d)/(c*d)" by (simp add: field_simps)
+ have "fps_deriv ?r = fps_const (1/c + 1/d) * inverse (1 + X)"
+ by (simp add: fps_deriv_L fps_const_add[symmetric] algebra_simps del: fps_const_add)
+ also have "\<dots> = fps_deriv ?l"
+ apply (simp add: fps_deriv_L)
+ by (simp add: fps_eq_iff eq)
+ finally show ?thesis
+ unfolding fps_deriv_eq_iff by simp
+qed
+
subsubsection{* Formal trigonometric functions *}
definition "fps_sin (c::'a::field_char_0) =