fixed typo
authorkleing
Mon, 06 Jun 2011 14:11:54 +0200
changeset 43156 04aaac80183f
parent 43155 f4f27123daef
child 43157 b505be6f029a
fixed typo
src/HOL/SetInterval.thy
--- a/src/HOL/SetInterval.thy	Sun Jun 05 15:00:52 2011 +0200
+++ b/src/HOL/SetInterval.thy	Mon Jun 06 14:11:54 2011 +0200
@@ -348,7 +348,7 @@
 lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)"
 by (simp add: lessThan_def less_Suc_eq, blast)
 
-text {* The following proof is convinient in induction proofs where
+text {* The following proof is convenient in induction proofs where
 new elements get indices at the beginning. So it is used to transform
 @{term "{..<Suc n}"} to @{term "0::nat"} and @{term "{..< n}"}. *}