--- a/src/HOL/Fields.thy Fri Jun 14 08:34:27 2019 +0000
+++ b/src/HOL/Fields.thy Fri Jun 14 08:34:27 2019 +0000
@@ -900,10 +900,6 @@
"y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y \<le> w / z \<longleftrightarrow> (x * z - w * y) / (y * z) \<le> 0"
by (subst le_iff_diff_le_0) (simp add: diff_frac_eq )
-text\<open>Lemmas \<open>sign_simps\<close> is a first attempt to automate proofs
-of positivity/negativity needed for \<open>field_simps\<close>. Have not added \<open>sign_simps\<close> to \<open>field_simps\<close> because the former can lead to case
-explosions.\<close>
-
lemma divide_pos_pos[simp]:
"0 < x ==> 0 < y ==> 0 < x / y"
by(simp add:field_simps)
--- a/src/HOL/Rat.thy Fri Jun 14 08:34:27 2019 +0000
+++ b/src/HOL/Rat.thy Fri Jun 14 08:34:27 2019 +0000
@@ -529,6 +529,10 @@
end
+text\<open>Lemmas \<open>sign_simps\<close> is a first attempt to automate proofs
+of positivity/negativity needed for \<open>field_simps\<close>. Have not added \<open>sign_simps\<close> to \<open>field_simps\<close> because the former can lead to case
+explosions.\<close>
+
lemmas (in linordered_field) sign_simps = algebra_simps zero_less_mult_iff mult_less_0_iff
lemmas sign_simps = algebra_simps zero_less_mult_iff mult_less_0_iff