tidying
authorpaulson
Wed, 29 Oct 2003 16:16:20 +0100
changeset 14249 05382e257d95
parent 14248 399a3290936c
child 14250 d09e92e7c2bf
tidying
src/HOL/ex/Classical.thy
--- a/src/HOL/ex/Classical.thy	Wed Oct 29 11:50:26 2003 +0100
+++ b/src/HOL/ex/Classical.thy	Wed Oct 29 16:16:20 2003 +0100
@@ -10,8 +10,9 @@
 
 subsection{*Traditional Classical Reasoner*}
 
-text{*Taken from @{text "FOL/cla.ML"}. When porting examples from first-order
-logic, beware of the precedence of @{text "="} versus @{text "\<leftrightarrow>"}.*}
+text{*Taken from @{text "FOL/Classical.thy"}. When porting examples from
+first-order logic, beware of the precedence of @{text "="} versus @{text
+"\<leftrightarrow>"}.*}
 
 lemma "(P --> Q | R) --> (P-->Q) | (P-->R)"
 by blast
@@ -25,8 +26,8 @@
 by blast
 
 
-text{*Sample problems from 
-  F. J. Pelletier, 
+text{*Sample problems from
+  F. J. Pelletier,
   Seventy-Five Problems for Testing Automatic Theorem Provers,
   J. Automated Reasoning 2 (1986), 191-216.
   Errata, JAR 4 (1988), 236-236.
@@ -120,14 +121,14 @@
 by blast
 
 text{*From Wishnu Prasetya*}
-lemma "(\<forall>s. q(s) --> r(s)) & ~r(s) & (\<forall>s. ~r(s) & ~q(s) --> p(t) | q(t))  
+lemma "(\<forall>s. q(s) --> r(s)) & ~r(s) & (\<forall>s. ~r(s) & ~q(s) --> p(t) | q(t))
     --> p(t) | r(t)"
 by blast
 
 
 subsubsection{*Problems requiring quantifier duplication*}
 
-text{*Theorem B of Peter Andrews, Theorem Proving via General Matings, 
+text{*Theorem B of Peter Andrews, Theorem Proving via General Matings,
   JACM 28 (1981).*}
 lemma "(\<exists>x. \<forall>y. P(x) = P(y)) --> ((\<exists>x. P(x)) = (\<forall>y. P(y)))"
 by blast
@@ -157,7 +158,7 @@
 by blast
 
 text{*Problem 20*}
-lemma "(\<forall>x y. \<exists>z. \<forall>w. (P(x)&Q(y)-->R(z)&S(w)))      
+lemma "(\<forall>x y. \<exists>z. \<forall>w. (P(x)&Q(y)-->R(z)&S(w)))
     --> (\<exists>x y. P(x) & Q(y)) --> (\<exists>z. R(z))"
 by blast
 
@@ -174,76 +175,76 @@
 by blast
 
 text{*Problem 24*}
-lemma "~(\<exists>x. S(x)&Q(x)) & (\<forall>x. P(x) --> Q(x)|R(x)) &   
-     (~(\<exists>x. P(x)) --> (\<exists>x. Q(x))) & (\<forall>x. Q(x)|R(x) --> S(x))   
+lemma "~(\<exists>x. S(x)&Q(x)) & (\<forall>x. P(x) --> Q(x)|R(x)) &
+     (~(\<exists>x. P(x)) --> (\<exists>x. Q(x))) & (\<forall>x. Q(x)|R(x) --> S(x))
     --> (\<exists>x. P(x)&R(x))"
 by blast
 
 text{*Problem 25*}
-lemma "(\<exists>x. P(x)) &   
-        (\<forall>x. L(x) --> ~ (M(x) & R(x))) &   
-        (\<forall>x. P(x) --> (M(x) & L(x))) &    
-        ((\<forall>x. P(x)-->Q(x)) | (\<exists>x. P(x)&R(x)))   
+lemma "(\<exists>x. P(x)) &
+        (\<forall>x. L(x) --> ~ (M(x) & R(x))) &
+        (\<forall>x. P(x) --> (M(x) & L(x))) &
+        ((\<forall>x. P(x)-->Q(x)) | (\<exists>x. P(x)&R(x)))
     --> (\<exists>x. Q(x)&P(x))"
 by blast
 
 text{*Problem 26*}
-lemma "((\<exists>x. p(x)) = (\<exists>x. q(x))) &      
-      (\<forall>x. \<forall>y. p(x) & q(y) --> (r(x) = s(y)))  
+lemma "((\<exists>x. p(x)) = (\<exists>x. q(x))) &
+      (\<forall>x. \<forall>y. p(x) & q(y) --> (r(x) = s(y)))
   --> ((\<forall>x. p(x)-->r(x)) = (\<forall>x. q(x)-->s(x)))"
 by blast
 
 text{*Problem 27*}
-lemma "(\<exists>x. P(x) & ~Q(x)) &    
-              (\<forall>x. P(x) --> R(x)) &    
-              (\<forall>x. M(x) & L(x) --> P(x)) &    
-              ((\<exists>x. R(x) & ~ Q(x)) --> (\<forall>x. L(x) --> ~ R(x)))   
+lemma "(\<exists>x. P(x) & ~Q(x)) &
+              (\<forall>x. P(x) --> R(x)) &
+              (\<forall>x. M(x) & L(x) --> P(x)) &
+              ((\<exists>x. R(x) & ~ Q(x)) --> (\<forall>x. L(x) --> ~ R(x)))
           --> (\<forall>x. M(x) --> ~L(x))"
 by blast
 
 text{*Problem 28.  AMENDED*}
-lemma "(\<forall>x. P(x) --> (\<forall>x. Q(x))) &    
-        ((\<forall>x. Q(x)|R(x)) --> (\<exists>x. Q(x)&S(x))) &   
-        ((\<exists>x. S(x)) --> (\<forall>x. L(x) --> M(x)))   
+lemma "(\<forall>x. P(x) --> (\<forall>x. Q(x))) &
+        ((\<forall>x. Q(x)|R(x)) --> (\<exists>x. Q(x)&S(x))) &
+        ((\<exists>x. S(x)) --> (\<forall>x. L(x) --> M(x)))
     --> (\<forall>x. P(x) & L(x) --> M(x))"
 by blast
 
 text{*Problem 29.  Essentially the same as Principia Mathematica *11.71*}
-lemma "(\<exists>x. F(x)) & (\<exists>y. G(y))   
-    --> ( ((\<forall>x. F(x)-->H(x)) & (\<forall>y. G(y)-->J(y)))  =    
+lemma "(\<exists>x. F(x)) & (\<exists>y. G(y))
+    --> ( ((\<forall>x. F(x)-->H(x)) & (\<forall>y. G(y)-->J(y)))  =
           (\<forall>x y. F(x) & G(y) --> H(x) & J(y)))"
 by blast
 
 text{*Problem 30*}
-lemma "(\<forall>x. P(x) | Q(x) --> ~ R(x)) &  
-        (\<forall>x. (Q(x) --> ~ S(x)) --> P(x) & R(x))   
+lemma "(\<forall>x. P(x) | Q(x) --> ~ R(x)) &
+        (\<forall>x. (Q(x) --> ~ S(x)) --> P(x) & R(x))
     --> (\<forall>x. S(x))"
 by blast
 
 text{*Problem 31*}
-lemma "~(\<exists>x. P(x) & (Q(x) | R(x))) &  
-        (\<exists>x. L(x) & P(x)) &  
-        (\<forall>x. ~ R(x) --> M(x))   
+lemma "~(\<exists>x. P(x) & (Q(x) | R(x))) &
+        (\<exists>x. L(x) & P(x)) &
+        (\<forall>x. ~ R(x) --> M(x))
     --> (\<exists>x. L(x) & M(x))"
 by blast
 
 text{*Problem 32*}
-lemma "(\<forall>x. P(x) & (Q(x)|R(x))-->S(x)) &  
-        (\<forall>x. S(x) & R(x) --> L(x)) &  
-        (\<forall>x. M(x) --> R(x))   
+lemma "(\<forall>x. P(x) & (Q(x)|R(x))-->S(x)) &
+        (\<forall>x. S(x) & R(x) --> L(x)) &
+        (\<forall>x. M(x) --> R(x))
     --> (\<forall>x. P(x) & M(x) --> L(x))"
 by blast
 
 text{*Problem 33*}
-lemma "(\<forall>x. P(a) & (P(x)-->P(b))-->P(c))  =     
+lemma "(\<forall>x. P(a) & (P(x)-->P(b))-->P(c))  =
      (\<forall>x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"
 by blast
 
 text{*Problem 34  AMENDED (TWICE!!)*}
 text{*Andrews's challenge*}
-lemma "((\<exists>x. \<forall>y. p(x) = p(y))  =                
-               ((\<exists>x. q(x)) = (\<forall>y. p(y))))   =     
-              ((\<exists>x. \<forall>y. q(x) = q(y))  =           
+lemma "((\<exists>x. \<forall>y. p(x) = p(y))  =
+               ((\<exists>x. q(x)) = (\<forall>y. p(y))))   =
+              ((\<exists>x. \<forall>y. q(x) = q(y))  =
                ((\<exists>x. p(x)) = (\<forall>y. q(y))))"
 by blast
 
@@ -252,26 +253,26 @@
 by blast
 
 text{*Problem 36*}
-lemma "(\<forall>x. \<exists>y. J x y) &  
-        (\<forall>x. \<exists>y. G x y) &  
-        (\<forall>x y. J x y | G x y -->        
-        (\<forall>z. J y z | G y z --> H x z))    
+lemma "(\<forall>x. \<exists>y. J x y) &
+        (\<forall>x. \<exists>y. G x y) &
+        (\<forall>x y. J x y | G x y -->
+        (\<forall>z. J y z | G y z --> H x z))
     --> (\<forall>x. \<exists>y. H x y)"
 by blast
 
 text{*Problem 37*}
-lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.  
-           (P x z -->P y w) & P y z & (P y w --> (\<exists>u. Q u w))) &  
-        (\<forall>x z. ~(P x z) --> (\<exists>y. Q y z)) &  
-        ((\<exists>x y. Q x y) --> (\<forall>x. R x x))   
+lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.
+           (P x z -->P y w) & P y z & (P y w --> (\<exists>u. Q u w))) &
+        (\<forall>x z. ~(P x z) --> (\<exists>y. Q y z)) &
+        ((\<exists>x y. Q x y) --> (\<forall>x. R x x))
     --> (\<forall>x. \<exists>y. R x y)"
 by blast
 
 text{*Problem 38*}
-lemma "(\<forall>x. p(a) & (p(x) --> (\<exists>y. p(y) & r x y)) -->             
-           (\<exists>z. \<exists>w. p(z) & r x w & r w z))  =                  
-     (\<forall>x. (~p(a) | p(x) | (\<exists>z. \<exists>w. p(z) & r x w & r w z)) &   
-           (~p(a) | ~(\<exists>y. p(y) & r x y) |                       
+lemma "(\<forall>x. p(a) & (p(x) --> (\<exists>y. p(y) & r x y)) -->
+           (\<exists>z. \<exists>w. p(z) & r x w & r w z))  =
+     (\<forall>x. (~p(a) | p(x) | (\<exists>z. \<exists>w. p(z) & r x w & r w z)) &
+           (~p(a) | ~(\<exists>y. p(y) & r x y) |
             (\<exists>z. \<exists>w. p(z) & r x w & r w z)))"
 by blast (*beats fast!*)
 
@@ -280,12 +281,12 @@
 by blast
 
 text{*Problem 40.  AMENDED*}
-lemma "(\<exists>y. \<forall>x. F x y = F x x)   
+lemma "(\<exists>y. \<forall>x. F x y = F x x)
         -->  ~ (\<forall>x. \<exists>y. \<forall>z. F z y = (~ F z x))"
 by blast
 
 text{*Problem 41*}
-lemma "(\<forall>z. \<exists>y. \<forall>x. f x y = (f x z & ~ f x x))         
+lemma "(\<forall>z. \<exists>y. \<forall>x. f x y = (f x z & ~ f x x))
                --> ~ (\<exists>z. \<forall>x. f x z)"
 by blast
 
@@ -294,23 +295,23 @@
 by blast
 
 text{*Problem 43!!*}
-lemma "(\<forall>x::'a. \<forall>y::'a. q x y = (\<forall>z. p z x = (p z y::bool)))    
+lemma "(\<forall>x::'a. \<forall>y::'a. q x y = (\<forall>z. p z x = (p z y::bool)))
   --> (\<forall>x. (\<forall>y. q x y = (q y x::bool)))"
 by blast
 
 text{*Problem 44*}
-lemma "(\<forall>x. f(x) -->                                     
-              (\<exists>y. g(y) & h x y & (\<exists>y. g(y) & ~ h x y)))  &    
-              (\<exists>x. j(x) & (\<forall>y. g(y) --> h x y))                
+lemma "(\<forall>x. f(x) -->
+              (\<exists>y. g(y) & h x y & (\<exists>y. g(y) & ~ h x y)))  &
+              (\<exists>x. j(x) & (\<forall>y. g(y) --> h x y))
               --> (\<exists>x. j(x) & ~f(x))"
 by blast
 
 text{*Problem 45*}
-lemma "(\<forall>x. f(x) & (\<forall>y. g(y) & h x y --> j x y)  
-                      --> (\<forall>y. g(y) & h x y --> k(y))) &        
-     ~ (\<exists>y. l(y) & k(y)) &                                      
-     (\<exists>x. f(x) & (\<forall>y. h x y --> l(y))                          
-                & (\<forall>y. g(y) & h x y --> j x y))                 
+lemma "(\<forall>x. f(x) & (\<forall>y. g(y) & h x y --> j x y)
+                      --> (\<forall>y. g(y) & h x y --> k(y))) &
+     ~ (\<exists>y. l(y) & k(y)) &
+     (\<exists>x. f(x) & (\<forall>y. h x y --> l(y))
+                & (\<forall>y. g(y) & h x y --> j x y))
       --> (\<exists>x. f(x) & ~ (\<exists>y. g(y) & h x y))"
 by blast
 
@@ -321,10 +322,10 @@
 lemma "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"
 by blast
 
-text{*Problem 49  NOT PROVED AUTOMATICALLY*}
-text{*Hard because it involves substitution for Vars
+text{*Problem 49  NOT PROVED AUTOMATICALLY.
+     Hard because it involves substitution for Vars
   the type constraint ensures that x,y,z have the same type as a,b,u. *}
-lemma "(\<exists>x y::'a. \<forall>z. z=x | z=y) & P(a) & P(b) & (~a=b)  
+lemma "(\<exists>x y::'a. \<forall>z. z=x | z=y) & P(a) & P(b) & (~a=b)
                 --> (\<forall>u::'a. P(u))"
 apply safe
 apply (rule_tac x = a in allE, assumption)
@@ -336,12 +337,12 @@
 by blast
 
 text{*Problem 51*}
-lemma "(\<exists>z w. \<forall>x y. P x y = (x=z & y=w)) -->   
+lemma "(\<exists>z w. \<forall>x y. P x y = (x=z & y=w)) -->
      (\<exists>z. \<forall>x. \<exists>w. (\<forall>y. P x y = (y=w)) = (x=z))"
 by blast
 
 text{*Problem 52. Almost the same as 51. *}
-lemma "(\<exists>z w. \<forall>x y. P x y = (x=z & y=w)) -->   
+lemma "(\<exists>z w. \<forall>x y. P x y = (x=z & y=w)) -->
      (\<exists>w. \<forall>y. \<exists>z. (\<forall>x. P x y = (x=z)) = (y=w))"
 by blast
 
@@ -349,14 +350,14 @@
 
 text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
   fast DISCOVERS who killed Agatha. *}
-lemma "lives(agatha) & lives(butler) & lives(charles) &  
-   (killed agatha agatha | killed butler agatha | killed charles agatha) &  
-   (\<forall>x y. killed x y --> hates x y & ~richer x y) &  
-   (\<forall>x. hates agatha x --> ~hates charles x) &  
-   (hates agatha agatha & hates agatha charles) &  
-   (\<forall>x. lives(x) & ~richer x agatha --> hates butler x) &  
-   (\<forall>x. hates agatha x --> hates butler x) &  
-   (\<forall>x. ~hates x agatha | ~hates x butler | ~hates x charles) -->  
+lemma "lives(agatha) & lives(butler) & lives(charles) &
+   (killed agatha agatha | killed butler agatha | killed charles agatha) &
+   (\<forall>x y. killed x y --> hates x y & ~richer x y) &
+   (\<forall>x. hates agatha x --> ~hates charles x) &
+   (hates agatha agatha & hates agatha charles) &
+   (\<forall>x. lives(x) & ~richer x agatha --> hates butler x) &
+   (\<forall>x. hates agatha x --> hates butler x) &
+   (\<forall>x. ~hates x agatha | ~hates x butler | ~hates x charles) -->
     killed ?who agatha"
 by fast
 
@@ -365,7 +366,7 @@
 by blast
 
 text{*Problem 57*}
-lemma "P (f a b) (f b c) & P (f b c) (f a c) &  
+lemma "P (f a b) (f b c) & P (f b c) (f a c) &
      (\<forall>x y z. P x y & P y z --> P x z)    -->   P (f a b) (f a c)"
 by blast
 
@@ -382,37 +383,37 @@
 by blast
 
 text{*Problem 62 as corrected in JAR 18 (1997), page 135*}
-lemma "(\<forall>x. p a & (p x --> p(f x)) --> p(f(f x)))  =    
-      (\<forall>x. (~ p a | p x | p(f(f x))) &                         
+lemma "(\<forall>x. p a & (p x --> p(f x)) --> p(f(f x)))  =
+      (\<forall>x. (~ p a | p x | p(f(f x))) &
               (~ p a | ~ p(f x) | p(f(f x))))"
 by blast
 
 text{*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531
   fast indeed copes!*}
-lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &  
-       (\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &    
+lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &
+       (\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &
        (\<forall>x. K(x) --> ~G(x))  -->  (\<exists>x. K(x) & J(x))"
 by fast
 
-text{*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.  
+text{*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.
   It does seem obvious!*}
-lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &         
-       (\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y)))  &         
+lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &
+       (\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y)))  &
        (\<forall>x. K(x) --> ~G(x))   -->   (\<exists>x. K(x) --> ~G(x))"
 by fast
 
-text{*Attributed to Lewis Carroll by S. G. Pulman.  The first or last 
+text{*Attributed to Lewis Carroll by S. G. Pulman.  The first or last
 assumption can be deleted.*}
-lemma "(\<forall>x. honest(x) & industrious(x) --> healthy(x)) &  
-      ~ (\<exists>x. grocer(x) & healthy(x)) &  
-      (\<forall>x. industrious(x) & grocer(x) --> honest(x)) &  
-      (\<forall>x. cyclist(x) --> industrious(x)) &  
-      (\<forall>x. ~healthy(x) & cyclist(x) --> ~honest(x))   
+lemma "(\<forall>x. honest(x) & industrious(x) --> healthy(x)) &
+      ~ (\<exists>x. grocer(x) & healthy(x)) &
+      (\<forall>x. industrious(x) & grocer(x) --> honest(x)) &
+      (\<forall>x. cyclist(x) --> industrious(x)) &
+      (\<forall>x. ~healthy(x) & cyclist(x) --> ~honest(x))
       --> (\<forall>x. grocer(x) --> ~cyclist(x))"
 by blast
 
-lemma "(\<forall>x y. R(x,y) | R(y,x)) &                 
-       (\<forall>x y. S(x,y) & S(y,x) --> x=y) &         
+lemma "(\<forall>x y. R(x,y) | R(y,x)) &
+       (\<forall>x y. S(x,y) & S(y,x) --> x=y) &
        (\<forall>x y. R(x,y) --> S(x,y))    -->   (\<forall>x y. S(x,y) --> R(x,y))"
 by blast
 
@@ -522,6 +523,10 @@
 lemma "\<exists>z. P z --> (\<forall>x. P x)"
 by meson
 
+text{*From a paper by Claire Quigley*}
+lemma "\<exists>y. ((P c & Q y) | (\<exists>z. ~ Q z)) | (\<exists>x. ~ P x & Q d)"
+by fast
+
 subsubsection{*Hard examples with quantifiers*}
 
 text{*Problem 18*}
@@ -533,7 +538,7 @@
 by meson
 
 text{*Problem 20*}
-lemma "(\<forall>x y. \<exists>z. \<forall>w. (P x & Q y --> R z & S w))      
+lemma "(\<forall>x y. \<exists>z. \<forall>w. (P x & Q y --> R z & S w))
     --> (\<exists>x y. P x & Q y) --> (\<exists>z. R z)"
 by meson
 
@@ -550,78 +555,75 @@
 by meson
 
 text{*Problem 24*}  (*The first goal clause is useless*)
-lemma "~(\<exists>x. S x & Q x) & (\<forall>x. P x --> Q x | R x) &   
-      (~(\<exists>x. P x) --> (\<exists>x. Q x)) & (\<forall>x. Q x | R x --> S x)   
+lemma "~(\<exists>x. S x & Q x) & (\<forall>x. P x --> Q x | R x) &
+      (~(\<exists>x. P x) --> (\<exists>x. Q x)) & (\<forall>x. Q x | R x --> S x)
     --> (\<exists>x. P x & R x)"
 by meson
 
 text{*Problem 25*}
-lemma "(\<exists>x. P x) &   
-      (\<forall>x. L x --> ~ (M x & R x)) &   
-      (\<forall>x. P x --> (M x & L x)) &    
-      ((\<forall>x. P x --> Q x) | (\<exists>x. P x & R x))   
+lemma "(\<exists>x. P x) &
+      (\<forall>x. L x --> ~ (M x & R x)) &
+      (\<forall>x. P x --> (M x & L x)) &
+      ((\<forall>x. P x --> Q x) | (\<exists>x. P x & R x))
     --> (\<exists>x. Q x & P x)"
 by meson
 
 text{*Problem 26; has 24 Horn clauses*}
-lemma "((\<exists>x. p x) = (\<exists>x. q x)) &      
-      (\<forall>x. \<forall>y. p x & q y --> (r x = s y))  
+lemma "((\<exists>x. p x) = (\<exists>x. q x)) &
+      (\<forall>x. \<forall>y. p x & q y --> (r x = s y))
   --> ((\<forall>x. p x --> r x) = (\<forall>x. q x --> s x))"
 by meson
 
 text{*Problem 27; has 13 Horn clauses*}
-lemma "(\<exists>x. P x & ~Q x) &    
-      (\<forall>x. P x --> R x) &    
-      (\<forall>x. M x & L x --> P x) &    
-      ((\<exists>x. R x & ~ Q x) --> (\<forall>x. L x --> ~ R x))   
+lemma "(\<exists>x. P x & ~Q x) &
+      (\<forall>x. P x --> R x) &
+      (\<forall>x. M x & L x --> P x) &
+      ((\<exists>x. R x & ~ Q x) --> (\<forall>x. L x --> ~ R x))
       --> (\<forall>x. M x --> ~L x)"
 by meson
 
 text{*Problem 28.  AMENDED; has 14 Horn clauses*}
-lemma "(\<forall>x. P x --> (\<forall>x. Q x)) &    
-      ((\<forall>x. Q x | R x) --> (\<exists>x. Q x & S x)) &   
-      ((\<exists>x. S x) --> (\<forall>x. L x --> M x))   
+lemma "(\<forall>x. P x --> (\<forall>x. Q x)) &
+      ((\<forall>x. Q x | R x) --> (\<exists>x. Q x & S x)) &
+      ((\<exists>x. S x) --> (\<forall>x. L x --> M x))
     --> (\<forall>x. P x & L x --> M x)"
 by meson
 
-text{*Problem 29.  Essentially the same as Principia Mathematica
-*11.71.  62 Horn clauses*}
-lemma "(\<exists>x. F x) & (\<exists>y. G y)   
-    --> ( ((\<forall>x. F x --> H x) & (\<forall>y. G y --> J y))  =    
+text{*Problem 29.  Essentially the same as Principia Mathematica *11.71.
+      62 Horn clauses*}
+lemma "(\<exists>x. F x) & (\<exists>y. G y)
+    --> ( ((\<forall>x. F x --> H x) & (\<forall>y. G y --> J y))  =
           (\<forall>x y. F x & G y --> H x & J y))"
 by meson
 
 
 text{*Problem 30*}
-lemma "(\<forall>x. P x | Q x --> ~ R x) & (\<forall>x. (Q x --> ~ S x) --> P x & R x)   
+lemma "(\<forall>x. P x | Q x --> ~ R x) & (\<forall>x. (Q x --> ~ S x) --> P x & R x)
        --> (\<forall>x. S x)"
 by meson
 
 text{*Problem 31; has 10 Horn clauses; first negative clauses is useless*}
-lemma "~(\<exists>x. P x & (Q x | R x)) &  
-      (\<exists>x. L x & P x) &  
-      (\<forall>x. ~ R x --> M x)   
+lemma "~(\<exists>x. P x & (Q x | R x)) &
+      (\<exists>x. L x & P x) &
+      (\<forall>x. ~ R x --> M x)
     --> (\<exists>x. L x & M x)"
 by meson
 
 text{*Problem 32*}
-lemma "(\<forall>x. P x & (Q x | R x)-->S x) &  
-      (\<forall>x. S x & R x --> L x) &  
-      (\<forall>x. M x --> R x)   
+lemma "(\<forall>x. P x & (Q x | R x)-->S x) &
+      (\<forall>x. S x & R x --> L x) &
+      (\<forall>x. M x --> R x)
     --> (\<forall>x. P x & M x --> L x)"
 by meson
 
 text{*Problem 33; has 55 Horn clauses*}
-lemma "(\<forall>x. P a & (P x --> P b)-->P c)  =     
+lemma "(\<forall>x. P a & (P x --> P b)-->P c)  =
       (\<forall>x. (~P a | P x | P c) & (~P a | ~P b | P c))"
 by meson
 
-text{*Problem 34  AMENDED (TWICE!!); has 924 Horn clauses*}
-text{*Andrews's challenge*}
-lemma "((\<exists>x. \<forall>y. p x = p y)  =                
-       ((\<exists>x. q x) = (\<forall>y. p y)))     =        
-      ((\<exists>x. \<forall>y. q x = q y)  =                
-       ((\<exists>x. p x) = (\<forall>y. q y)))"
+text{*Problem 34: Andrews's challenge has 924 Horn clauses*}
+lemma "((\<exists>x. \<forall>y. p x = p y)  = ((\<exists>x. q x) = (\<forall>y. p y)))     =
+      ((\<exists>x. \<forall>y. q x = q y)  = ((\<exists>x. p x) = (\<forall>y. q y)))"
 by meson
 
 text{*Problem 35*}
@@ -629,27 +631,25 @@
 by meson
 
 text{*Problem 36; has 15 Horn clauses*}
-lemma "(\<forall>x. \<exists>y. J x y) &  
-      (\<forall>x. \<exists>y. G x y) &  
-      (\<forall>x y. J x y | G x y -->        
-      (\<forall>z. J y z | G y z --> H x z))    
-    --> (\<forall>x. \<exists>y. H x y)"
+lemma "(\<forall>x. \<exists>y. J x y) & (\<forall>x. \<exists>y. G x y) &
+       (\<forall>x y. J x y | G x y --> (\<forall>z. J y z | G y z --> H x z))
+       --> (\<forall>x. \<exists>y. H x y)"
 by meson
 
 text{*Problem 37; has 10 Horn clauses*}
-lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.  
-           (P x z --> P y w) & P y z & (P y w --> (\<exists>u. Q u w))) &  
-      (\<forall>x z. ~P x z --> (\<exists>y. Q y z)) &  
-      ((\<exists>x y. Q x y) --> (\<forall>x. R x x))   
+lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.
+           (P x z --> P y w) & P y z & (P y w --> (\<exists>u. Q u w))) &
+      (\<forall>x z. ~P x z --> (\<exists>y. Q y z)) &
+      ((\<exists>x y. Q x y) --> (\<forall>x. R x x))
     --> (\<forall>x. \<exists>y. R x y)"
 by meson --{*causes unification tracing messages*}
 
 
 text{*Problem 38*}  text{*Quite hard: 422 Horn clauses!!*}
-lemma "(\<forall>x. p a & (p x --> (\<exists>y. p y & r x y)) -->             
-           (\<exists>z. \<exists>w. p z & r x w & r w z))  =                  
-      (\<forall>x. (~p a | p x | (\<exists>z. \<exists>w. p z & r x w & r w z)) &   
-            (~p a | ~(\<exists>y. p y & r x y) |                       
+lemma "(\<forall>x. p a & (p x --> (\<exists>y. p y & r x y)) -->
+           (\<exists>z. \<exists>w. p z & r x w & r w z))  =
+      (\<forall>x. (~p a | p x | (\<exists>z. \<exists>w. p z & r x w & r w z)) &
+            (~p a | ~(\<exists>y. p y & r x y) |
              (\<exists>z. \<exists>w. p z & r x w & r w z)))"
 by meson
 
@@ -658,12 +658,12 @@
 by meson
 
 text{*Problem 40.  AMENDED*}
-lemma "(\<exists>y. \<forall>x. F x y = F x x)   
+lemma "(\<exists>y. \<forall>x. F x y = F x x)
       -->  ~ (\<forall>x. \<exists>y. \<forall>z. F z y = (~F z x))"
 by meson
 
 text{*Problem 41*}
-lemma "(\<forall>z. (\<exists>y. (\<forall>x. f x y = (f x z & ~ f x x))))     
+lemma "(\<forall>z. (\<exists>y. (\<forall>x. f x y = (f x z & ~ f x x))))
       --> ~ (\<exists>z. \<forall>x. f x z)"
 by meson
 
@@ -672,72 +672,71 @@
 by meson
 
 text{*Problem 43  NOW PROVED AUTOMATICALLY!!*}
-lemma "(\<forall>x. \<forall>y. q x y = (\<forall>z. p z x = (p z y::bool)))   
+lemma "(\<forall>x. \<forall>y. q x y = (\<forall>z. p z x = (p z y::bool)))
       --> (\<forall>x. (\<forall>y. q x y = (q y x::bool)))"
 by meson
 
 text{*Problem 44: 13 Horn clauses; 7-step proof*}
-lemma "(\<forall>x. f x -->                                     
-            (\<exists>y. g y & h x y & (\<exists>y. g y & ~ h x y)))  &    
-      (\<exists>x. j x & (\<forall>y. g y --> h x y))                
-      --> (\<exists>x. j x & ~f x)"
+lemma "(\<forall>x. f x --> (\<exists>y. g y & h x y & (\<exists>y. g y & ~ h x y)))  &
+       (\<exists>x. j x & (\<forall>y. g y --> h x y))
+       --> (\<exists>x. j x & ~f x)"
 by meson
 
 text{*Problem 45; has 27 Horn clauses; 54-step proof*}
-lemma "(\<forall>x. f x & (\<forall>y. g y & h x y --> j x y)         
-            --> (\<forall>y. g y & h x y --> k y)) &        
-      ~ (\<exists>y. l y & k y) &                                     
-      (\<exists>x. f x & (\<forall>y. h x y --> l y)                         
-                & (\<forall>y. g y & h x y --> j x y))              
+lemma "(\<forall>x. f x & (\<forall>y. g y & h x y --> j x y)
+            --> (\<forall>y. g y & h x y --> k y)) &
+      ~ (\<exists>y. l y & k y) &
+      (\<exists>x. f x & (\<forall>y. h x y --> l y)
+                & (\<forall>y. g y & h x y --> j x y))
       --> (\<exists>x. f x & ~ (\<exists>y. g y & h x y))"
 by meson
 
 text{*Problem 46; has 26 Horn clauses; 21-step proof*}
-lemma "(\<forall>x. f x & (\<forall>y. f y & h y x --> g y) --> g x) &       
-      ((\<exists>x. f x & ~g x) -->                                     
-      (\<exists>x. f x & ~g x & (\<forall>y. f y & ~g y --> j x y))) &     
-      (\<forall>x y. f x & f y & h x y --> ~j y x)                     
-      --> (\<forall>x. f x --> g x)"
+lemma "(\<forall>x. f x & (\<forall>y. f y & h y x --> g y) --> g x) &
+       ((\<exists>x. f x & ~g x) -->
+       (\<exists>x. f x & ~g x & (\<forall>y. f y & ~g y --> j x y))) &
+       (\<forall>x y. f x & f y & h x y --> ~j y x)
+       --> (\<forall>x. f x --> g x)"
 by meson
 
 text{*Problem 47.  Schubert's Steamroller*}
         text{*26 clauses; 63 Horn clauses
           87094 inferences so far.  Searching to depth 36*}
-lemma "(\<forall>x. P1 x --> P0 x) & (\<exists>x. P1 x) &      
-      (\<forall>x. P2 x --> P0 x) & (\<exists>x. P2 x) &      
-      (\<forall>x. P3 x --> P0 x) & (\<exists>x. P3 x) &      
-      (\<forall>x. P4 x --> P0 x) & (\<exists>x. P4 x) &      
-      (\<forall>x. P5 x --> P0 x) & (\<exists>x. P5 x) &      
-      (\<forall>x. Q1 x --> Q0 x) & (\<exists>x. Q1 x) &      
-      (\<forall>x. P0 x --> ((\<forall>y. Q0 y-->R x y) |     
-                       (\<forall>y. P0 y & S y x &      
-                            (\<exists>z. Q0 z&R y z) --> R x y))) &    
-      (\<forall>x y. P3 y & (P5 x|P4 x) --> S x y) &         
-      (\<forall>x y. P3 x & P2 y --> S x y) &         
-      (\<forall>x y. P2 x & P1 y --> S x y) &         
-      (\<forall>x y. P1 x & (P2 y|Q1 y) --> ~R x y) &        
-      (\<forall>x y. P3 x & P4 y --> R x y) &         
-      (\<forall>x y. P3 x & P5 y --> ~R x y) &        
-      (\<forall>x. (P4 x|P5 x) --> (\<exists>y. Q0 y & R x y))       
-      --> (\<exists>x y. P0 x & P0 y & (\<exists>z. Q1 z & R y z & R x y))"
+lemma "(\<forall>x. P1 x --> P0 x) & (\<exists>x. P1 x) &
+       (\<forall>x. P2 x --> P0 x) & (\<exists>x. P2 x) &
+       (\<forall>x. P3 x --> P0 x) & (\<exists>x. P3 x) &
+       (\<forall>x. P4 x --> P0 x) & (\<exists>x. P4 x) &
+       (\<forall>x. P5 x --> P0 x) & (\<exists>x. P5 x) &
+       (\<forall>x. Q1 x --> Q0 x) & (\<exists>x. Q1 x) &
+       (\<forall>x. P0 x --> ((\<forall>y. Q0 y-->R x y) |
+			(\<forall>y. P0 y & S y x &
+			     (\<exists>z. Q0 z&R y z) --> R x y))) &
+       (\<forall>x y. P3 y & (P5 x|P4 x) --> S x y) &
+       (\<forall>x y. P3 x & P2 y --> S x y) &
+       (\<forall>x y. P2 x & P1 y --> S x y) &
+       (\<forall>x y. P1 x & (P2 y|Q1 y) --> ~R x y) &
+       (\<forall>x y. P3 x & P4 y --> R x y) &
+       (\<forall>x y. P3 x & P5 y --> ~R x y) &
+       (\<forall>x. (P4 x|P5 x) --> (\<exists>y. Q0 y & R x y))
+       --> (\<exists>x y. P0 x & P0 y & (\<exists>z. Q1 z & R y z & R x y))"
 by (tactic{*safe_best_meson_tac 1*})
-    --{*Considerably faster than @{text meson}, 
+    --{*Considerably faster than @{text meson},
         which does iterative deepening rather than best-first search*}
 
 text{*The Los problem. Circulated by John Harrison*}
-lemma "(\<forall>x y z. P x y & P y z --> P x z) &       
-      (\<forall>x y z. Q x y & Q y z --> Q x z) &              
-      (\<forall>x y. P x y --> P y x) &                        
-      (\<forall>x y. P x y | Q x y)                            
-      --> (\<forall>x y. P x y) | (\<forall>x y. Q x y)"
+lemma "(\<forall>x y z. P x y & P y z --> P x z) &
+       (\<forall>x y z. Q x y & Q y z --> Q x z) &
+       (\<forall>x y. P x y --> P y x) &
+       (\<forall>x y. P x y | Q x y)
+       --> (\<forall>x y. P x y) | (\<forall>x y. Q x y)"
 by meson
 
 text{*A similar example, suggested by Johannes Schumann and
  credited to Pelletier*}
-lemma "(\<forall>x y z. P x y --> P y z --> P x z) -->  
-      (\<forall>x y z. Q x y --> Q y z --> Q x z) -->  
-      (\<forall>x y. Q x y --> Q y x) -->  (\<forall>x y. P x y | Q x y) -->  
-      (\<forall>x y. P x y) | (\<forall>x y. Q x y)"
+lemma "(\<forall>x y z. P x y --> P y z --> P x z) -->
+       (\<forall>x y z. Q x y --> Q y z --> Q x z) -->
+       (\<forall>x y. Q x y --> Q y x) -->  (\<forall>x y. P x y | Q x y) -->
+       (\<forall>x y. P x y) | (\<forall>x y. Q x y)"
 by meson
 
 text{*Problem 50.  What has this to do with equality?*}
@@ -748,24 +747,23 @@
 
 text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
   @{text meson} cannot report who killed Agatha. *}
-lemma "lives agatha & lives butler & lives charles &  
-      (killed agatha agatha | killed butler agatha | killed charles agatha) &  
-      (\<forall>x y. killed x y --> hates x y & ~richer x y) &  
-      (\<forall>x. hates agatha x --> ~hates charles x) &  
-      (hates agatha agatha & hates agatha charles) &  
-      (\<forall>x. lives x & ~richer x agatha --> hates butler x) &  
-      (\<forall>x. hates agatha x --> hates butler x) &  
-      (\<forall>x. ~hates x agatha | ~hates x butler | ~hates x charles) -->  
-      (\<exists>x. killed x agatha)"
+lemma "lives agatha & lives butler & lives charles &
+       (killed agatha agatha | killed butler agatha | killed charles agatha) &
+       (\<forall>x y. killed x y --> hates x y & ~richer x y) &
+       (\<forall>x. hates agatha x --> ~hates charles x) &
+       (hates agatha agatha & hates agatha charles) &
+       (\<forall>x. lives x & ~richer x agatha --> hates butler x) &
+       (\<forall>x. hates agatha x --> hates butler x) &
+       (\<forall>x. ~hates x agatha | ~hates x butler | ~hates x charles) -->
+       (\<exists>x. killed x agatha)"
 by meson
 
 text{*Problem 57*}
-lemma "P (f a b) (f b c) & P (f b c) (f a c) &  
+lemma "P (f a b) (f b c) & P (f b c) (f a c) &
       (\<forall>x y z. P x y & P y z --> P x z)    -->   P (f a b) (f a c)"
 by meson
 
-text{*Problem 58*}
-text{* Challenge found on info-hol *}
+text{*Problem 58: Challenge found on info-hol *}
 lemma "\<forall>P Q R x. \<exists>v w. \<forall>y z. P x & Q y --> (P v | R w) & (R z --> Q v)"
 by meson
 
@@ -778,9 +776,9 @@
 by meson
 
 text{*Problem 62 as corrected in JAR 18 (1997), page 135*}
-lemma "(\<forall>x. p a & (p x --> p(f x)) --> p(f(f x)))  =    
-      (\<forall>x. (~ p a | p x | p(f(f x))) &                         
-              (~ p a | ~ p(f x) | p(f(f x))))"
+lemma "(\<forall>x. p a & (p x --> p(f x)) --> p(f(f x)))  =
+       (\<forall>x. (~ p a | p x | p(f(f x))) &
+            (~ p a | ~ p(f x) | p(f(f x))))"
 by meson
 
 end