move take-proofs stuff into new theory Domain_Aux.thy
authorhuffman
Mon, 08 Mar 2010 08:12:48 -0800
changeset 35652 05ca920cd94b
parent 35651 5dd352a85464
child 35653 f87132febfac
move take-proofs stuff into new theory Domain_Aux.thy
src/HOLCF/Domain_Aux.thy
src/HOLCF/IsaMakefile
src/HOLCF/Representable.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Domain_Aux.thy	Mon Mar 08 08:12:48 2010 -0800
@@ -0,0 +1,50 @@
+(*  Title:      HOLCF/Domain_Aux.thy
+    Author:     Brian Huffman
+*)
+
+header {* Domain package support *}
+
+theory Domain_Aux
+imports Ssum Sprod Fixrec
+uses
+  ("Tools/Domain/domain_take_proofs.ML")
+begin
+
+subsection {* Proofs about take functions *}
+
+text {*
+  This section contains lemmas that are used in a module that supports
+  the domain isomorphism package; the module contains proofs related
+  to take functions and the finiteness predicate.
+*}
+
+lemma deflation_abs_rep:
+  fixes abs and rep and d
+  assumes abs_iso: "\<And>x. rep\<cdot>(abs\<cdot>x) = x"
+  assumes rep_iso: "\<And>y. abs\<cdot>(rep\<cdot>y) = y"
+  shows "deflation d \<Longrightarrow> deflation (abs oo d oo rep)"
+by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms)
+
+lemma deflation_chain_min:
+  assumes chain: "chain d"
+  assumes defl: "\<And>n. deflation (d n)"
+  shows "d m\<cdot>(d n\<cdot>x) = d (min m n)\<cdot>x"
+proof (rule linorder_le_cases)
+  assume "m \<le> n"
+  with chain have "d m \<sqsubseteq> d n" by (rule chain_mono)
+  then have "d m\<cdot>(d n\<cdot>x) = d m\<cdot>x"
+    by (rule deflation_below_comp1 [OF defl defl])
+  moreover from `m \<le> n` have "min m n = m" by simp
+  ultimately show ?thesis by simp
+next
+  assume "n \<le> m"
+  with chain have "d n \<sqsubseteq> d m" by (rule chain_mono)
+  then have "d m\<cdot>(d n\<cdot>x) = d n\<cdot>x"
+    by (rule deflation_below_comp2 [OF defl defl])
+  moreover from `n \<le> m` have "min m n = n" by simp
+  ultimately show ?thesis by simp
+qed
+
+use "Tools/Domain/domain_take_proofs.ML"
+
+end
--- a/src/HOLCF/IsaMakefile	Mon Mar 08 07:37:11 2010 -0800
+++ b/src/HOLCF/IsaMakefile	Mon Mar 08 08:12:48 2010 -0800
@@ -39,6 +39,7 @@
   Discrete.thy \
   Deflation.thy \
   Domain.thy \
+  Domain_Aux.thy \
   Eventual.thy \
   Ffun.thy \
   Fixrec.thy \
--- a/src/HOLCF/Representable.thy	Mon Mar 08 07:37:11 2010 -0800
+++ b/src/HOLCF/Representable.thy	Mon Mar 08 08:12:48 2010 -0800
@@ -5,51 +5,12 @@
 header {* Representable Types *}
 
 theory Representable
-imports Algebraic Universal Ssum Sprod One Fixrec
+imports Algebraic Universal Ssum Sprod One Fixrec Domain_Aux
 uses
   ("Tools/repdef.ML")
-  ("Tools/Domain/domain_take_proofs.ML")
   ("Tools/Domain/domain_isomorphism.ML")
 begin
 
-subsection {* Preliminaries: Take proofs *}
-
-text {*
-  This section contains lemmas that are used in a module that supports
-  the domain isomorphism package; the module contains proofs related
-  to take functions and the finiteness predicate.
-*}
-
-lemma deflation_abs_rep:
-  fixes abs and rep and d
-  assumes abs_iso: "\<And>x. rep\<cdot>(abs\<cdot>x) = x"
-  assumes rep_iso: "\<And>y. abs\<cdot>(rep\<cdot>y) = y"
-  shows "deflation d \<Longrightarrow> deflation (abs oo d oo rep)"
-by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms)
-
-lemma deflation_chain_min:
-  assumes chain: "chain d"
-  assumes defl: "\<And>n. deflation (d n)"
-  shows "d m\<cdot>(d n\<cdot>x) = d (min m n)\<cdot>x"
-proof (rule linorder_le_cases)
-  assume "m \<le> n"
-  with chain have "d m \<sqsubseteq> d n" by (rule chain_mono)
-  then have "d m\<cdot>(d n\<cdot>x) = d m\<cdot>x"
-    by (rule deflation_below_comp1 [OF defl defl])
-  moreover from `m \<le> n` have "min m n = m" by simp
-  ultimately show ?thesis by simp
-next
-  assume "n \<le> m"
-  with chain have "d n \<sqsubseteq> d m" by (rule chain_mono)
-  then have "d m\<cdot>(d n\<cdot>x) = d n\<cdot>x"
-    by (rule deflation_below_comp2 [OF defl defl])
-  moreover from `n \<le> m` have "min m n = n" by simp
-  ultimately show ?thesis by simp
-qed
-
-use "Tools/Domain/domain_take_proofs.ML"
-
-
 subsection {* Class of representable types *}
 
 text "Overloaded embedding and projection functions between