--- a/src/Pure/thm.ML Wed Dec 06 14:05:18 2023 +0100
+++ b/src/Pure/thm.ML Wed Dec 06 21:28:40 2023 +0100
@@ -1811,10 +1811,15 @@
val constraints' =
TVars.fold (fn ((_, S), (T, _)) => insert_constraints thy' (T, S))
instT' constraints;
+
+ fun prf p =
+ Proofterm.instantiate (TVars.map (K #1) instT', Vars.map (K #1) inst') p;
+ fun zprf p =
+ ZTerm.instantiate_proof thy'
+ (TVars.fold (fn (v, (T, _)) => cons (v, T)) instT' [],
+ Vars.fold (fn (v, (t, _)) => cons (v, t)) inst' []) p;
in
- Thm (deriv_rule1
- (fn d => Proofterm.instantiate (TVars.map (K #1) instT', Vars.map (K #1) inst') d,
- ZTerm.todo_proof) der,
+ Thm (deriv_rule1 (prf, zprf) der,
{cert = cert',
tags = [],
maxidx = maxidx',
@@ -1953,8 +1958,10 @@
val prop1 = attach_tpairs tpairs prop;
val prop2 = Type.legacy_freeze prop1;
val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
+ fun prf p = Proofterm.legacy_freezeT prop1 p;
+ fun zprf p = ZTerm.legacy_freezeT_proof prop1 p;
in
- Thm (deriv_rule1 (Proofterm.legacy_freezeT prop1, ZTerm.todo_proof) der,
+ Thm (deriv_rule1 (prf, zprf) der,
{cert = cert,
tags = [],
maxidx = maxidx_of_term prop2,
@@ -2018,7 +2025,7 @@
if i < 0 then raise THM ("negative increment", 0, [thm])
else if i = 0 then thm
else
- Thm (deriv_rule1 (Proofterm.incr_indexes i, ZTerm.todo_proof) der,
+ Thm (deriv_rule1 (Proofterm.incr_indexes i, ZTerm.incr_indexes_proof i) der,
{cert = cert,
tags = [],
maxidx = maxidx + i,
@@ -2108,8 +2115,11 @@
let val (ps, qs) = chop m asms
in Logic.list_all (params, Logic.list_implies (qs @ ps, concl)) end
else raise THM ("rotate_rule", k, [state]);
+
+ fun prf p = Proofterm.rotate_proof Bs Bi' params asms m p;
+ fun zprf p = ZTerm.rotate_proof (Context.certificate_theory cert) Bs Bi' params asms m p;
in
- Thm (deriv_rule1 (Proofterm.rotate_proof Bs Bi' params asms m, ZTerm.todo_proof) der,
+ Thm (deriv_rule1 (prf, zprf) der,
{cert = cert,
tags = [],
maxidx = maxidx,
@@ -2142,8 +2152,11 @@
val prems' = fixed_prems @ qs @ ps;
in (prems', Logic.list_implies (prems', concl)) end
else raise THM ("permute_prems: k", k, [rl]);
+
+ fun prf p = Proofterm.permute_prems_proof prems' j m p;
+ fun zprf p = ZTerm.permute_prems_proof (Context.certificate_theory cert) prems' j m p;
in
- Thm (deriv_rule1 (Proofterm.permute_prems_proof prems' j m, ZTerm.todo_proof) der,
+ Thm (deriv_rule1 (prf, zprf) der,
{cert = cert,
tags = [],
maxidx = maxidx,
--- a/src/Pure/zterm.ML Wed Dec 06 14:05:18 2023 +0100
+++ b/src/Pure/zterm.ML Wed Dec 06 21:28:40 2023 +0100
@@ -157,11 +157,12 @@
val ztyp_ord: ztyp * ztyp -> order
val aconv_zterm: zterm * zterm -> bool
val ztyp_of: typ -> ztyp
+ val zterm_cache_consts: Consts.T -> {zterm: term -> zterm, ztyp: typ -> ztyp}
+ val zterm_cache: theory -> {zterm: term -> zterm, ztyp: typ -> ztyp}
+ val zterm_of: theory -> term -> zterm
val typ_of: ztyp -> typ
- val zterm_of: Consts.T -> term -> zterm
- val term_of: Consts.T -> zterm -> term
- val global_zterm_of: theory -> term -> zterm
- val global_term_of: theory -> zterm -> term
+ val term_of_consts: Consts.T -> zterm -> term
+ val term_of: theory -> zterm -> term
val dummy_proof: 'a -> zproof
val todo_proof: 'a -> zproof
val axiom_proof: theory -> string -> term -> zproof
@@ -181,7 +182,14 @@
val combination_proof: theory -> typ -> typ -> term -> term -> term -> term ->
zproof -> zproof -> zproof
val generalize_proof: Names.set * Names.set -> int -> zproof -> zproof
+ val instantiate_proof: theory ->
+ ((indexname * sort) * typ) list * ((indexname * typ) * term) list -> zproof -> zproof
val varifyT_proof: ((string * sort) * (indexname * sort)) list -> zproof -> zproof
+ val legacy_freezeT_proof: term -> zproof -> zproof
+ val incr_indexes_proof: int -> zproof -> zproof
+ val rotate_proof: theory -> term list -> term -> (string * typ) list ->
+ term list -> int -> zproof -> zproof
+ val permute_prems_proof: theory -> term list -> int -> int -> zproof -> zproof
end;
structure ZTerm: ZTERM =
@@ -201,6 +209,15 @@
| (a1, a2) => a1 = a2);
+(* derived operations *)
+
+val mk_ZAbst = fold_rev (fn (x, T) => fn prf => ZAbst (x, T, prf));
+val mk_ZAbsP = fold_rev (fn t => fn prf => ZAbsP ("H", t, prf));
+
+val mk_ZAppt = Library.foldl ZAppt;
+val mk_ZAppP = Library.foldl ZAppP;
+
+
(* map structure *)
fun subst_type_same tvar =
@@ -233,33 +250,44 @@
| term (ZClass (T, c)) = ZClass (typ T, c);
in term end;
+fun map_insts_same typ term (instT, inst) =
+ let
+ val changed = Unsynchronized.ref false;
+ fun apply f x =
+ (case Same.catch f x of
+ NONE => NONE
+ | some => (changed := true; some));
+
+ val instT' =
+ (instT, instT) |-> ZTVars.fold (fn (v, T) =>
+ (case apply typ T of
+ NONE => I
+ | SOME T' => ZTVars.update (v, T')));
+
+ val vars' =
+ (inst, ZVars.empty) |-> ZVars.fold (fn ((v, T), _) =>
+ (case apply typ T of
+ NONE => I
+ | SOME T' => ZVars.add ((v, T), (v, T'))));
+
+ val inst' =
+ if ZVars.is_empty vars' then
+ (inst, inst) |-> ZVars.fold (fn (v, t) =>
+ (case apply term t of
+ NONE => I
+ | SOME t' => ZVars.update (v, t')))
+ else
+ ZVars.dest inst
+ |> map (fn (v, t) => (the_default v (ZVars.lookup vars' v), the_default t (apply term t)))
+ |> ZVars.make_strict;
+ in if ! changed then (instT', inst') else raise Same.SAME end;
+
fun map_proof_same typ term =
let
- fun change_insts (instT, inst) =
- let
- val changed = Unsynchronized.ref false;
- val instT' =
- (instT, instT) |-> ZTVars.fold (fn (v, T) =>
- (case Same.catch typ T of
- SOME U => (changed := true; ZTVars.update (v, U))
- | NONE => I));
- val inst' =
- if ! changed then
- ZVars.dest inst
- |> map (fn ((x, T), t) => ((x, Same.commit typ T), Same.commit term t))
- |> ZVars.make
- else
- (inst, inst) |-> ZVars.fold (fn (v, t) =>
- (case Same.catch term t of
- SOME u => (changed := true; ZVars.update (v, u))
- | NONE => I));
- in if ! changed then SOME (instT', inst') else NONE end;
-
fun proof ZDummy = raise Same.SAME
| proof (ZConstP (a, A, instT, inst)) =
- (case change_insts (instT, inst) of
- NONE => ZConstP (a, term A, instT, inst)
- | SOME (instT', inst') => ZConstP (a, Same.commit term A, instT', inst'))
+ let val (instT', inst') = map_insts_same typ term (instT, inst)
+ in ZConstP (a, A, instT', inst') end
| proof (ZBoundP _) = raise Same.SAME
| proof (ZHyp h) = ZHyp (term h)
| proof (ZAbst (a, T, p)) =
@@ -273,11 +301,8 @@
| proof (ZClassP (T, c)) = ZClassP (typ T, c);
in proof end;
-
-(* instantiation *)
-
-fun init_instT t = ZTVars.build (ZTVars.add_tvars t) |> ZTVars.map (fn v => fn _ => ZTVar v);
-fun init_inst t = ZVars.build (ZVars.add_vars t) |> ZVars.map (fn v => fn _ => ZVar v);
+fun map_proof_types_same typ =
+ map_proof_same typ (subst_term_same typ Same.same);
fun map_const_proof (f, g) prf =
(case prf of
@@ -298,6 +323,37 @@
| ztyp_of (Type (c, [T])) = if c = "itself" then ZItself (ztyp_of T) else ZType1 (c, ztyp_of T)
| ztyp_of (Type (c, ts)) = ZType (c, map ztyp_of ts);
+fun zterm_cache_consts consts =
+ let
+ val typargs = Consts.typargs consts;
+
+ val ztyp_cache = Unsynchronized.ref Typtab.empty;
+ fun ztyp T =
+ (case Typtab.lookup (! ztyp_cache) T of
+ SOME Z => Z
+ | NONE =>
+ let val Z = ztyp_of T
+ in Unsynchronized.change ztyp_cache (Typtab.update (T, Z)); Z end);
+
+ fun zterm (Free (x, T)) = ZVar ((x, ~1), ztyp T)
+ | zterm (Var (xi, T)) = ZVar (xi, ztyp T)
+ | zterm (Bound i) = ZBound i
+ | zterm (Const (c, T)) =
+ (case typargs (c, T) of
+ [] => ZConst0 c
+ | [T] => ZConst1 (c, ztyp T)
+ | Ts => ZConst (c, map ztyp Ts))
+ | zterm (Abs (a, T, b)) = ZAbs (a, ztyp T, zterm b)
+ | zterm ((t as Const (c, _)) $ (u as Const ("Pure.type", _))) =
+ if String.isSuffix Logic.class_suffix c then
+ ZClass (ztyp (Logic.dest_type u), Logic.class_of_const c)
+ else ZApp (zterm t, zterm u)
+ | zterm (t $ u) = ZApp (zterm t, zterm u);
+ in {ztyp = ztyp, zterm = zterm} end;
+
+val zterm_cache = zterm_cache_consts o Sign.consts_of;
+val zterm_of = #zterm o zterm_cache;
+
fun typ_of (ZTVar ((a, ~1), S)) = TFree (a, S)
| typ_of (ZTVar v) = TVar v
| typ_of (ZFun (T, U)) = typ_of T --> typ_of U
@@ -307,26 +363,7 @@
| typ_of (ZType1 (c, T)) = Type (c, [typ_of T])
| typ_of (ZType (c, Ts)) = Type (c, map typ_of Ts);
-fun zterm_of consts =
- let
- val typargs = Consts.typargs consts;
- fun zterm (Free (x, T)) = ZVar ((x, ~1), ztyp_of T)
- | zterm (Var (xi, T)) = ZVar (xi, ztyp_of T)
- | zterm (Bound i) = ZBound i
- | zterm (Const (c, T)) =
- (case typargs (c, T) of
- [] => ZConst0 c
- | [T] => ZConst1 (c, ztyp_of T)
- | Ts => ZConst (c, map ztyp_of Ts))
- | zterm (Abs (a, T, b)) = ZAbs (a, ztyp_of T, zterm b)
- | zterm ((t as Const (c, _)) $ (u as Const ("Pure.type", _))) =
- if String.isSuffix Logic.class_suffix c then
- ZClass (ztyp_of (Logic.dest_type u), Logic.class_of_const c)
- else ZApp (zterm t, zterm u)
- | zterm (t $ u) = ZApp (zterm t, zterm u);
- in zterm end;
-
-fun term_of consts =
+fun term_of_consts consts =
let
val instance = Consts.instance consts;
fun const (c, Ts) = Const (c, instance (c, Ts));
@@ -341,8 +378,7 @@
| term (ZClass (T, c)) = Logic.mk_of_class (typ_of T, c);
in term end;
-val global_zterm_of = zterm_of o Sign.consts_of;
-val global_term_of = term_of o Sign.consts_of;
+val term_of = term_of_consts o Sign.consts_of;
@@ -356,53 +392,70 @@
fun const_proof thy a A =
let
- val t = global_zterm_of thy A;
- val instT = init_instT t;
- val inst = init_inst t;
+ val t = zterm_of thy A;
+ val instT =
+ ZTVars.build (t |> (fold_types o fold_tvars) (fn v => fn tab =>
+ if ZTVars.defined tab v then tab else ZTVars.update (v, ZTVar v) tab));
+ val inst =
+ ZVars.build (t |> fold_aterms (fn a => fn tab =>
+ (case a of
+ ZVar v => if ZVars.defined tab v then tab else ZVars.update (v, a) tab
+ | _ => tab)));
in ZConstP (a, t, instT, inst) end;
fun axiom_proof thy name = const_proof thy (ZAxiom name);
fun oracle_proof thy name = const_proof thy (ZOracle name);
fun assume_proof thy A =
- ZHyp (global_zterm_of thy A);
+ ZHyp (zterm_of thy A);
fun trivial_proof thy A =
- ZAbsP ("H", global_zterm_of thy A, ZBoundP 0);
+ ZAbsP ("H", zterm_of thy A, ZBoundP 0);
fun implies_intr_proof thy A prf =
let
- val h = global_zterm_of thy A;
- fun abs_hyp i (p as ZHyp t) = if aconv_zterm (h, t) then ZBoundP i else p
- | abs_hyp i (ZAbst (x, T, p)) = ZAbst (x, T, abs_hyp i p)
- | abs_hyp i (ZAbsP (x, t, p)) = ZAbsP (x, t, abs_hyp (i + 1) p)
- | abs_hyp i (ZAppt (p, t)) = ZAppt (abs_hyp i p, t)
- | abs_hyp i (ZAppP (p, q)) = ZAppP (abs_hyp i p, abs_hyp i q)
- | abs_hyp _ p = p;
- in ZAbsP ("H", h, abs_hyp 0 prf) end;
+ val h = zterm_of thy A;
+ fun proof i (ZHyp t) = if aconv_zterm (h, t) then ZBoundP i else raise Same.SAME
+ | proof i (ZAbst (x, T, p)) = ZAbst (x, T, proof i p)
+ | proof i (ZAbsP (x, t, p)) = ZAbsP (x, t, proof (i + 1) p)
+ | proof i (ZAppt (p, t)) = ZAppt (proof i p, t)
+ | proof i (ZAppP (p, q)) =
+ (ZAppP (proof i p, Same.commit (proof i) q) handle Same.SAME =>
+ ZAppP (p, proof i q))
+ | proof _ _ = raise Same.SAME;
+ in ZAbsP ("H", h, Same.commit (proof 0) prf) end;
fun forall_intr_proof thy T (a, x) prf =
let
- val Z = ztyp_of T;
- val z = global_zterm_of thy x;
+ val {ztyp, zterm} = zterm_cache thy;
+ val Z = ztyp T;
+ val z = zterm x;
- fun abs_term i b =
+ fun term i b =
if aconv_zterm (b, z) then ZBound i
else
(case b of
- ZAbs (x, T, t) => ZAbs (x, T, abs_term (i + 1) t)
- | ZApp (t, u) => ZApp (abs_term i t, abs_term i u)
- | _ => b);
+ ZAbs (x, T, t) => ZAbs (x, T, term (i + 1) t)
+ | ZApp (t, u) =>
+ (ZApp (term i t, Same.commit (term i) u) handle Same.SAME =>
+ ZApp (t, term i u))
+ | _ => raise Same.SAME);
- fun abs_proof i (ZAbst (x, T, prf)) = ZAbst (x, T, abs_proof (i + 1) prf)
- | abs_proof i (ZAbsP (x, t, prf)) = ZAbsP (x, abs_term i t, abs_proof i prf)
- | abs_proof i (ZAppt (p, t)) = ZAppt (abs_proof i p, abs_term i t)
- | abs_proof i (ZAppP (p, q)) = ZAppP (abs_proof i p, abs_proof i q)
- | abs_proof _ p = p;
+ fun proof i (ZAbst (x, T, prf)) = ZAbst (x, T, proof (i + 1) prf)
+ | proof i (ZAbsP (x, t, prf)) =
+ (ZAbsP (x, term i t, Same.commit (proof i) prf) handle Same.SAME =>
+ ZAbsP (x, t, proof i prf))
+ | proof i (ZAppt (p, t)) =
+ (ZAppt (proof i p, Same.commit (term i) t) handle Same.SAME =>
+ ZAppt (p, term i t))
+ | proof i (ZAppP (p, q)) =
+ (ZAppP (proof i p, Same.commit (proof i) q) handle Same.SAME =>
+ ZAppP (p, proof i q))
+ | proof _ _ = raise Same.SAME;
- in ZAbst (a, Z, abs_proof 0 prf) end;
+ in ZAbst (a, Z, Same.commit (proof 0) prf) end;
-fun forall_elim_proof thy t p = ZAppt (p, global_zterm_of thy t);
+fun forall_elim_proof thy t p = ZAppt (p, zterm_of thy t);
fun of_class_proof (T, c) = ZClassP (ztyp_of T, c);
@@ -431,17 +484,19 @@
fun reflexive_proof thy T t =
let
- val A = ztyp_of T;
- val x = global_zterm_of thy t;
+ val {ztyp, zterm} = zterm_cache thy;
+ val A = ztyp T;
+ val x = zterm t;
in map_const_proof (fn "'a" => A, fn "x" => x) reflexive_axiom end;
fun symmetric_proof thy T t u prf =
if is_reflexive_proof prf then prf
else
let
- val A = ztyp_of T;
- val x = global_zterm_of thy t;
- val y = global_zterm_of thy u;
+ val {ztyp, zterm} = zterm_cache thy;
+ val A = ztyp T;
+ val x = zterm t;
+ val y = zterm u;
val ax = map_const_proof (fn "'a" => A, fn "x" => x | "y" => y) symmetric_axiom;
in ZAppP (ax, prf) end;
@@ -450,33 +505,37 @@
else if is_reflexive_proof prf2 then prf1
else
let
- val A = ztyp_of T;
- val x = global_zterm_of thy t;
- val y = global_zterm_of thy u;
- val z = global_zterm_of thy v;
+ val {ztyp, zterm} = zterm_cache thy;
+ val A = ztyp T;
+ val x = zterm t;
+ val y = zterm u;
+ val z = zterm v;
val ax = map_const_proof (fn "'a" => A, fn "x" => x | "y" => y | "z" => z) transitive_axiom;
in ZAppP (ZAppP (ax, prf1), prf2) end;
fun equal_intr_proof thy t u prf1 prf2 =
let
- val A = global_zterm_of thy t;
- val B = global_zterm_of thy u;
+ val {ztyp, zterm} = zterm_cache thy;
+ val A = zterm t;
+ val B = zterm u;
val ax = map_const_proof (undefined, fn "A" => A | "B" => B) equal_intr_axiom;
in ZAppP (ZAppP (ax, prf1), prf2) end;
fun equal_elim_proof thy t u prf1 prf2 =
let
- val A = global_zterm_of thy t;
- val B = global_zterm_of thy u;
+ val {ztyp, zterm} = zterm_cache thy;
+ val A = zterm t;
+ val B = zterm u;
val ax = map_const_proof (undefined, fn "A" => A | "B" => B) equal_elim_axiom;
in ZAppP (ZAppP (ax, prf1), prf2) end;
fun abstract_rule_proof thy T U x t u prf =
let
- val A = ztyp_of T;
- val B = ztyp_of U;
- val f = global_zterm_of thy t;
- val g = global_zterm_of thy u;
+ val {ztyp, zterm} = zterm_cache thy;
+ val A = ztyp T;
+ val B = ztyp U;
+ val f = zterm t;
+ val g = zterm u;
val ax =
map_const_proof (fn "'a" => A | "'b" => B, fn "f" => f | "g" => g)
abstract_rule_axiom;
@@ -484,12 +543,13 @@
fun combination_proof thy T U f g t u prf1 prf2 =
let
- val A = ztyp_of T;
- val B = ztyp_of U;
- val f' = global_zterm_of thy f;
- val g' = global_zterm_of thy g;
- val x = global_zterm_of thy t;
- val y = global_zterm_of thy u;
+ val {ztyp, zterm} = zterm_cache thy;
+ val A = ztyp T;
+ val B = ztyp U;
+ val f' = zterm f;
+ val g' = zterm g;
+ val x = zterm t;
+ val y = zterm u;
val ax =
map_const_proof (fn "'a" => A | "'b" => B, fn "f" => f' | "g" => g' | "x" => x | "y" => y)
combination_axiom;
@@ -508,10 +568,20 @@
if i = ~1 andalso Names.defined tfrees a then ZTVar ((a, idx), S)
else raise Same.SAME);
val term =
- if Names.is_empty frees then Same.same else
- subst_term_same typ (fn ((x, i), T) =>
- if i = ~1 andalso Names.defined frees x then ZVar ((x, idx), T)
- else raise Same.SAME);
+ subst_term_same typ (fn ((x, i), T) =>
+ if i = ~1 andalso Names.defined frees x then ZVar ((x, idx), T)
+ else raise Same.SAME);
+ in Same.commit (map_proof_same typ term) prf end;
+
+fun instantiate_proof thy (Ts, ts) prf =
+ let
+ val {ztyp, zterm} = zterm_cache thy;
+ val instT = ZTVars.build (Ts |> fold (fn (v, T) => ZTVars.add (v, ztyp T)));
+ val inst = ZVars.build (ts |> fold (fn ((v, T), t) => ZVars.add ((v, ztyp T), zterm t)));
+ val typ =
+ if ZTVars.is_empty instT then Same.same
+ else subst_type_same (Same.function (ZTVars.lookup instT));
+ val term = subst_term_same typ (Same.function (ZVars.lookup inst));
in Same.commit (map_proof_same typ term) prf end;
fun varifyT_proof names prf =
@@ -524,7 +594,47 @@
(case ZTVars.lookup tab v of
NONE => raise Same.SAME
| SOME w => ZTVar w));
- val term = subst_term_same typ Same.same;
- in Same.commit (map_proof_same typ term) prf end;
+ in Same.commit (map_proof_types_same typ) prf end;
+
+fun legacy_freezeT_proof t prf =
+ (case Type.legacy_freezeT t of
+ NONE => prf
+ | SOME f =>
+ let
+ val tvar = ztyp_of o Same.function f;
+ val typ = subst_type_same tvar;
+ in Same.commit (map_proof_types_same typ) prf end);
+
+fun incr_indexes_proof inc prf =
+ let
+ fun tvar ((a, i), S) = if i >= 0 then ZTVar ((a, i + inc), S) else raise Same.SAME;
+ fun var ((x, i), T) = if i >= 0 then ZVar ((x, i + inc), T) else raise Same.SAME;
+ val typ = subst_type_same tvar;
+ val term = subst_term_same typ var;
+ in Same.commit (map_proof_same typ term) prf end;
+
+
+(* permutations *)
+
+fun rotate_proof thy Bs Bi' params asms m prf =
+ let
+ val {ztyp, zterm} = zterm_cache thy;
+ val i = length asms;
+ val j = length Bs;
+ in
+ mk_ZAbsP (map zterm Bs @ [zterm Bi']) (mk_ZAppP (prf, map ZBoundP
+ (j downto 1) @ [mk_ZAbst (map (apsnd ztyp) params) (mk_ZAbsP (map zterm asms)
+ (mk_ZAppP (mk_ZAppt (ZBoundP i, map ZBound ((length params - 1) downto 0)),
+ map ZBoundP (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))]))
+ end;
+
+fun permute_prems_proof thy prems' j k prf =
+ let
+ val {ztyp, zterm} = zterm_cache thy;
+ val n = length prems';
+ in
+ mk_ZAbsP (map zterm prems')
+ (mk_ZAppP (prf, map ZBoundP ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
+ end;
end;