correct sort constraints for abbreviations in type classes
* * *
yet another bunch of corrections
--- a/src/HOL/Library/Extended.thy Mon Jun 01 18:59:20 2015 +0200
+++ b/src/HOL/Library/Extended.thy Mon Jun 01 18:59:20 2015 +0200
@@ -25,7 +25,7 @@
case_of_simps less_eq_extended_case: less_eq_extended.simps
definition less_extended :: "'a extended \<Rightarrow> 'a extended \<Rightarrow> bool" where
-"((x::'a extended) < y) = (x \<le> y & \<not> x \<ge> y)"
+"((x::'a extended) < y) = (x \<le> y & \<not> y \<le> x)"
instance
by intro_classes (auto simp: less_extended_def less_eq_extended_case split: extended.splits)
--- a/src/HOL/Parity.thy Mon Jun 01 18:59:20 2015 +0200
+++ b/src/HOL/Parity.thy Mon Jun 01 18:59:20 2015 +0200
@@ -118,75 +118,60 @@
subsection {* Instances for @{typ nat} and @{typ int} *}
lemma even_Suc_Suc_iff [simp]:
- "even (Suc (Suc n)) \<longleftrightarrow> even n"
+ "2 dvd Suc (Suc n) \<longleftrightarrow> 2 dvd n"
using dvd_add_triv_right_iff [of 2 n] by simp
lemma even_Suc [simp]:
- "even (Suc n) \<longleftrightarrow> odd n"
+ "2 dvd Suc n \<longleftrightarrow> \<not> 2 dvd n"
by (induct n) auto
lemma even_diff_nat [simp]:
fixes m n :: nat
- shows "even (m - n) \<longleftrightarrow> m < n \<or> even (m + n)"
+ shows "2 dvd (m - n) \<longleftrightarrow> m < n \<or> 2 dvd (m + n)"
proof (cases "n \<le> m")
case True
then have "m - n + n * 2 = m + n" by (simp add: mult_2_right)
- moreover have "even (m - n) \<longleftrightarrow> even (m - n + n * 2)" by simp
- ultimately have "even (m - n) \<longleftrightarrow> even (m + n)" by (simp only:)
+ moreover have "2 dvd (m - n) \<longleftrightarrow> 2 dvd (m - n + n * 2)" by simp
+ ultimately have "2 dvd (m - n) \<longleftrightarrow> 2 dvd (m + n)" by (simp only:)
then show ?thesis by auto
next
case False
then show ?thesis by simp
qed
-lemma even_diff_iff [simp]:
- fixes k l :: int
- shows "even (k - l) \<longleftrightarrow> even (k + l)"
- using dvd_add_times_triv_right_iff [of 2 "k - l" l] by (simp add: mult_2_right)
-
-lemma even_abs_add_iff [simp]:
- fixes k l :: int
- shows "even (\<bar>k\<bar> + l) \<longleftrightarrow> even (k + l)"
- by (cases "k \<ge> 0") (simp_all add: ac_simps)
-
-lemma even_add_abs_iff [simp]:
- fixes k l :: int
- shows "even (k + \<bar>l\<bar>) \<longleftrightarrow> even (k + l)"
- using even_abs_add_iff [of l k] by (simp add: ac_simps)
-
instance nat :: semiring_parity
proof
- show "odd (1 :: nat)"
+ show "\<not> 2 dvd (1 :: nat)"
by (rule notI, erule dvdE) simp
next
fix m n :: nat
- assume "odd m"
- moreover assume "odd n"
- ultimately have *: "even (Suc m) \<and> even (Suc n)"
+ assume "\<not> 2 dvd m"
+ moreover assume "\<not> 2 dvd n"
+ ultimately have *: "2 dvd Suc m \<and> 2 dvd Suc n"
by simp
- then have "even (Suc m + Suc n)"
+ then have "2 dvd (Suc m + Suc n)"
by (blast intro: dvd_add)
also have "Suc m + Suc n = m + n + 2"
by simp
- finally show "even (m + n)"
+ finally show "2 dvd (m + n)"
using dvd_add_triv_right_iff [of 2 "m + n"] by simp
next
fix m n :: nat
- assume *: "even (m * n)"
- show "even m \<or> even n"
+ assume *: "2 dvd (m * n)"
+ show "2 dvd m \<or> 2 dvd n"
proof (rule disjCI)
- assume "odd n"
- then have "even (Suc n)" by simp
+ assume "\<not> 2 dvd n"
+ then have "2 dvd (Suc n)" by simp
then obtain r where "Suc n = 2 * r" ..
moreover from * obtain s where "m * n = 2 * s" ..
then have "2 * s + m = m * Suc n" by simp
ultimately have " 2 * s + m = 2 * (m * r)" by (simp add: algebra_simps)
then have "m = 2 * (m * r - s)" by simp
- then show "even m" ..
+ then show "2 dvd m" ..
qed
next
fix n :: nat
- assume "odd n"
+ assume "\<not> 2 dvd n"
then show "\<exists>m. n = m + 1"
by (cases n) simp_all
qed
@@ -194,23 +179,38 @@
lemma odd_pos:
"odd (n :: nat) \<Longrightarrow> 0 < n"
by (auto elim: oddE)
-
+
+lemma even_diff_iff [simp]:
+ fixes k l :: int
+ shows "2 dvd (k - l) \<longleftrightarrow> 2 dvd (k + l)"
+ using dvd_add_times_triv_right_iff [of 2 "k - l" l] by (simp add: mult_2_right)
+
+lemma even_abs_add_iff [simp]:
+ fixes k l :: int
+ shows "2 dvd (\<bar>k\<bar> + l) \<longleftrightarrow> 2 dvd (k + l)"
+ by (cases "k \<ge> 0") (simp_all add: ac_simps)
+
+lemma even_add_abs_iff [simp]:
+ fixes k l :: int
+ shows "2 dvd (k + \<bar>l\<bar>) \<longleftrightarrow> 2 dvd (k + l)"
+ using even_abs_add_iff [of l k] by (simp add: ac_simps)
+
instance int :: ring_parity
proof
- show "odd (1 :: int)" by (simp add: dvd_int_unfold_dvd_nat)
+ show "\<not> 2 dvd (1 :: int)" by (simp add: dvd_int_unfold_dvd_nat)
fix k l :: int
- assume "odd k"
- moreover assume "odd l"
- ultimately have "even (nat \<bar>k\<bar> + nat \<bar>l\<bar>)"
+ assume "\<not> 2 dvd k"
+ moreover assume "\<not> 2 dvd l"
+ ultimately have "2 dvd (nat \<bar>k\<bar> + nat \<bar>l\<bar>)"
by (auto simp add: dvd_int_unfold_dvd_nat intro: odd_even_add)
- then have "even (\<bar>k\<bar> + \<bar>l\<bar>)"
+ then have "2 dvd (\<bar>k\<bar> + \<bar>l\<bar>)"
by (simp add: dvd_int_unfold_dvd_nat nat_add_distrib)
- then show "even (k + l)"
+ then show "2 dvd (k + l)"
by simp
next
fix k l :: int
- assume "even (k * l)"
- then show "even k \<or> even l"
+ assume "2 dvd (k * l)"
+ then show "2 dvd k \<or> 2 dvd l"
by (simp add: dvd_int_unfold_dvd_nat even_multD nat_abs_mult_distrib)
next
fix k :: int
@@ -352,4 +352,3 @@
]
end
-
--- a/src/HOL/ex/FinFunPred.thy Mon Jun 01 18:59:20 2015 +0200
+++ b/src/HOL/ex/FinFunPred.thy Mon Jun 01 18:59:20 2015 +0200
@@ -15,7 +15,7 @@
definition le_finfun_def [code del]: "f \<le> g \<longleftrightarrow> (\<forall>x. f $ x \<le> g $ x)"
-definition [code del]: "(f\<Colon>'a \<Rightarrow>f 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> f \<ge> g"
+definition [code del]: "(f\<Colon>'a \<Rightarrow>f 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> g \<le> f"
instance ..