moved TFL files to canonical place;
authorwenzelm
Thu, 31 May 2007 13:18:52 +0200
changeset 23150 073a65f0bc40
parent 23149 ddc5800b699f
child 23151 ed3f6685ff90
moved TFL files to canonical place;
src/HOL/IsaMakefile
src/HOL/Recdef.thy
src/HOL/Tools/TFL/casesplit.ML
src/HOL/Tools/TFL/dcterm.ML
src/HOL/Tools/TFL/post.ML
src/HOL/Tools/TFL/rules.ML
src/HOL/Tools/TFL/tfl.ML
src/HOL/Tools/TFL/thms.ML
src/HOL/Tools/TFL/thry.ML
src/HOL/Tools/TFL/usyntax.ML
src/HOL/Tools/TFL/utils.ML
--- a/src/HOL/IsaMakefile	Thu May 31 13:18:42 2007 +0200
+++ b/src/HOL/IsaMakefile	Thu May 31 13:18:52 2007 +0200
@@ -81,10 +81,10 @@
   $(SRC)/Provers/project_rule.ML $(SRC)/Provers/quantifier1.ML			\
   $(SRC)/Provers/quasi.ML $(SRC)/Provers/splitter.ML				\
   $(SRC)/Provers/trancl.ML $(SRC)/Pure/General/int.ML				\
-  $(SRC)/Pure/General/rat.ML $(SRC)/TFL/casesplit.ML				\
-  $(SRC)/TFL/dcterm.ML $(SRC)/TFL/post.ML $(SRC)/TFL/rules.ML			\
-  $(SRC)/TFL/tfl.ML $(SRC)/TFL/thms.ML $(SRC)/TFL/thry.ML			\
-  $(SRC)/TFL/usyntax.ML $(SRC)/TFL/utils.ML ATP_Linkup.thy			\
+  $(SRC)/Pure/General/rat.ML Tools/TFL/casesplit.ML				\
+  Tools/TFL/dcterm.ML Tools/TFL/post.ML Tools/TFL/rules.ML			\
+  Tools/TFL/tfl.ML Tools/TFL/thms.ML Tools/TFL/thry.ML				\
+  Tools/TFL/usyntax.ML Tools/TFL/utils.ML ATP_Linkup.thy			\
   Accessible_Part.thy Code_Generator.thy Datatype.thy Divides.thy		\
   Equiv_Relations.thy Extraction.thy Finite_Set.thy FixedPoint.thy		\
   Fun.thy FunDef.thy HOL.thy Hilbert_Choice.thy Inductive.thy			\
--- a/src/HOL/Recdef.thy	Thu May 31 13:18:42 2007 +0200
+++ b/src/HOL/Recdef.thy	Thu May 31 13:18:52 2007 +0200
@@ -8,15 +8,15 @@
 theory Recdef
 imports Wellfounded_Relations FunDef
 uses
-  ("../TFL/casesplit.ML")
-  ("../TFL/utils.ML")
-  ("../TFL/usyntax.ML")
-  ("../TFL/dcterm.ML")
-  ("../TFL/thms.ML")
-  ("../TFL/rules.ML")
-  ("../TFL/thry.ML")
-  ("../TFL/tfl.ML")
-  ("../TFL/post.ML")
+  ("Tools/TFL/casesplit.ML")
+  ("Tools/TFL/utils.ML")
+  ("Tools/TFL/usyntax.ML")
+  ("Tools/TFL/dcterm.ML")
+  ("Tools/TFL/thms.ML")
+  ("Tools/TFL/rules.ML")
+  ("Tools/TFL/thry.ML")
+  ("Tools/TFL/tfl.ML")
+  ("Tools/TFL/post.ML")
   ("Tools/recdef_package.ML")
 begin
 
@@ -44,15 +44,15 @@
 lemma tfl_exE: "\<exists>x. P x ==> \<forall>x. P x --> Q ==> Q"
   by blast
 
-use "../TFL/casesplit.ML"
-use "../TFL/utils.ML"
-use "../TFL/usyntax.ML"
-use "../TFL/dcterm.ML"
-use "../TFL/thms.ML"
-use "../TFL/rules.ML"
-use "../TFL/thry.ML"
-use "../TFL/tfl.ML"
-use "../TFL/post.ML"
+use "Tools/TFL/casesplit.ML"
+use "Tools/TFL/utils.ML"
+use "Tools/TFL/usyntax.ML"
+use "Tools/TFL/dcterm.ML"
+use "Tools/TFL/thms.ML"
+use "Tools/TFL/rules.ML"
+use "Tools/TFL/thry.ML"
+use "Tools/TFL/tfl.ML"
+use "Tools/TFL/post.ML"
 use "Tools/recdef_package.ML"
 setup RecdefPackage.setup
 
@@ -63,7 +63,7 @@
   same_fst_def
   less_Suc_eq [THEN iffD2]
 
-lemmas [recdef_cong] = 
+lemmas [recdef_cong] =
   if_cong let_cong image_cong INT_cong UN_cong bex_cong ball_cong imp_cong
 
 lemmas [recdef_wf] =
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/casesplit.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,331 @@
+(*  Title:      HOL/Tools/TFL/casesplit.ML
+    ID:         $Id$
+    Author:     Lucas Dixon, University of Edinburgh
+
+A structure that defines a tactic to program case splits.
+
+    casesplit_free :
+      string * typ -> int -> thm -> thm Seq.seq
+
+    casesplit_name :
+      string -> int -> thm -> thm Seq.seq
+
+These use the induction theorem associated with the recursive data
+type to be split.
+
+The structure includes a function to try and recursively split a
+conjecture into a list sub-theorems:
+
+    splitto : thm list -> thm -> thm
+*)
+
+(* logic-specific *)
+signature CASE_SPLIT_DATA =
+sig
+  val dest_Trueprop : term -> term
+  val mk_Trueprop : term -> term
+  val atomize : thm list
+  val rulify : thm list
+end;
+
+structure CaseSplitData_HOL : CASE_SPLIT_DATA =
+struct
+val dest_Trueprop = HOLogic.dest_Trueprop;
+val mk_Trueprop = HOLogic.mk_Trueprop;
+
+val atomize = thms "induct_atomize";
+val rulify = thms "induct_rulify";
+val rulify_fallback = thms "induct_rulify_fallback";
+
+end;
+
+
+signature CASE_SPLIT =
+sig
+  (* failure to find a free to split on *)
+  exception find_split_exp of string
+
+  (* getting a case split thm from the induction thm *)
+  val case_thm_of_ty : theory -> typ -> thm
+  val cases_thm_of_induct_thm : thm -> thm
+
+  (* case split tactics *)
+  val casesplit_free :
+      string * typ -> int -> thm -> thm Seq.seq
+  val casesplit_name : string -> int -> thm -> thm Seq.seq
+
+  (* finding a free var to split *)
+  val find_term_split :
+      term * term -> (string * typ) option
+  val find_thm_split :
+      thm -> int -> thm -> (string * typ) option
+  val find_thms_split :
+      thm list -> int -> thm -> (string * typ) option
+
+  (* try to recursively split conjectured thm to given list of thms *)
+  val splitto : thm list -> thm -> thm
+
+  (* for use with the recdef package *)
+  val derive_init_eqs :
+      theory ->
+      (thm * int) list -> term list -> (thm * int) list
+end;
+
+functor CaseSplitFUN(Data : CASE_SPLIT_DATA) =
+struct
+
+val rulify_goals = MetaSimplifier.rewrite_goals_rule Data.rulify;
+val atomize_goals = MetaSimplifier.rewrite_goals_rule Data.atomize;
+
+(* beta-eta contract the theorem *)
+fun beta_eta_contract thm =
+    let
+      val thm2 = equal_elim (Thm.beta_conversion true (Thm.cprop_of thm)) thm
+      val thm3 = equal_elim (Thm.eta_conversion (Thm.cprop_of thm2)) thm2
+    in thm3 end;
+
+(* make a casethm from an induction thm *)
+val cases_thm_of_induct_thm =
+     Seq.hd o (ALLGOALS (fn i => REPEAT (etac Drule.thin_rl i)));
+
+(* get the case_thm (my version) from a type *)
+fun case_thm_of_ty sgn ty  =
+    let
+      val dtypestab = DatatypePackage.get_datatypes sgn;
+      val ty_str = case ty of
+                     Type(ty_str, _) => ty_str
+                   | TFree(s,_)  => error ("Free type: " ^ s)
+                   | TVar((s,i),_) => error ("Free variable: " ^ s)
+      val dt = case Symtab.lookup dtypestab ty_str
+                of SOME dt => dt
+                 | NONE => error ("Not a Datatype: " ^ ty_str)
+    in
+      cases_thm_of_induct_thm (#induction dt)
+    end;
+
+(*
+ val ty = (snd o hd o map Term.dest_Free o Term.term_frees) t;
+*)
+
+
+(* for use when there are no prems to the subgoal *)
+(* does a case split on the given variable *)
+fun mk_casesplit_goal_thm sgn (vstr,ty) gt =
+    let
+      val x = Free(vstr,ty)
+      val abst = Abs(vstr, ty, Term.abstract_over (x, gt));
+
+      val ctermify = Thm.cterm_of sgn;
+      val ctypify = Thm.ctyp_of sgn;
+      val case_thm = case_thm_of_ty sgn ty;
+
+      val abs_ct = ctermify abst;
+      val free_ct = ctermify x;
+
+      val casethm_vars = rev (Term.term_vars (Thm.concl_of case_thm));
+
+      val casethm_tvars = Term.term_tvars (Thm.concl_of case_thm);
+      val (Pv, Dv, type_insts) =
+          case (Thm.concl_of case_thm) of
+            (_ $ ((Pv as Var(P,Pty)) $ (Dv as Var(D, Dty)))) =>
+            (Pv, Dv,
+             Sign.typ_match sgn (Dty, ty) Vartab.empty)
+          | _ => error "not a valid case thm";
+      val type_cinsts = map (fn (ixn, (S, T)) => (ctypify (TVar (ixn, S)), ctypify T))
+        (Vartab.dest type_insts);
+      val cPv = ctermify (Envir.subst_TVars type_insts Pv);
+      val cDv = ctermify (Envir.subst_TVars type_insts Dv);
+    in
+      (beta_eta_contract
+         (case_thm
+            |> Thm.instantiate (type_cinsts, [])
+            |> Thm.instantiate ([], [(cPv, abs_ct), (cDv, free_ct)])))
+    end;
+
+
+(* for use when there are no prems to the subgoal *)
+(* does a case split on the given variable (Free fv) *)
+fun casesplit_free fv i th =
+    let
+      val (subgoalth, exp) = IsaND.fix_alls i th;
+      val subgoalth' = atomize_goals subgoalth;
+      val gt = Data.dest_Trueprop (Logic.get_goal (Thm.prop_of subgoalth') 1);
+      val sgn = Thm.theory_of_thm th;
+
+      val splitter_thm = mk_casesplit_goal_thm sgn fv gt;
+      val nsplits = Thm.nprems_of splitter_thm;
+
+      val split_goal_th = splitter_thm RS subgoalth';
+      val rulified_split_goal_th = rulify_goals split_goal_th;
+    in
+      IsaND.export_back exp rulified_split_goal_th
+    end;
+
+
+(* for use when there are no prems to the subgoal *)
+(* does a case split on the given variable *)
+fun casesplit_name vstr i th =
+    let
+      val (subgoalth, exp) = IsaND.fix_alls i th;
+      val subgoalth' = atomize_goals subgoalth;
+      val gt = Data.dest_Trueprop (Logic.get_goal (Thm.prop_of subgoalth') 1);
+
+      val freets = Term.term_frees gt;
+      fun getter x =
+          let val (n,ty) = Term.dest_Free x in
+            (if vstr = n orelse vstr = Name.dest_skolem n
+             then SOME (n,ty) else NONE )
+            handle Fail _ => NONE (* dest_skolem *)
+          end;
+      val (n,ty) = case Library.get_first getter freets
+                of SOME (n, ty) => (n, ty)
+                 | _ => error ("no such variable " ^ vstr);
+      val sgn = Thm.theory_of_thm th;
+
+      val splitter_thm = mk_casesplit_goal_thm sgn (n,ty) gt;
+      val nsplits = Thm.nprems_of splitter_thm;
+
+      val split_goal_th = splitter_thm RS subgoalth';
+
+      val rulified_split_goal_th = rulify_goals split_goal_th;
+    in
+      IsaND.export_back exp rulified_split_goal_th
+    end;
+
+
+(* small example:
+Goal "P (x :: nat) & (C y --> Q (y :: nat))";
+by (rtac (thm "conjI") 1);
+val th = topthm();
+val i = 2;
+val vstr = "y";
+
+by (casesplit_name "y" 2);
+
+val th = topthm();
+val i = 1;
+val th' = casesplit_name "x" i th;
+*)
+
+
+(* the find_XXX_split functions are simply doing a lightwieght (I
+think) term matching equivalent to find where to do the next split *)
+
+(* assuming two twems are identical except for a free in one at a
+subterm, or constant in another, ie assume that one term is a plit of
+another, then gives back the free variable that has been split. *)
+exception find_split_exp of string
+fun find_term_split (Free v, _ $ _) = SOME v
+  | find_term_split (Free v, Const _) = SOME v
+  | find_term_split (Free v, Abs _) = SOME v (* do we really want this case? *)
+  | find_term_split (Free v, Var _) = NONE (* keep searching *)
+  | find_term_split (a $ b, a2 $ b2) =
+    (case find_term_split (a, a2) of
+       NONE => find_term_split (b,b2)
+     | vopt => vopt)
+  | find_term_split (Abs(_,ty,t1), Abs(_,ty2,t2)) =
+    find_term_split (t1, t2)
+  | find_term_split (Const (x,ty), Const(x2,ty2)) =
+    if x = x2 then NONE else (* keep searching *)
+    raise find_split_exp (* stop now *)
+            "Terms are not identical upto a free varaible! (Consts)"
+  | find_term_split (Bound i, Bound j) =
+    if i = j then NONE else (* keep searching *)
+    raise find_split_exp (* stop now *)
+            "Terms are not identical upto a free varaible! (Bound)"
+  | find_term_split (a, b) =
+    raise find_split_exp (* stop now *)
+            "Terms are not identical upto a free varaible! (Other)";
+
+(* assume that "splitth" is a case split form of subgoal i of "genth",
+then look for a free variable to split, breaking the subgoal closer to
+splitth. *)
+fun find_thm_split splitth i genth =
+    find_term_split (Logic.get_goal (Thm.prop_of genth) i,
+                     Thm.concl_of splitth) handle find_split_exp _ => NONE;
+
+(* as above but searches "splitths" for a theorem that suggest a case split *)
+fun find_thms_split splitths i genth =
+    Library.get_first (fn sth => find_thm_split sth i genth) splitths;
+
+
+(* split the subgoal i of "genth" until we get to a member of
+splitths. Assumes that genth will be a general form of splitths, that
+can be case-split, as needed. Otherwise fails. Note: We assume that
+all of "splitths" are split to the same level, and thus it doesn't
+matter which one we choose to look for the next split. Simply add
+search on splitthms and split variable, to change this.  *)
+(* Note: possible efficiency measure: when a case theorem is no longer
+useful, drop it? *)
+(* Note: This should not be a separate tactic but integrated into the
+case split done during recdef's case analysis, this would avoid us
+having to (re)search for variables to split. *)
+fun splitto splitths genth =
+    let
+      val _ = not (null splitths) orelse error "splitto: no given splitths";
+      val sgn = Thm.theory_of_thm genth;
+
+      (* check if we are a member of splitths - FIXME: quicker and
+      more flexible with discrim net. *)
+      fun solve_by_splitth th split =
+          Thm.biresolution false [(false,split)] 1 th;
+
+      fun split th =
+          (case find_thms_split splitths 1 th of
+             NONE =>
+             (writeln "th:";
+              Display.print_thm th; writeln "split ths:";
+              Display.print_thms splitths; writeln "\n--";
+              error "splitto: cannot find variable to split on")
+            | SOME v =>
+             let
+               val gt = Data.dest_Trueprop (List.nth(Thm.prems_of th, 0));
+               val split_thm = mk_casesplit_goal_thm sgn v gt;
+               val (subthms, expf) = IsaND.fixed_subgoal_thms split_thm;
+             in
+               expf (map recsplitf subthms)
+             end)
+
+      and recsplitf th =
+          (* note: multiple unifiers! we only take the first element,
+             probably fine -- there is probably only one anyway. *)
+          (case Library.get_first (Seq.pull o solve_by_splitth th) splitths of
+             NONE => split th
+           | SOME (solved_th, more) => solved_th)
+    in
+      recsplitf genth
+    end;
+
+
+(* Note: We dont do this if wf conditions fail to be solved, as each
+case may have a different wf condition - we could group the conditions
+togeather and say that they must be true to solve the general case,
+but that would hide from the user which sub-case they were related
+to. Probably this is not important, and it would work fine, but I
+prefer leaving more fine grain control to the user. *)
+
+(* derive eqs, assuming strict, ie the rules have no assumptions = all
+   the well-foundness conditions have been solved. *)
+fun derive_init_eqs sgn rules eqs =
+  let
+    fun get_related_thms i =
+      List.mapPartial ((fn (r, x) => if x = i then SOME r else NONE));
+    fun add_eq (i, e) xs =
+      (e, (get_related_thms i rules), i) :: xs
+    fun solve_eq (th, [], i) =
+          error "derive_init_eqs: missing rules"
+      | solve_eq (th, [a], i) = (a, i)
+      | solve_eq (th, splitths as (_ :: _), i) = (splitto splitths th, i);
+    val eqths =
+      map (Thm.trivial o Thm.cterm_of sgn o Data.mk_Trueprop) eqs;
+  in
+    []
+    |> fold_index add_eq eqths
+    |> map solve_eq
+    |> rev
+  end;
+
+end;
+
+
+structure CaseSplit = CaseSplitFUN(CaseSplitData_HOL);
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/dcterm.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,200 @@
+(*  Title:      HOL/Tools/TFL/dcterm.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+*)
+
+(*---------------------------------------------------------------------------
+ * Derived efficient cterm destructors.
+ *---------------------------------------------------------------------------*)
+
+signature DCTERM =
+sig
+  val dest_comb: cterm -> cterm * cterm
+  val dest_abs: string option -> cterm -> cterm * cterm
+  val capply: cterm -> cterm -> cterm
+  val cabs: cterm -> cterm -> cterm
+  val mk_conj: cterm * cterm -> cterm
+  val mk_disj: cterm * cterm -> cterm
+  val mk_exists: cterm * cterm -> cterm
+  val dest_conj: cterm -> cterm * cterm
+  val dest_const: cterm -> {Name: string, Ty: typ}
+  val dest_disj: cterm -> cterm * cterm
+  val dest_eq: cterm -> cterm * cterm
+  val dest_exists: cterm -> cterm * cterm
+  val dest_forall: cterm -> cterm * cterm
+  val dest_imp: cterm -> cterm * cterm
+  val dest_let: cterm -> cterm * cterm
+  val dest_neg: cterm -> cterm
+  val dest_pair: cterm -> cterm * cterm
+  val dest_var: cterm -> {Name:string, Ty:typ}
+  val is_conj: cterm -> bool
+  val is_cons: cterm -> bool
+  val is_disj: cterm -> bool
+  val is_eq: cterm -> bool
+  val is_exists: cterm -> bool
+  val is_forall: cterm -> bool
+  val is_imp: cterm -> bool
+  val is_let: cterm -> bool
+  val is_neg: cterm -> bool
+  val is_pair: cterm -> bool
+  val list_mk_disj: cterm list -> cterm
+  val strip_abs: cterm -> cterm list * cterm
+  val strip_comb: cterm -> cterm * cterm list
+  val strip_disj: cterm -> cterm list
+  val strip_exists: cterm -> cterm list * cterm
+  val strip_forall: cterm -> cterm list * cterm
+  val strip_imp: cterm -> cterm list * cterm
+  val drop_prop: cterm -> cterm
+  val mk_prop: cterm -> cterm
+end;
+
+structure Dcterm: DCTERM =
+struct
+
+structure U = Utils;
+
+fun ERR func mesg = U.ERR {module = "Dcterm", func = func, mesg = mesg};
+
+
+fun dest_comb t = Thm.dest_comb t
+  handle CTERM (msg, _) => raise ERR "dest_comb" msg;
+
+fun dest_abs a t = Thm.dest_abs a t
+  handle CTERM (msg, _) => raise ERR "dest_abs" msg;
+
+fun capply t u = Thm.capply t u
+  handle CTERM (msg, _) => raise ERR "capply" msg;
+
+fun cabs a t = Thm.cabs a t
+  handle CTERM (msg, _) => raise ERR "cabs" msg;
+
+
+(*---------------------------------------------------------------------------
+ * Some simple constructor functions.
+ *---------------------------------------------------------------------------*)
+
+val mk_hol_const = Thm.cterm_of HOL.thy o Const;
+
+fun mk_exists (r as (Bvar, Body)) =
+  let val ty = #T(rep_cterm Bvar)
+      val c = mk_hol_const("Ex", (ty --> HOLogic.boolT) --> HOLogic.boolT)
+  in capply c (uncurry cabs r) end;
+
+
+local val c = mk_hol_const("op &", HOLogic.boolT --> HOLogic.boolT --> HOLogic.boolT)
+in fun mk_conj(conj1,conj2) = capply (capply c conj1) conj2
+end;
+
+local val c = mk_hol_const("op |", HOLogic.boolT --> HOLogic.boolT --> HOLogic.boolT)
+in fun mk_disj(disj1,disj2) = capply (capply c disj1) disj2
+end;
+
+
+(*---------------------------------------------------------------------------
+ * The primitives.
+ *---------------------------------------------------------------------------*)
+fun dest_const ctm =
+   (case #t(rep_cterm ctm)
+      of Const(s,ty) => {Name = s, Ty = ty}
+       | _ => raise ERR "dest_const" "not a constant");
+
+fun dest_var ctm =
+   (case #t(rep_cterm ctm)
+      of Var((s,i),ty) => {Name=s, Ty=ty}
+       | Free(s,ty)    => {Name=s, Ty=ty}
+       |             _ => raise ERR "dest_var" "not a variable");
+
+
+(*---------------------------------------------------------------------------
+ * Derived destructor operations.
+ *---------------------------------------------------------------------------*)
+
+fun dest_monop expected tm =
+ let
+   fun err () = raise ERR "dest_monop" ("Not a(n) " ^ quote expected);
+   val (c, N) = dest_comb tm handle U.ERR _ => err ();
+   val name = #Name (dest_const c handle U.ERR _ => err ());
+ in if name = expected then N else err () end;
+
+fun dest_binop expected tm =
+ let
+   fun err () = raise ERR "dest_binop" ("Not a(n) " ^ quote expected);
+   val (M, N) = dest_comb tm handle U.ERR _ => err ()
+ in (dest_monop expected M, N) handle U.ERR _ => err () end;
+
+fun dest_binder expected tm =
+  dest_abs NONE (dest_monop expected tm)
+  handle U.ERR _ => raise ERR "dest_binder" ("Not a(n) " ^ quote expected);
+
+
+val dest_neg    = dest_monop "not"
+val dest_pair   = dest_binop "Pair";
+val dest_eq     = dest_binop "op ="
+val dest_imp    = dest_binop "op -->"
+val dest_conj   = dest_binop "op &"
+val dest_disj   = dest_binop "op |"
+val dest_cons   = dest_binop "Cons"
+val dest_let    = Library.swap o dest_binop "Let";
+val dest_select = dest_binder "Hilbert_Choice.Eps"
+val dest_exists = dest_binder "Ex"
+val dest_forall = dest_binder "All"
+
+(* Query routines *)
+
+val is_eq     = can dest_eq
+val is_imp    = can dest_imp
+val is_select = can dest_select
+val is_forall = can dest_forall
+val is_exists = can dest_exists
+val is_neg    = can dest_neg
+val is_conj   = can dest_conj
+val is_disj   = can dest_disj
+val is_pair   = can dest_pair
+val is_let    = can dest_let
+val is_cons   = can dest_cons
+
+
+(*---------------------------------------------------------------------------
+ * Iterated creation.
+ *---------------------------------------------------------------------------*)
+val list_mk_disj = U.end_itlist (fn d1 => fn tm => mk_disj (d1, tm));
+
+(*---------------------------------------------------------------------------
+ * Iterated destruction. (To the "right" in a term.)
+ *---------------------------------------------------------------------------*)
+fun strip break tm =
+  let fun dest (p as (ctm,accum)) =
+        let val (M,N) = break ctm
+        in dest (N, M::accum)
+        end handle U.ERR _ => p
+  in dest (tm,[])
+  end;
+
+fun rev2swap (x,l) = (rev l, x);
+
+val strip_comb   = strip (Library.swap o dest_comb)  (* Goes to the "left" *)
+val strip_imp    = rev2swap o strip dest_imp
+val strip_abs    = rev2swap o strip (dest_abs NONE)
+val strip_forall = rev2swap o strip dest_forall
+val strip_exists = rev2swap o strip dest_exists
+
+val strip_disj   = rev o (op::) o strip dest_disj
+
+
+(*---------------------------------------------------------------------------
+ * Going into and out of prop
+ *---------------------------------------------------------------------------*)
+
+fun mk_prop ctm =
+  let val {t, thy, ...} = Thm.rep_cterm ctm in
+    if can HOLogic.dest_Trueprop t then ctm
+    else Thm.cterm_of thy (HOLogic.mk_Trueprop t)
+  end
+  handle TYPE (msg, _, _) => raise ERR "mk_prop" msg
+    | TERM (msg, _) => raise ERR "mk_prop" msg;
+
+fun drop_prop ctm = dest_monop "Trueprop" ctm handle U.ERR _ => ctm;
+
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/post.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,279 @@
+(*  Title:      HOL/Tools/TFL/post.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+
+Second part of main module (postprocessing of TFL definitions).
+*)
+
+signature TFL =
+sig
+  val trace: bool ref
+  val quiet_mode: bool ref
+  val message: string -> unit
+  val tgoalw: theory -> thm list -> thm list -> thm list
+  val tgoal: theory -> thm list -> thm list
+  val define_i: bool -> theory -> claset -> simpset -> thm list -> thm list -> xstring ->
+    term -> term list -> theory * {rules: (thm * int) list, induct: thm, tcs: term list}
+  val define: bool -> theory -> claset -> simpset -> thm list -> thm list -> xstring ->
+    string -> string list -> theory * {rules: (thm * int) list, induct: thm, tcs: term list}
+  val defer_i: theory -> thm list -> xstring -> term list -> theory * thm
+  val defer: theory -> thm list -> xstring -> string list -> theory * thm
+end;
+
+structure Tfl: TFL =
+struct
+
+structure S = USyntax
+
+
+(* messages *)
+
+val trace = Prim.trace
+
+val quiet_mode = ref false;
+fun message s = if ! quiet_mode then () else writeln s;
+
+
+(* misc *)
+
+(*---------------------------------------------------------------------------
+ * Extract termination goals so that they can be put it into a goalstack, or
+ * have a tactic directly applied to them.
+ *--------------------------------------------------------------------------*)
+fun termination_goals rules =
+    map (Type.freeze o HOLogic.dest_Trueprop)
+      (foldr (fn (th,A) => gen_union (op aconv) (prems_of th, A)) [] rules);
+
+(*---------------------------------------------------------------------------
+ * Finds the termination conditions in (highly massaged) definition and
+ * puts them into a goalstack.
+ *--------------------------------------------------------------------------*)
+fun tgoalw thy defs rules =
+  case termination_goals rules of
+      [] => error "tgoalw: no termination conditions to prove"
+    | L  => OldGoals.goalw_cterm defs
+              (Thm.cterm_of thy
+                        (HOLogic.mk_Trueprop(USyntax.list_mk_conj L)));
+
+fun tgoal thy = tgoalw thy [];
+
+(*---------------------------------------------------------------------------
+ * Three postprocessors are applied to the definition.  It
+ * attempts to prove wellfoundedness of the given relation, simplifies the
+ * non-proved termination conditions, and finally attempts to prove the
+ * simplified termination conditions.
+ *--------------------------------------------------------------------------*)
+fun std_postprocessor strict cs ss wfs =
+  Prim.postprocess strict
+   {wf_tac     = REPEAT (ares_tac wfs 1),
+    terminator = asm_simp_tac ss 1
+                 THEN TRY (silent_arith_tac 1 ORELSE
+                           fast_tac (cs addSDs [not0_implies_Suc] addss ss) 1),
+    simplifier = Rules.simpl_conv ss []};
+
+
+
+val concl = #2 o Rules.dest_thm;
+
+(*---------------------------------------------------------------------------
+ * Postprocess a definition made by "define". This is a separate stage of
+ * processing from the definition stage.
+ *---------------------------------------------------------------------------*)
+local
+structure R = Rules
+structure U = Utils
+
+(* The rest of these local definitions are for the tricky nested case *)
+val solved = not o can S.dest_eq o #2 o S.strip_forall o concl
+
+fun id_thm th =
+   let val {lhs,rhs} = S.dest_eq (#2 (S.strip_forall (#2 (R.dest_thm th))));
+   in lhs aconv rhs end
+   handle U.ERR _ => false;
+   
+
+fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]);
+val P_imp_P_iff_True = prover "P --> (P= True)" RS mp;
+val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
+fun mk_meta_eq r = case concl_of r of
+     Const("==",_)$_$_ => r
+  |   _ $(Const("op =",_)$_$_) => r RS eq_reflection
+  |   _ => r RS P_imp_P_eq_True
+
+(*Is this the best way to invoke the simplifier??*)
+fun rewrite L = rewrite_rule (map mk_meta_eq (List.filter(not o id_thm) L))
+
+fun join_assums th =
+  let val {thy,...} = rep_thm th
+      val tych = cterm_of thy
+      val {lhs,rhs} = S.dest_eq(#2 (S.strip_forall (concl th)))
+      val cntxtl = (#1 o S.strip_imp) lhs  (* cntxtl should = cntxtr *)
+      val cntxtr = (#1 o S.strip_imp) rhs  (* but union is solider *)
+      val cntxt = gen_union (op aconv) (cntxtl, cntxtr)
+  in
+    R.GEN_ALL
+      (R.DISCH_ALL
+         (rewrite (map (R.ASSUME o tych) cntxt) (R.SPEC_ALL th)))
+  end
+  val gen_all = S.gen_all
+in
+fun proof_stage strict cs ss wfs theory {f, R, rules, full_pats_TCs, TCs} =
+  let
+    val _ = message "Proving induction theorem ..."
+    val ind = Prim.mk_induction theory {fconst=f, R=R, SV=[], pat_TCs_list=full_pats_TCs}
+    val _ = message "Postprocessing ...";
+    val {rules, induction, nested_tcs} =
+      std_postprocessor strict cs ss wfs theory {rules=rules, induction=ind, TCs=TCs}
+  in
+  case nested_tcs
+  of [] => {induction=induction, rules=rules,tcs=[]}
+  | L  => let val dummy = message "Simplifying nested TCs ..."
+              val (solved,simplified,stubborn) =
+               fold_rev (fn th => fn (So,Si,St) =>
+                     if (id_thm th) then (So, Si, th::St) else
+                     if (solved th) then (th::So, Si, St)
+                     else (So, th::Si, St)) nested_tcs ([],[],[])
+              val simplified' = map join_assums simplified
+              val dummy = (Prim.trace_thms "solved =" solved;
+                           Prim.trace_thms "simplified' =" simplified')
+              val rewr = full_simplify (ss addsimps (solved @ simplified'));
+              val dummy = Prim.trace_thms "Simplifying the induction rule..."
+                                          [induction]
+              val induction' = rewr induction
+              val dummy = Prim.trace_thms "Simplifying the recursion rules..."
+                                          [rules]
+              val rules'     = rewr rules
+              val _ = message "... Postprocessing finished";
+          in
+          {induction = induction',
+               rules = rules',
+                 tcs = map (gen_all o S.rhs o #2 o S.strip_forall o concl)
+                           (simplified@stubborn)}
+          end
+  end;
+
+
+(*lcp: curry the predicate of the induction rule*)
+fun curry_rule rl =
+  SplitRule.split_rule_var (Term.head_of (HOLogic.dest_Trueprop (concl_of rl))) rl;
+
+(*lcp: put a theorem into Isabelle form, using meta-level connectives*)
+val meta_outer =
+  curry_rule o standard o
+  rule_by_tactic (REPEAT (FIRSTGOAL (resolve_tac [allI, impI, conjI] ORELSE' etac conjE)));
+
+(*Strip off the outer !P*)
+val spec'= read_instantiate [("x","P::?'b=>bool")] spec;
+
+fun tracing true _ = ()
+  | tracing false msg = writeln msg;
+
+fun simplify_defn strict thy cs ss congs wfs id pats def0 =
+   let val def = Thm.freezeT def0 RS meta_eq_to_obj_eq
+       val {rules,rows,TCs,full_pats_TCs} =
+           Prim.post_definition congs (thy, (def,pats))
+       val {lhs=f,rhs} = S.dest_eq (concl def)
+       val (_,[R,_]) = S.strip_comb rhs
+       val dummy = Prim.trace_thms "congs =" congs
+       (*the next step has caused simplifier looping in some cases*)
+       val {induction, rules, tcs} =
+             proof_stage strict cs ss wfs thy
+               {f = f, R = R, rules = rules,
+                full_pats_TCs = full_pats_TCs,
+                TCs = TCs}
+       val rules' = map (standard o ObjectLogic.rulify_no_asm)
+                        (R.CONJUNCTS rules)
+         in  {induct = meta_outer (ObjectLogic.rulify_no_asm (induction RS spec')),
+        rules = ListPair.zip(rules', rows),
+        tcs = (termination_goals rules') @ tcs}
+   end
+  handle U.ERR {mesg,func,module} =>
+               error (mesg ^
+                      "\n    (In TFL function " ^ module ^ "." ^ func ^ ")");
+
+
+(* Derive the initial equations from the case-split rules to meet the
+users specification of the recursive function. 
+ Note: We don't do this if the wf conditions fail to be solved, as each
+case may have a different wf condition. We could group the conditions
+together and say that they must be true to solve the general case,
+but that would hide from the user which sub-case they were related
+to. Probably this is not important, and it would work fine, but, for now, I
+prefer leaving more fine-grain control to the user. 
+-- Lucas Dixon, Aug 2004 *)
+local
+  fun get_related_thms i = 
+      List.mapPartial ((fn (r,x) => if x = i then SOME r else NONE));
+
+  fun solve_eq (th, [], i) = 
+        error "derive_init_eqs: missing rules"
+    | solve_eq (th, [a], i) = [(a, i)]
+    | solve_eq (th, splitths as (_ :: _), i) = 
+      (writeln "Proving unsplit equation...";
+      [((standard o ObjectLogic.rulify_no_asm)
+          (CaseSplit.splitto splitths th), i)])
+      (* if there's an error, pretend nothing happened with this definition 
+         We should probably print something out so that the user knows...? *)
+      handle ERROR s => 
+             (warning ("recdef (solve_eq): " ^ s); map (fn x => (x,i)) splitths);
+in
+fun derive_init_eqs sgn rules eqs = 
+    let 
+      val eqths = map (Thm.trivial o (Thm.cterm_of sgn) o HOLogic.mk_Trueprop) 
+                      eqs
+      fun countlist l = 
+          (rev o snd o (Library.foldl (fn ((i,L), e) => (i + 1,(e,i) :: L)))) ((0,[]), l)
+    in
+      List.concat (map (fn (e,i) => solve_eq (e, (get_related_thms i rules), i))
+                (countlist eqths))
+    end;
+end;
+
+
+(*---------------------------------------------------------------------------
+ * Defining a function with an associated termination relation.
+ *---------------------------------------------------------------------------*)
+fun define_i strict thy cs ss congs wfs fid R eqs =
+  let val {functional,pats} = Prim.mk_functional thy eqs
+      val (thy, def) = Prim.wfrec_definition0 thy (Sign.base_name fid) R functional
+      val {induct, rules, tcs} = 
+          simplify_defn strict thy cs ss congs wfs fid pats def
+      val rules' = 
+          if strict then derive_init_eqs thy rules eqs
+          else rules
+  in (thy, {rules = rules', induct = induct, tcs = tcs}) end;
+
+fun define strict thy cs ss congs wfs fid R seqs =
+  define_i strict thy cs ss congs wfs fid (Sign.read_term thy R) (map (Sign.read_term thy) seqs)
+    handle U.ERR {mesg,...} => error mesg;
+
+
+(*---------------------------------------------------------------------------
+ *
+ *     Definitions with synthesized termination relation
+ *
+ *---------------------------------------------------------------------------*)
+
+fun func_of_cond_eqn tm =
+  #1 (S.strip_comb (#lhs (S.dest_eq (#2 (S.strip_forall (#2 (S.strip_imp tm)))))));
+
+fun defer_i thy congs fid eqs =
+ let val {rules,R,theory,full_pats_TCs,SV,...} =
+             Prim.lazyR_def thy (Sign.base_name fid) congs eqs
+     val f = func_of_cond_eqn (concl (R.CONJUNCT1 rules handle U.ERR _ => rules));
+     val dummy = message "Proving induction theorem ...";
+     val induction = Prim.mk_induction theory
+                        {fconst=f, R=R, SV=SV, pat_TCs_list=full_pats_TCs}
+ in (theory,
+     (*return the conjoined induction rule and recursion equations,
+       with assumptions remaining to discharge*)
+     standard (induction RS (rules RS conjI)))
+ end
+
+fun defer thy congs fid seqs =
+  defer_i thy congs fid (map (Sign.read_term thy) seqs)
+    handle U.ERR {mesg,...} => error mesg;
+end;
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/rules.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,825 @@
+(*  Title:      HOL/Tools/TFL/rules.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+
+Emulation of HOL inference rules for TFL
+*)
+
+signature RULES =
+sig
+  val dest_thm: thm -> term list * term
+
+  (* Inference rules *)
+  val REFL: cterm -> thm
+  val ASSUME: cterm -> thm
+  val MP: thm -> thm -> thm
+  val MATCH_MP: thm -> thm -> thm
+  val CONJUNCT1: thm -> thm
+  val CONJUNCT2: thm -> thm
+  val CONJUNCTS: thm -> thm list
+  val DISCH: cterm -> thm -> thm
+  val UNDISCH: thm  -> thm
+  val SPEC: cterm -> thm -> thm
+  val ISPEC: cterm -> thm -> thm
+  val ISPECL: cterm list -> thm -> thm
+  val GEN: cterm -> thm -> thm
+  val GENL: cterm list -> thm -> thm
+  val LIST_CONJ: thm list -> thm
+
+  val SYM: thm -> thm
+  val DISCH_ALL: thm -> thm
+  val FILTER_DISCH_ALL: (term -> bool) -> thm -> thm
+  val SPEC_ALL: thm -> thm
+  val GEN_ALL: thm -> thm
+  val IMP_TRANS: thm -> thm -> thm
+  val PROVE_HYP: thm -> thm -> thm
+
+  val CHOOSE: cterm * thm -> thm -> thm
+  val EXISTS: cterm * cterm -> thm -> thm
+  val EXISTL: cterm list -> thm -> thm
+  val IT_EXISTS: (cterm*cterm) list -> thm -> thm
+
+  val EVEN_ORS: thm list -> thm list
+  val DISJ_CASESL: thm -> thm list -> thm
+
+  val list_beta_conv: cterm -> cterm list -> thm
+  val SUBS: thm list -> thm -> thm
+  val simpl_conv: simpset -> thm list -> cterm -> thm
+
+  val rbeta: thm -> thm
+(* For debugging my isabelle solver in the conditional rewriter *)
+  val term_ref: term list ref
+  val thm_ref: thm list ref
+  val ss_ref: simpset list ref
+  val tracing: bool ref
+  val CONTEXT_REWRITE_RULE: term * term list * thm * thm list
+                             -> thm -> thm * term list
+  val RIGHT_ASSOC: thm -> thm
+
+  val prove: bool -> cterm * tactic -> thm
+end;
+
+structure Rules: RULES =
+struct
+
+structure S = USyntax;
+structure U = Utils;
+structure D = Dcterm;
+
+
+fun RULES_ERR func mesg = U.ERR {module = "Rules", func = func, mesg = mesg};
+
+
+fun cconcl thm = D.drop_prop (#prop (Thm.crep_thm thm));
+fun chyps thm = map D.drop_prop (#hyps (Thm.crep_thm thm));
+
+fun dest_thm thm =
+  let val {prop,hyps,...} = Thm.rep_thm thm
+  in (map HOLogic.dest_Trueprop hyps, HOLogic.dest_Trueprop prop) end
+  handle TERM _ => raise RULES_ERR "dest_thm" "missing Trueprop";
+
+
+(* Inference rules *)
+
+(*---------------------------------------------------------------------------
+ *        Equality (one step)
+ *---------------------------------------------------------------------------*)
+
+fun REFL tm = Thm.reflexive tm RS meta_eq_to_obj_eq
+  handle THM (msg, _, _) => raise RULES_ERR "REFL" msg;
+
+fun SYM thm = thm RS sym
+  handle THM (msg, _, _) => raise RULES_ERR "SYM" msg;
+
+fun ALPHA thm ctm1 =
+  let
+    val ctm2 = Thm.cprop_of thm;
+    val ctm2_eq = Thm.reflexive ctm2;
+    val ctm1_eq = Thm.reflexive ctm1;
+  in Thm.equal_elim (Thm.transitive ctm2_eq ctm1_eq) thm end
+  handle THM (msg, _, _) => raise RULES_ERR "ALPHA" msg;
+
+fun rbeta th =
+  (case D.strip_comb (cconcl th) of
+    (_, [l, r]) => Thm.transitive th (Thm.beta_conversion false r)
+  | _ => raise RULES_ERR "rbeta" "");
+
+
+(*----------------------------------------------------------------------------
+ *        Implication and the assumption list
+ *
+ * Assumptions get stuck on the meta-language assumption list. Implications
+ * are in the object language, so discharging an assumption "A" from theorem
+ * "B" results in something that looks like "A --> B".
+ *---------------------------------------------------------------------------*)
+
+fun ASSUME ctm = Thm.assume (D.mk_prop ctm);
+
+
+(*---------------------------------------------------------------------------
+ * Implication in TFL is -->. Meta-language implication (==>) is only used
+ * in the implementation of some of the inference rules below.
+ *---------------------------------------------------------------------------*)
+fun MP th1 th2 = th2 RS (th1 RS mp)
+  handle THM (msg, _, _) => raise RULES_ERR "MP" msg;
+
+(*forces the first argument to be a proposition if necessary*)
+fun DISCH tm thm = Thm.implies_intr (D.mk_prop tm) thm COMP impI
+  handle THM (msg, _, _) => raise RULES_ERR "DISCH" msg;
+
+fun DISCH_ALL thm = fold_rev DISCH (#hyps (Thm.crep_thm thm)) thm;
+
+
+fun FILTER_DISCH_ALL P thm =
+ let fun check tm = P (#t (Thm.rep_cterm tm))
+ in  foldr (fn (tm,th) => if check tm then DISCH tm th else th)
+              thm (chyps thm)
+ end;
+
+(* freezeT expensive! *)
+fun UNDISCH thm =
+   let val tm = D.mk_prop (#1 (D.dest_imp (cconcl (Thm.freezeT thm))))
+   in Thm.implies_elim (thm RS mp) (ASSUME tm) end
+   handle U.ERR _ => raise RULES_ERR "UNDISCH" ""
+     | THM _ => raise RULES_ERR "UNDISCH" "";
+
+fun PROVE_HYP ath bth = MP (DISCH (cconcl ath) bth) ath;
+
+fun IMP_TRANS th1 th2 = th2 RS (th1 RS Thms.imp_trans)
+  handle THM (msg, _, _) => raise RULES_ERR "IMP_TRANS" msg;
+
+
+(*----------------------------------------------------------------------------
+ *        Conjunction
+ *---------------------------------------------------------------------------*)
+
+fun CONJUNCT1 thm = thm RS conjunct1
+  handle THM (msg, _, _) => raise RULES_ERR "CONJUNCT1" msg;
+
+fun CONJUNCT2 thm = thm RS conjunct2
+  handle THM (msg, _, _) => raise RULES_ERR "CONJUNCT2" msg;
+
+fun CONJUNCTS th = CONJUNCTS (CONJUNCT1 th) @ CONJUNCTS (CONJUNCT2 th) handle U.ERR _ => [th];
+
+fun LIST_CONJ [] = raise RULES_ERR "LIST_CONJ" "empty list"
+  | LIST_CONJ [th] = th
+  | LIST_CONJ (th :: rst) = MP (MP (conjI COMP (impI RS impI)) th) (LIST_CONJ rst)
+      handle THM (msg, _, _) => raise RULES_ERR "LIST_CONJ" msg;
+
+
+(*----------------------------------------------------------------------------
+ *        Disjunction
+ *---------------------------------------------------------------------------*)
+local val {prop,thy,...} = rep_thm disjI1
+      val [P,Q] = term_vars prop
+      val disj1 = Thm.forall_intr (Thm.cterm_of thy Q) disjI1
+in
+fun DISJ1 thm tm = thm RS (forall_elim (D.drop_prop tm) disj1)
+  handle THM (msg, _, _) => raise RULES_ERR "DISJ1" msg;
+end;
+
+local val {prop,thy,...} = rep_thm disjI2
+      val [P,Q] = term_vars prop
+      val disj2 = Thm.forall_intr (Thm.cterm_of thy P) disjI2
+in
+fun DISJ2 tm thm = thm RS (forall_elim (D.drop_prop tm) disj2)
+  handle THM (msg, _, _) => raise RULES_ERR "DISJ2" msg;
+end;
+
+
+(*----------------------------------------------------------------------------
+ *
+ *                   A1 |- M1, ..., An |- Mn
+ *     ---------------------------------------------------
+ *     [A1 |- M1 \/ ... \/ Mn, ..., An |- M1 \/ ... \/ Mn]
+ *
+ *---------------------------------------------------------------------------*)
+
+
+fun EVEN_ORS thms =
+  let fun blue ldisjs [] _ = []
+        | blue ldisjs (th::rst) rdisjs =
+            let val tail = tl rdisjs
+                val rdisj_tl = D.list_mk_disj tail
+            in fold_rev DISJ2 ldisjs (DISJ1 th rdisj_tl)
+               :: blue (ldisjs @ [cconcl th]) rst tail
+            end handle U.ERR _ => [fold_rev DISJ2 ldisjs th]
+   in blue [] thms (map cconcl thms) end;
+
+
+(*----------------------------------------------------------------------------
+ *
+ *         A |- P \/ Q   B,P |- R    C,Q |- R
+ *     ---------------------------------------------------
+ *                     A U B U C |- R
+ *
+ *---------------------------------------------------------------------------*)
+
+fun DISJ_CASES th1 th2 th3 =
+  let
+    val c = D.drop_prop (cconcl th1);
+    val (disj1, disj2) = D.dest_disj c;
+    val th2' = DISCH disj1 th2;
+    val th3' = DISCH disj2 th3;
+  in
+    th3' RS (th2' RS (th1 RS Thms.tfl_disjE))
+      handle THM (msg, _, _) => raise RULES_ERR "DISJ_CASES" msg
+  end;
+
+
+(*-----------------------------------------------------------------------------
+ *
+ *       |- A1 \/ ... \/ An     [A1 |- M, ..., An |- M]
+ *     ---------------------------------------------------
+ *                           |- M
+ *
+ * Note. The list of theorems may be all jumbled up, so we have to
+ * first organize it to align with the first argument (the disjunctive
+ * theorem).
+ *---------------------------------------------------------------------------*)
+
+fun organize eq =    (* a bit slow - analogous to insertion sort *)
+ let fun extract a alist =
+     let fun ex (_,[]) = raise RULES_ERR "organize" "not a permutation.1"
+           | ex(left,h::t) = if (eq h a) then (h,rev left@t) else ex(h::left,t)
+     in ex ([],alist)
+     end
+     fun place [] [] = []
+       | place (a::rst) alist =
+           let val (item,next) = extract a alist
+           in item::place rst next
+           end
+       | place _ _ = raise RULES_ERR "organize" "not a permutation.2"
+ in place
+ end;
+(* freezeT expensive! *)
+fun DISJ_CASESL disjth thl =
+   let val c = cconcl disjth
+       fun eq th atm = exists (fn t => HOLogic.dest_Trueprop t
+                                       aconv term_of atm)
+                              (#hyps(rep_thm th))
+       val tml = D.strip_disj c
+       fun DL th [] = raise RULES_ERR "DISJ_CASESL" "no cases"
+         | DL th [th1] = PROVE_HYP th th1
+         | DL th [th1,th2] = DISJ_CASES th th1 th2
+         | DL th (th1::rst) =
+            let val tm = #2(D.dest_disj(D.drop_prop(cconcl th)))
+             in DISJ_CASES th th1 (DL (ASSUME tm) rst) end
+   in DL (Thm.freezeT disjth) (organize eq tml thl)
+   end;
+
+
+(*----------------------------------------------------------------------------
+ *        Universals
+ *---------------------------------------------------------------------------*)
+local (* this is fragile *)
+      val {prop,thy,...} = rep_thm spec
+      val x = hd (tl (term_vars prop))
+      val cTV = ctyp_of thy (type_of x)
+      val gspec = forall_intr (cterm_of thy x) spec
+in
+fun SPEC tm thm =
+   let val {thy,T,...} = rep_cterm tm
+       val gspec' = instantiate ([(cTV, ctyp_of thy T)], []) gspec
+   in
+      thm RS (forall_elim tm gspec')
+   end
+end;
+
+fun SPEC_ALL thm = fold SPEC (#1(D.strip_forall(cconcl thm))) thm;
+
+val ISPEC = SPEC
+val ISPECL = fold ISPEC;
+
+(* Not optimized! Too complicated. *)
+local val {prop,thy,...} = rep_thm allI
+      val [P] = add_term_vars (prop, [])
+      fun cty_theta s = map (fn (i, (S, ty)) => (ctyp_of s (TVar (i, S)), ctyp_of s ty))
+      fun ctm_theta s = map (fn (i, (_, tm2)) =>
+                             let val ctm2 = cterm_of s tm2
+                             in (cterm_of s (Var(i,#T(rep_cterm ctm2))), ctm2)
+                             end)
+      fun certify s (ty_theta,tm_theta) =
+        (cty_theta s (Vartab.dest ty_theta),
+         ctm_theta s (Vartab.dest tm_theta))
+in
+fun GEN v th =
+   let val gth = forall_intr v th
+       val {prop=Const("all",_)$Abs(x,ty,rst),thy,...} = rep_thm gth
+       val P' = Abs(x,ty, HOLogic.dest_Trueprop rst)  (* get rid of trueprop *)
+       val theta = Pattern.match thy (P,P') (Vartab.empty, Vartab.empty);
+       val allI2 = instantiate (certify thy theta) allI
+       val thm = Thm.implies_elim allI2 gth
+       val {prop = tp $ (A $ Abs(_,_,M)),thy,...} = rep_thm thm
+       val prop' = tp $ (A $ Abs(x,ty,M))
+   in ALPHA thm (cterm_of thy prop')
+   end
+end;
+
+val GENL = fold_rev GEN;
+
+fun GEN_ALL thm =
+   let val {prop,thy,...} = rep_thm thm
+       val tycheck = cterm_of thy
+       val vlist = map tycheck (add_term_vars (prop, []))
+  in GENL vlist thm
+  end;
+
+
+fun MATCH_MP th1 th2 =
+   if (D.is_forall (D.drop_prop(cconcl th1)))
+   then MATCH_MP (th1 RS spec) th2
+   else MP th1 th2;
+
+
+(*----------------------------------------------------------------------------
+ *        Existentials
+ *---------------------------------------------------------------------------*)
+
+
+
+(*---------------------------------------------------------------------------
+ * Existential elimination
+ *
+ *      A1 |- ?x.t[x]   ,   A2, "t[v]" |- t'
+ *      ------------------------------------     (variable v occurs nowhere)
+ *                A1 u A2 |- t'
+ *
+ *---------------------------------------------------------------------------*)
+
+fun CHOOSE (fvar, exth) fact =
+  let
+    val lam = #2 (D.dest_comb (D.drop_prop (cconcl exth)))
+    val redex = D.capply lam fvar
+    val {thy, t = t$u,...} = Thm.rep_cterm redex
+    val residue = Thm.cterm_of thy (Term.betapply (t, u))
+  in
+    GEN fvar (DISCH residue fact) RS (exth RS Thms.choose_thm)
+      handle THM (msg, _, _) => raise RULES_ERR "CHOOSE" msg
+  end;
+
+local val {prop,thy,...} = rep_thm exI
+      val [P,x] = term_vars prop
+in
+fun EXISTS (template,witness) thm =
+   let val {prop,thy,...} = rep_thm thm
+       val P' = cterm_of thy P
+       val x' = cterm_of thy x
+       val abstr = #2 (D.dest_comb template)
+   in
+   thm RS (cterm_instantiate[(P',abstr), (x',witness)] exI)
+     handle THM (msg, _, _) => raise RULES_ERR "EXISTS" msg
+   end
+end;
+
+(*----------------------------------------------------------------------------
+ *
+ *         A |- M
+ *   -------------------   [v_1,...,v_n]
+ *    A |- ?v1...v_n. M
+ *
+ *---------------------------------------------------------------------------*)
+
+fun EXISTL vlist th =
+  fold_rev (fn v => fn thm => EXISTS(D.mk_exists(v,cconcl thm), v) thm)
+           vlist th;
+
+
+(*----------------------------------------------------------------------------
+ *
+ *       A |- M[x_1,...,x_n]
+ *   ----------------------------   [(x |-> y)_1,...,(x |-> y)_n]
+ *       A |- ?y_1...y_n. M
+ *
+ *---------------------------------------------------------------------------*)
+(* Could be improved, but needs "subst_free" for certified terms *)
+
+fun IT_EXISTS blist th =
+   let val {thy,...} = rep_thm th
+       val tych = cterm_of thy
+       val detype = #t o rep_cterm
+       val blist' = map (fn (x,y) => (detype x, detype y)) blist
+       fun ex v M  = cterm_of thy (S.mk_exists{Bvar=v,Body = M})
+
+  in
+  fold_rev (fn (b as (r1,r2)) => fn thm =>
+        EXISTS(ex r2 (subst_free [b]
+                   (HOLogic.dest_Trueprop(#prop(rep_thm thm)))), tych r1)
+              thm)
+       blist' th
+  end;
+
+(*---------------------------------------------------------------------------
+ *  Faster version, that fails for some as yet unknown reason
+ * fun IT_EXISTS blist th =
+ *    let val {thy,...} = rep_thm th
+ *        val tych = cterm_of thy
+ *        fun detype (x,y) = ((#t o rep_cterm) x, (#t o rep_cterm) y)
+ *   in
+ *  fold (fn (b as (r1,r2), thm) =>
+ *  EXISTS(D.mk_exists(r2, tych(subst_free[detype b](#t(rep_cterm(cconcl thm))))),
+ *           r1) thm)  blist th
+ *   end;
+ *---------------------------------------------------------------------------*)
+
+(*----------------------------------------------------------------------------
+ *        Rewriting
+ *---------------------------------------------------------------------------*)
+
+fun SUBS thl =
+  rewrite_rule (map (fn th => th RS eq_reflection handle THM _ => th) thl);
+
+val rew_conv = MetaSimplifier.rewrite_cterm (true, false, false) (K (K NONE));
+
+fun simpl_conv ss thl ctm =
+ rew_conv (ss addsimps thl) ctm RS meta_eq_to_obj_eq;
+
+
+val RIGHT_ASSOC = rewrite_rule [Thms.disj_assoc];
+
+
+
+(*---------------------------------------------------------------------------
+ *                  TERMINATION CONDITION EXTRACTION
+ *---------------------------------------------------------------------------*)
+
+
+(* Object language quantifier, i.e., "!" *)
+fun Forall v M = S.mk_forall{Bvar=v, Body=M};
+
+
+(* Fragile: it's a cong if it is not "R y x ==> cut f R x y = f y" *)
+fun is_cong thm =
+  let val {prop, ...} = rep_thm thm
+  in case prop
+     of (Const("==>",_)$(Const("Trueprop",_)$ _) $
+         (Const("==",_) $ (Const ("Wellfounded_Recursion.cut",_) $ f $ R $ a $ x) $ _)) => false
+      | _ => true
+  end;
+
+
+
+fun dest_equal(Const ("==",_) $
+               (Const ("Trueprop",_) $ lhs)
+               $ (Const ("Trueprop",_) $ rhs)) = {lhs=lhs, rhs=rhs}
+  | dest_equal(Const ("==",_) $ lhs $ rhs)  = {lhs=lhs, rhs=rhs}
+  | dest_equal tm = S.dest_eq tm;
+
+fun get_lhs tm = #lhs(dest_equal (HOLogic.dest_Trueprop tm));
+
+fun dest_all used (Const("all",_) $ (a as Abs _)) = S.dest_abs used a
+  | dest_all _ _ = raise RULES_ERR "dest_all" "not a !!";
+
+val is_all = can (dest_all []);
+
+fun strip_all used fm =
+   if (is_all fm)
+   then let val ({Bvar, Body}, used') = dest_all used fm
+            val (bvs, core, used'') = strip_all used' Body
+        in ((Bvar::bvs), core, used'')
+        end
+   else ([], fm, used);
+
+fun break_all(Const("all",_) $ Abs (_,_,body)) = body
+  | break_all _ = raise RULES_ERR "break_all" "not a !!";
+
+fun list_break_all(Const("all",_) $ Abs (s,ty,body)) =
+     let val (L,core) = list_break_all body
+     in ((s,ty)::L, core)
+     end
+  | list_break_all tm = ([],tm);
+
+(*---------------------------------------------------------------------------
+ * Rename a term of the form
+ *
+ *      !!x1 ...xn. x1=M1 ==> ... ==> xn=Mn
+ *                  ==> ((%v1...vn. Q) x1 ... xn = g x1 ... xn.
+ * to one of
+ *
+ *      !!v1 ... vn. v1=M1 ==> ... ==> vn=Mn
+ *      ==> ((%v1...vn. Q) v1 ... vn = g v1 ... vn.
+ *
+ * This prevents name problems in extraction, and helps the result to read
+ * better. There is a problem with varstructs, since they can introduce more
+ * than n variables, and some extra reasoning needs to be done.
+ *---------------------------------------------------------------------------*)
+
+fun get ([],_,L) = rev L
+  | get (ant::rst,n,L) =
+      case (list_break_all ant)
+        of ([],_) => get (rst, n+1,L)
+         | (vlist,body) =>
+            let val eq = Logic.strip_imp_concl body
+                val (f,args) = S.strip_comb (get_lhs eq)
+                val (vstrl,_) = S.strip_abs f
+                val names  =
+                  Name.variant_list (add_term_names(body, [])) (map (#1 o dest_Free) vstrl)
+            in get (rst, n+1, (names,n)::L) end
+            handle TERM _ => get (rst, n+1, L)
+              | U.ERR _ => get (rst, n+1, L);
+
+(* Note: rename_params_rule counts from 1, not 0 *)
+fun rename thm =
+  let val {prop,thy,...} = rep_thm thm
+      val tych = cterm_of thy
+      val ants = Logic.strip_imp_prems prop
+      val news = get (ants,1,[])
+  in
+  fold rename_params_rule news thm
+  end;
+
+
+(*---------------------------------------------------------------------------
+ * Beta-conversion to the rhs of an equation (taken from hol90/drule.sml)
+ *---------------------------------------------------------------------------*)
+
+fun list_beta_conv tm =
+  let fun rbeta th = Thm.transitive th (beta_conversion false (#2(D.dest_eq(cconcl th))))
+      fun iter [] = Thm.reflexive tm
+        | iter (v::rst) = rbeta (combination(iter rst) (Thm.reflexive v))
+  in iter  end;
+
+
+(*---------------------------------------------------------------------------
+ * Trace information for the rewriter
+ *---------------------------------------------------------------------------*)
+val term_ref = ref[] : term list ref
+val ss_ref = ref [] : simpset list ref;
+val thm_ref = ref [] : thm list ref;
+val tracing = ref false;
+
+fun say s = if !tracing then writeln s else ();
+
+fun print_thms s L =
+  say (cat_lines (s :: map string_of_thm L));
+
+fun print_cterms s L =
+  say (cat_lines (s :: map string_of_cterm L));
+
+
+(*---------------------------------------------------------------------------
+ * General abstraction handlers, should probably go in USyntax.
+ *---------------------------------------------------------------------------*)
+fun mk_aabs (vstr, body) =
+  S.mk_abs {Bvar = vstr, Body = body}
+  handle U.ERR _ => S.mk_pabs {varstruct = vstr, body = body};
+
+fun list_mk_aabs (vstrl,tm) =
+    fold_rev (fn vstr => fn tm => mk_aabs(vstr,tm)) vstrl tm;
+
+fun dest_aabs used tm =
+   let val ({Bvar,Body}, used') = S.dest_abs used tm
+   in (Bvar, Body, used') end
+   handle U.ERR _ =>
+     let val {varstruct, body, used} = S.dest_pabs used tm
+     in (varstruct, body, used) end;
+
+fun strip_aabs used tm =
+   let val (vstr, body, used') = dest_aabs used tm
+       val (bvs, core, used'') = strip_aabs used' body
+   in (vstr::bvs, core, used'') end
+   handle U.ERR _ => ([], tm, used);
+
+fun dest_combn tm 0 = (tm,[])
+  | dest_combn tm n =
+     let val {Rator,Rand} = S.dest_comb tm
+         val (f,rands) = dest_combn Rator (n-1)
+     in (f,Rand::rands)
+     end;
+
+
+
+
+local fun dest_pair M = let val {fst,snd} = S.dest_pair M in (fst,snd) end
+      fun mk_fst tm =
+          let val ty as Type("*", [fty,sty]) = type_of tm
+          in  Const ("fst", ty --> fty) $ tm  end
+      fun mk_snd tm =
+          let val ty as Type("*", [fty,sty]) = type_of tm
+          in  Const ("snd", ty --> sty) $ tm  end
+in
+fun XFILL tych x vstruct =
+  let fun traverse p xocc L =
+        if (is_Free p)
+        then tych xocc::L
+        else let val (p1,p2) = dest_pair p
+             in traverse p1 (mk_fst xocc) (traverse p2  (mk_snd xocc) L)
+             end
+  in
+  traverse vstruct x []
+end end;
+
+(*---------------------------------------------------------------------------
+ * Replace a free tuple (vstr) by a universally quantified variable (a).
+ * Note that the notion of "freeness" for a tuple is different than for a
+ * variable: if variables in the tuple also occur in any other place than
+ * an occurrences of the tuple, they aren't "free" (which is thus probably
+ *  the wrong word to use).
+ *---------------------------------------------------------------------------*)
+
+fun VSTRUCT_ELIM tych a vstr th =
+  let val L = S.free_vars_lr vstr
+      val bind1 = tych (HOLogic.mk_Trueprop (HOLogic.mk_eq(a,vstr)))
+      val thm1 = implies_intr bind1 (SUBS [SYM(assume bind1)] th)
+      val thm2 = forall_intr_list (map tych L) thm1
+      val thm3 = forall_elim_list (XFILL tych a vstr) thm2
+  in refl RS
+     rewrite_rule [Thm.symmetric (surjective_pairing RS eq_reflection)] thm3
+  end;
+
+fun PGEN tych a vstr th =
+  let val a1 = tych a
+      val vstr1 = tych vstr
+  in
+  forall_intr a1
+     (if (is_Free vstr)
+      then cterm_instantiate [(vstr1,a1)] th
+      else VSTRUCT_ELIM tych a vstr th)
+  end;
+
+
+(*---------------------------------------------------------------------------
+ * Takes apart a paired beta-redex, looking like "(\(x,y).N) vstr", into
+ *
+ *     (([x,y],N),vstr)
+ *---------------------------------------------------------------------------*)
+fun dest_pbeta_redex used M n =
+  let val (f,args) = dest_combn M n
+      val dummy = dest_aabs used f
+  in (strip_aabs used f,args)
+  end;
+
+fun pbeta_redex M n = can (U.C (dest_pbeta_redex []) n) M;
+
+fun dest_impl tm =
+  let val ants = Logic.strip_imp_prems tm
+      val eq = Logic.strip_imp_concl tm
+  in (ants,get_lhs eq)
+  end;
+
+fun restricted t = isSome (S.find_term
+                            (fn (Const("Wellfounded_Recursion.cut",_)) =>true | _ => false)
+                            t)
+
+fun CONTEXT_REWRITE_RULE (func, G, cut_lemma, congs) th =
+ let val globals = func::G
+     val ss0 = Simplifier.theory_context (Thm.theory_of_thm th) empty_ss
+     val pbeta_reduce = simpl_conv ss0 [split_conv RS eq_reflection];
+     val tc_list = ref[]: term list ref
+     val dummy = term_ref := []
+     val dummy = thm_ref  := []
+     val dummy = ss_ref  := []
+     val cut_lemma' = cut_lemma RS eq_reflection
+     fun prover used ss thm =
+     let fun cong_prover ss thm =
+         let val dummy = say "cong_prover:"
+             val cntxt = MetaSimplifier.prems_of_ss ss
+             val dummy = print_thms "cntxt:" cntxt
+             val dummy = say "cong rule:"
+             val dummy = say (string_of_thm thm)
+             val dummy = thm_ref := (thm :: !thm_ref)
+             val dummy = ss_ref := (ss :: !ss_ref)
+             (* Unquantified eliminate *)
+             fun uq_eliminate (thm,imp,thy) =
+                 let val tych = cterm_of thy
+                     val dummy = print_cterms "To eliminate:" [tych imp]
+                     val ants = map tych (Logic.strip_imp_prems imp)
+                     val eq = Logic.strip_imp_concl imp
+                     val lhs = tych(get_lhs eq)
+                     val ss' = MetaSimplifier.add_prems (map ASSUME ants) ss
+                     val lhs_eq_lhs1 = MetaSimplifier.rewrite_cterm (false,true,false) (prover used) ss' lhs
+                       handle U.ERR _ => Thm.reflexive lhs
+                     val dummy = print_thms "proven:" [lhs_eq_lhs1]
+                     val lhs_eq_lhs2 = implies_intr_list ants lhs_eq_lhs1
+                     val lhs_eeq_lhs2 = lhs_eq_lhs2 RS meta_eq_to_obj_eq
+                  in
+                  lhs_eeq_lhs2 COMP thm
+                  end
+             fun pq_eliminate (thm,thy,vlist,imp_body,lhs_eq) =
+              let val ((vstrl, _, used'), args) = dest_pbeta_redex used lhs_eq (length vlist)
+                  val dummy = forall (op aconv) (ListPair.zip (vlist, args))
+                    orelse error "assertion failed in CONTEXT_REWRITE_RULE"
+                  val imp_body1 = subst_free (ListPair.zip (args, vstrl))
+                                             imp_body
+                  val tych = cterm_of thy
+                  val ants1 = map tych (Logic.strip_imp_prems imp_body1)
+                  val eq1 = Logic.strip_imp_concl imp_body1
+                  val Q = get_lhs eq1
+                  val QeqQ1 = pbeta_reduce (tych Q)
+                  val Q1 = #2(D.dest_eq(cconcl QeqQ1))
+                  val ss' = MetaSimplifier.add_prems (map ASSUME ants1) ss
+                  val Q1eeqQ2 = MetaSimplifier.rewrite_cterm (false,true,false) (prover used') ss' Q1
+                                handle U.ERR _ => Thm.reflexive Q1
+                  val Q2 = #2 (Logic.dest_equals (Thm.prop_of Q1eeqQ2))
+                  val Q3 = tych(list_comb(list_mk_aabs(vstrl,Q2),vstrl))
+                  val Q2eeqQ3 = Thm.symmetric(pbeta_reduce Q3 RS eq_reflection)
+                  val thA = Thm.transitive(QeqQ1 RS eq_reflection) Q1eeqQ2
+                  val QeeqQ3 = Thm.transitive thA Q2eeqQ3 handle THM _ =>
+                               ((Q2eeqQ3 RS meta_eq_to_obj_eq)
+                                RS ((thA RS meta_eq_to_obj_eq) RS trans))
+                                RS eq_reflection
+                  val impth = implies_intr_list ants1 QeeqQ3
+                  val impth1 = impth RS meta_eq_to_obj_eq
+                  (* Need to abstract *)
+                  val ant_th = U.itlist2 (PGEN tych) args vstrl impth1
+              in ant_th COMP thm
+              end
+             fun q_eliminate (thm,imp,thy) =
+              let val (vlist, imp_body, used') = strip_all used imp
+                  val (ants,Q) = dest_impl imp_body
+              in if (pbeta_redex Q) (length vlist)
+                 then pq_eliminate (thm,thy,vlist,imp_body,Q)
+                 else
+                 let val tych = cterm_of thy
+                     val ants1 = map tych ants
+                     val ss' = MetaSimplifier.add_prems (map ASSUME ants1) ss
+                     val Q_eeq_Q1 = MetaSimplifier.rewrite_cterm
+                        (false,true,false) (prover used') ss' (tych Q)
+                      handle U.ERR _ => Thm.reflexive (tych Q)
+                     val lhs_eeq_lhs2 = implies_intr_list ants1 Q_eeq_Q1
+                     val lhs_eq_lhs2 = lhs_eeq_lhs2 RS meta_eq_to_obj_eq
+                     val ant_th = forall_intr_list(map tych vlist)lhs_eq_lhs2
+                 in
+                 ant_th COMP thm
+              end end
+
+             fun eliminate thm =
+               case (rep_thm thm)
+               of {prop = (Const("==>",_) $ imp $ _), thy, ...} =>
+                   eliminate
+                    (if not(is_all imp)
+                     then uq_eliminate (thm,imp,thy)
+                     else q_eliminate (thm,imp,thy))
+                            (* Assume that the leading constant is ==,   *)
+                | _ => thm  (* if it is not a ==>                        *)
+         in SOME(eliminate (rename thm)) end
+         handle U.ERR _ => NONE    (* FIXME handle THM as well?? *)
+
+        fun restrict_prover ss thm =
+          let val dummy = say "restrict_prover:"
+              val cntxt = rev(MetaSimplifier.prems_of_ss ss)
+              val dummy = print_thms "cntxt:" cntxt
+              val {prop = Const("==>",_) $ (Const("Trueprop",_) $ A) $ _,
+                   thy,...} = rep_thm thm
+              fun genl tm = let val vlist = subtract (op aconv) globals
+                                           (add_term_frees(tm,[]))
+                            in fold_rev Forall vlist tm
+                            end
+              (*--------------------------------------------------------------
+               * This actually isn't quite right, since it will think that
+               * not-fully applied occs. of "f" in the context mean that the
+               * current call is nested. The real solution is to pass in a
+               * term "f v1..vn" which is a pattern that any full application
+               * of "f" will match.
+               *-------------------------------------------------------------*)
+              val func_name = #1(dest_Const func)
+              fun is_func (Const (name,_)) = (name = func_name)
+                | is_func _                = false
+              val rcontext = rev cntxt
+              val cncl = HOLogic.dest_Trueprop o Thm.prop_of
+              val antl = case rcontext of [] => []
+                         | _   => [S.list_mk_conj(map cncl rcontext)]
+              val TC = genl(S.list_mk_imp(antl, A))
+              val dummy = print_cterms "func:" [cterm_of thy func]
+              val dummy = print_cterms "TC:"
+                              [cterm_of thy (HOLogic.mk_Trueprop TC)]
+              val dummy = tc_list := (TC :: !tc_list)
+              val nestedp = isSome (S.find_term is_func TC)
+              val dummy = if nestedp then say "nested" else say "not_nested"
+              val dummy = term_ref := ([func,TC]@(!term_ref))
+              val th' = if nestedp then raise RULES_ERR "solver" "nested function"
+                        else let val cTC = cterm_of thy
+                                              (HOLogic.mk_Trueprop TC)
+                             in case rcontext of
+                                [] => SPEC_ALL(ASSUME cTC)
+                               | _ => MP (SPEC_ALL (ASSUME cTC))
+                                         (LIST_CONJ rcontext)
+                             end
+              val th'' = th' RS thm
+          in SOME (th'')
+          end handle U.ERR _ => NONE    (* FIXME handle THM as well?? *)
+    in
+    (if (is_cong thm) then cong_prover else restrict_prover) ss thm
+    end
+    val ctm = cprop_of th
+    val names = add_term_names (term_of ctm, [])
+    val th1 = MetaSimplifier.rewrite_cterm(false,true,false)
+      (prover names) (ss0 addsimps [cut_lemma'] addeqcongs congs) ctm
+    val th2 = equal_elim th1 th
+ in
+ (th2, List.filter (not o restricted) (!tc_list))
+ end;
+
+
+fun prove strict (ptm, tac) =
+  let
+    val {thy, t, ...} = Thm.rep_cterm ptm;
+    val ctxt = ProofContext.init thy |> Variable.auto_fixes t;
+  in
+    if strict then Goal.prove ctxt [] [] t (K tac)
+    else Goal.prove ctxt [] [] t (K tac)
+      handle ERROR msg => (warning msg; raise RULES_ERR "prove" msg)
+  end;
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/tfl.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,1008 @@
+(*  Title:      HOL/Tools/TFL/tfl.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+
+First part of main module.
+*)
+
+signature PRIM =
+sig
+  val trace: bool ref
+  val trace_thms: string -> thm list -> unit
+  val trace_cterms: string -> cterm list -> unit
+  type pattern
+  val mk_functional: theory -> term list -> {functional: term, pats: pattern list}
+  val wfrec_definition0: theory -> string -> term -> term -> theory * thm
+  val post_definition: thm list -> theory * (thm * pattern list) ->
+   {rules: thm,
+    rows: int list,
+    TCs: term list list,
+    full_pats_TCs: (term * term list) list}
+  val wfrec_eqns: theory -> xstring -> thm list -> term list ->
+   {WFR: term,
+    SV: term list,
+    proto_def: term,
+    extracta: (thm * term list) list,
+    pats: pattern list}
+  val lazyR_def: theory -> xstring -> thm list -> term list ->
+   {theory: theory,
+    rules: thm,
+    R: term,
+    SV: term list,
+    full_pats_TCs: (term * term list) list,
+    patterns : pattern list}
+  val mk_induction: theory ->
+    {fconst: term, R: term, SV: term list, pat_TCs_list: (term * term list) list} -> thm
+  val postprocess: bool -> {wf_tac: tactic, terminator: tactic, simplifier: cterm -> thm}
+    -> theory -> {rules: thm, induction: thm, TCs: term list list}
+    -> {rules: thm, induction: thm, nested_tcs: thm list}
+end;
+
+structure Prim: PRIM =
+struct
+
+val trace = ref false;
+
+structure R = Rules;
+structure S = USyntax;
+structure U = Utils;
+
+
+fun TFL_ERR func mesg = U.ERR {module = "Tfl", func = func, mesg = mesg};
+
+val concl = #2 o R.dest_thm;
+val hyp = #1 o R.dest_thm;
+
+val list_mk_type = U.end_itlist (curry (op -->));
+
+fun enumerate xs = ListPair.zip(xs, 0 upto (length xs - 1));
+
+fun front_last [] = raise TFL_ERR "front_last" "empty list"
+  | front_last [x] = ([],x)
+  | front_last (h::t) =
+     let val (pref,x) = front_last t
+     in
+        (h::pref,x)
+     end;
+
+
+(*---------------------------------------------------------------------------
+ * The next function is common to pattern-match translation and
+ * proof of completeness of cases for the induction theorem.
+ *
+ * The curried function "gvvariant" returns a function to generate distinct
+ * variables that are guaranteed not to be in names.  The names of
+ * the variables go u, v, ..., z, aa, ..., az, ...  The returned
+ * function contains embedded refs!
+ *---------------------------------------------------------------------------*)
+fun gvvariant names =
+  let val slist = ref names
+      val vname = ref "u"
+      fun new() =
+         if !vname mem_string (!slist)
+         then (vname := Symbol.bump_string (!vname);  new())
+         else (slist := !vname :: !slist;  !vname)
+  in
+  fn ty => Free(new(), ty)
+  end;
+
+
+(*---------------------------------------------------------------------------
+ * Used in induction theorem production. This is the simple case of
+ * partitioning up pattern rows by the leading constructor.
+ *---------------------------------------------------------------------------*)
+fun ipartition gv (constructors,rows) =
+  let fun pfail s = raise TFL_ERR "partition.part" s
+      fun part {constrs = [],   rows = [],   A} = rev A
+        | part {constrs = [],   rows = _::_, A} = pfail"extra cases in defn"
+        | part {constrs = _::_, rows = [],   A} = pfail"cases missing in defn"
+        | part {constrs = c::crst, rows,     A} =
+          let val (c, T) = dest_Const c
+              val L = binder_types T
+              val (in_group, not_in_group) =
+               fold_rev (fn (row as (p::rst, rhs)) =>
+                         fn (in_group,not_in_group) =>
+                  let val (pc,args) = S.strip_comb p
+                  in if (#1(dest_Const pc) = c)
+                     then ((args@rst, rhs)::in_group, not_in_group)
+                     else (in_group, row::not_in_group)
+                  end)      rows ([],[])
+              val col_types = U.take type_of (length L, #1(hd in_group))
+          in
+          part{constrs = crst, rows = not_in_group,
+               A = {constructor = c,
+                    new_formals = map gv col_types,
+                    group = in_group}::A}
+          end
+  in part{constrs = constructors, rows = rows, A = []}
+  end;
+
+
+
+(*---------------------------------------------------------------------------
+ * Each pattern carries with it a tag (i,b) where
+ * i is the clause it came from and
+ * b=true indicates that clause was given by the user
+ * (or is an instantiation of a user supplied pattern)
+ * b=false --> i = ~1
+ *---------------------------------------------------------------------------*)
+
+type pattern = term * (int * bool)
+
+fun pattern_map f (tm,x) = (f tm, x);
+
+fun pattern_subst theta = pattern_map (subst_free theta);
+
+val pat_of = fst;
+fun row_of_pat x = fst (snd x);
+fun given x = snd (snd x);
+
+(*---------------------------------------------------------------------------
+ * Produce an instance of a constructor, plus genvars for its arguments.
+ *---------------------------------------------------------------------------*)
+fun fresh_constr ty_match colty gv c =
+  let val (_,Ty) = dest_Const c
+      val L = binder_types Ty
+      and ty = body_type Ty
+      val ty_theta = ty_match ty colty
+      val c' = S.inst ty_theta c
+      val gvars = map (S.inst ty_theta o gv) L
+  in (c', gvars)
+  end;
+
+
+(*---------------------------------------------------------------------------
+ * Goes through a list of rows and picks out the ones beginning with a
+ * pattern with constructor = name.
+ *---------------------------------------------------------------------------*)
+fun mk_group name rows =
+  fold_rev (fn (row as ((prfx, p::rst), rhs)) =>
+            fn (in_group,not_in_group) =>
+               let val (pc,args) = S.strip_comb p
+               in if ((#1 (Term.dest_Const pc) = name) handle TERM _ => false)
+                  then (((prfx,args@rst), rhs)::in_group, not_in_group)
+                  else (in_group, row::not_in_group) end)
+      rows ([],[]);
+
+(*---------------------------------------------------------------------------
+ * Partition the rows. Not efficient: we should use hashing.
+ *---------------------------------------------------------------------------*)
+fun partition _ _ (_,_,_,[]) = raise TFL_ERR "partition" "no rows"
+  | partition gv ty_match
+              (constructors, colty, res_ty, rows as (((prfx,_),_)::_)) =
+let val fresh = fresh_constr ty_match colty gv
+     fun part {constrs = [],      rows, A} = rev A
+       | part {constrs = c::crst, rows, A} =
+         let val (c',gvars) = fresh c
+             val (in_group, not_in_group) = mk_group (#1 (dest_Const c')) rows
+             val in_group' =
+                 if (null in_group)  (* Constructor not given *)
+                 then [((prfx, #2(fresh c)), (S.ARB res_ty, (~1,false)))]
+                 else in_group
+         in
+         part{constrs = crst,
+              rows = not_in_group,
+              A = {constructor = c',
+                   new_formals = gvars,
+                   group = in_group'}::A}
+         end
+in part{constrs=constructors, rows=rows, A=[]}
+end;
+
+(*---------------------------------------------------------------------------
+ * Misc. routines used in mk_case
+ *---------------------------------------------------------------------------*)
+
+fun mk_pat (c,l) =
+  let val L = length (binder_types (type_of c))
+      fun build (prfx,tag,plist) =
+          let val args   = Library.take (L,plist)
+              and plist' = Library.drop(L,plist)
+          in (prfx,tag,list_comb(c,args)::plist') end
+  in map build l end;
+
+fun v_to_prfx (prfx, v::pats) = (v::prfx,pats)
+  | v_to_prfx _ = raise TFL_ERR "mk_case" "v_to_prfx";
+
+fun v_to_pats (v::prfx,tag, pats) = (prfx, tag, v::pats)
+  | v_to_pats _ = raise TFL_ERR "mk_case" "v_to_pats";
+
+
+(*----------------------------------------------------------------------------
+ * Translation of pattern terms into nested case expressions.
+ *
+ * This performs the translation and also builds the full set of patterns.
+ * Thus it supports the construction of induction theorems even when an
+ * incomplete set of patterns is given.
+ *---------------------------------------------------------------------------*)
+
+fun mk_case ty_info ty_match usednames range_ty =
+ let
+ fun mk_case_fail s = raise TFL_ERR "mk_case" s
+ val fresh_var = gvvariant usednames
+ val divide = partition fresh_var ty_match
+ fun expand constructors ty ((_,[]), _) = mk_case_fail"expand_var_row"
+   | expand constructors ty (row as ((prfx, p::rst), rhs)) =
+       if (is_Free p)
+       then let val fresh = fresh_constr ty_match ty fresh_var
+                fun expnd (c,gvs) =
+                  let val capp = list_comb(c,gvs)
+                  in ((prfx, capp::rst), pattern_subst[(p,capp)] rhs)
+                  end
+            in map expnd (map fresh constructors)  end
+       else [row]
+ fun mk{rows=[],...} = mk_case_fail"no rows"
+   | mk{path=[], rows = ((prfx, []), (tm,tag))::_} =  (* Done *)
+        ([(prfx,tag,[])], tm)
+   | mk{path=[], rows = _::_} = mk_case_fail"blunder"
+   | mk{path as u::rstp, rows as ((prfx, []), rhs)::rst} =
+        mk{path = path,
+           rows = ((prfx, [fresh_var(type_of u)]), rhs)::rst}
+   | mk{path = u::rstp, rows as ((_, p::_), _)::_} =
+     let val (pat_rectangle,rights) = ListPair.unzip rows
+         val col0 = map(hd o #2) pat_rectangle
+     in
+     if (forall is_Free col0)
+     then let val rights' = map (fn(v,e) => pattern_subst[(v,u)] e)
+                                (ListPair.zip (col0, rights))
+              val pat_rectangle' = map v_to_prfx pat_rectangle
+              val (pref_patl,tm) = mk{path = rstp,
+                                      rows = ListPair.zip (pat_rectangle',
+                                                           rights')}
+          in (map v_to_pats pref_patl, tm)
+          end
+     else
+     let val pty as Type (ty_name,_) = type_of p
+     in
+     case (ty_info ty_name)
+     of NONE => mk_case_fail("Not a known datatype: "^ty_name)
+      | SOME{case_const,constructors} =>
+        let
+            val case_const_name = #1(dest_Const case_const)
+            val nrows = List.concat (map (expand constructors pty) rows)
+            val subproblems = divide(constructors, pty, range_ty, nrows)
+            val groups      = map #group subproblems
+            and new_formals = map #new_formals subproblems
+            and constructors' = map #constructor subproblems
+            val news = map (fn (nf,rows) => {path = nf@rstp, rows=rows})
+                           (ListPair.zip (new_formals, groups))
+            val rec_calls = map mk news
+            val (pat_rect,dtrees) = ListPair.unzip rec_calls
+            val case_functions = map S.list_mk_abs
+                                  (ListPair.zip (new_formals, dtrees))
+            val types = map type_of (case_functions@[u]) @ [range_ty]
+            val case_const' = Const(case_const_name, list_mk_type types)
+            val tree = list_comb(case_const', case_functions@[u])
+            val pat_rect1 = List.concat
+                              (ListPair.map mk_pat (constructors', pat_rect))
+        in (pat_rect1,tree)
+        end
+     end end
+ in mk
+ end;
+
+
+(* Repeated variable occurrences in a pattern are not allowed. *)
+fun FV_multiset tm =
+   case (S.dest_term tm)
+     of S.VAR{Name = c, Ty = T} => [Free(c, T)]
+      | S.CONST _ => []
+      | S.COMB{Rator, Rand} => FV_multiset Rator @ FV_multiset Rand
+      | S.LAMB _ => raise TFL_ERR "FV_multiset" "lambda";
+
+fun no_repeat_vars thy pat =
+ let fun check [] = true
+       | check (v::rst) =
+         if member (op aconv) rst v then
+            raise TFL_ERR "no_repeat_vars"
+                          (quote (#1 (dest_Free v)) ^
+                          " occurs repeatedly in the pattern " ^
+                          quote (string_of_cterm (Thry.typecheck thy pat)))
+         else check rst
+ in check (FV_multiset pat)
+ end;
+
+fun dest_atom (Free p) = p
+  | dest_atom (Const p) = p
+  | dest_atom  _ = raise TFL_ERR "dest_atom" "function name not an identifier";
+
+fun same_name (p,q) = #1(dest_atom p) = #1(dest_atom q);
+
+local fun mk_functional_err s = raise TFL_ERR "mk_functional" s
+      fun single [_$_] =
+              mk_functional_err "recdef does not allow currying"
+        | single [f] = f
+        | single fs  =
+              (*multiple function names?*)
+              if length (distinct same_name fs) < length fs
+              then mk_functional_err
+                   "The function being declared appears with multiple types"
+              else mk_functional_err
+                   (Int.toString (length fs) ^
+                    " distinct function names being declared")
+in
+fun mk_functional thy clauses =
+ let val (L,R) = ListPair.unzip (map HOLogic.dest_eq clauses
+                   handle TERM _ => raise TFL_ERR "mk_functional"
+                        "recursion equations must use the = relation")
+     val (funcs,pats) = ListPair.unzip (map (fn (t$u) =>(t,u)) L)
+     val atom = single (distinct (op aconv) funcs)
+     val (fname,ftype) = dest_atom atom
+     val dummy = map (no_repeat_vars thy) pats
+     val rows = ListPair.zip (map (fn x => ([]:term list,[x])) pats,
+                              map (fn (t,i) => (t,(i,true))) (enumerate R))
+     val names = foldr add_term_names [] R
+     val atype = type_of(hd pats)
+     and aname = Name.variant names "a"
+     val a = Free(aname,atype)
+     val ty_info = Thry.match_info thy
+     val ty_match = Thry.match_type thy
+     val range_ty = type_of (hd R)
+     val (patts, case_tm) = mk_case ty_info ty_match (aname::names) range_ty
+                                    {path=[a], rows=rows}
+     val patts1 = map (fn (_,tag,[pat]) => (pat,tag)) patts
+          handle Match => mk_functional_err "error in pattern-match translation"
+     val patts2 = Library.sort (Library.int_ord o Library.pairself row_of_pat) patts1
+     val finals = map row_of_pat patts2
+     val originals = map (row_of_pat o #2) rows
+     val dummy = case (originals\\finals)
+             of [] => ()
+          | L => mk_functional_err
+ ("The following clauses are redundant (covered by preceding clauses): " ^
+                   commas (map (fn i => Int.toString (i + 1)) L))
+ in {functional = Abs(Sign.base_name fname, ftype,
+                      abstract_over (atom,
+                                     absfree(aname,atype, case_tm))),
+     pats = patts2}
+end end;
+
+
+(*----------------------------------------------------------------------------
+ *
+ *                    PRINCIPLES OF DEFINITION
+ *
+ *---------------------------------------------------------------------------*)
+
+
+(*For Isabelle, the lhs of a definition must be a constant.*)
+fun mk_const_def sign (c, Ty, rhs) =
+  singleton (ProofContext.infer_types (ProofContext.init sign))
+    (Sign.intern_term sign (Const("==",dummyT) $ Const(c,Ty) $ rhs));
+
+(*Make all TVars available for instantiation by adding a ? to the front*)
+fun poly_tvars (Type(a,Ts)) = Type(a, map (poly_tvars) Ts)
+  | poly_tvars (TFree (a,sort)) = TVar (("?" ^ a, 0), sort)
+  | poly_tvars (TVar ((a,i),sort)) = TVar (("?" ^ a, i+1), sort);
+
+local val f_eq_wfrec_R_M =
+           #ant(S.dest_imp(#2(S.strip_forall (concl Thms.WFREC_COROLLARY))))
+      val {lhs=f, rhs} = S.dest_eq f_eq_wfrec_R_M
+      val (fname,_) = dest_Free f
+      val (wfrec,_) = S.strip_comb rhs
+in
+fun wfrec_definition0 thy fid R (functional as Abs(x, Ty, _)) =
+ let val def_name = if x<>fid then
+                        raise TFL_ERR "wfrec_definition0"
+                                      ("Expected a definition of " ^
+                                             quote fid ^ " but found one of " ^
+                                      quote x)
+                    else x ^ "_def"
+     val wfrec_R_M =  map_types poly_tvars
+                          (wfrec $ map_types poly_tvars R)
+                      $ functional
+     val def_term = mk_const_def thy (x, Ty, wfrec_R_M)
+     val ([def], thy') = PureThy.add_defs_i false [Thm.no_attributes (def_name, def_term)] thy
+ in (thy', def) end;
+end;
+
+
+
+(*---------------------------------------------------------------------------
+ * This structure keeps track of congruence rules that aren't derived
+ * from a datatype definition.
+ *---------------------------------------------------------------------------*)
+fun extraction_thms thy =
+ let val {case_rewrites,case_congs} = Thry.extract_info thy
+ in (case_rewrites, case_congs)
+ end;
+
+
+(*---------------------------------------------------------------------------
+ * Pair patterns with termination conditions. The full list of patterns for
+ * a definition is merged with the TCs arising from the user-given clauses.
+ * There can be fewer clauses than the full list, if the user omitted some
+ * cases. This routine is used to prepare input for mk_induction.
+ *---------------------------------------------------------------------------*)
+fun merge full_pats TCs =
+let fun insert (p,TCs) =
+      let fun insrt ((x as (h,[]))::rst) =
+                 if (p aconv h) then (p,TCs)::rst else x::insrt rst
+            | insrt (x::rst) = x::insrt rst
+            | insrt[] = raise TFL_ERR "merge.insert" "pattern not found"
+      in insrt end
+    fun pass ([],ptcl_final) = ptcl_final
+      | pass (ptcs::tcl, ptcl) = pass(tcl, insert ptcs ptcl)
+in
+  pass (TCs, map (fn p => (p,[])) full_pats)
+end;
+
+
+fun givens pats = map pat_of (List.filter given pats);
+
+fun post_definition meta_tflCongs (theory, (def, pats)) =
+ let val tych = Thry.typecheck theory
+     val f = #lhs(S.dest_eq(concl def))
+     val corollary = R.MATCH_MP Thms.WFREC_COROLLARY def
+     val pats' = List.filter given pats
+     val given_pats = map pat_of pats'
+     val rows = map row_of_pat pats'
+     val WFR = #ant(S.dest_imp(concl corollary))
+     val R = #Rand(S.dest_comb WFR)
+     val corollary' = R.UNDISCH corollary  (* put WF R on assums *)
+     val corollaries = map (fn pat => R.SPEC (tych pat) corollary')
+                           given_pats
+     val (case_rewrites,context_congs) = extraction_thms theory
+     (*case_ss causes minimal simplification: bodies of case expressions are
+       not simplified. Otherwise large examples (Red-Black trees) are too
+       slow.*)
+     val case_ss = Simplifier.theory_context theory
+       (HOL_basic_ss addcongs
+         (map (#weak_case_cong o snd) o Symtab.dest o DatatypePackage.get_datatypes) theory addsimps case_rewrites)
+     val corollaries' = map (Simplifier.simplify case_ss) corollaries
+     val extract = R.CONTEXT_REWRITE_RULE
+                     (f, [R], cut_apply, meta_tflCongs@context_congs)
+     val (rules, TCs) = ListPair.unzip (map extract corollaries')
+     val rules0 = map (rewrite_rule [Thms.CUT_DEF]) rules
+     val mk_cond_rule = R.FILTER_DISCH_ALL(not o curry (op aconv) WFR)
+     val rules1 = R.LIST_CONJ(map mk_cond_rule rules0)
+ in
+ {rules = rules1,
+  rows = rows,
+  full_pats_TCs = merge (map pat_of pats) (ListPair.zip (given_pats, TCs)),
+  TCs = TCs}
+ end;
+
+
+(*---------------------------------------------------------------------------
+ * Perform the extraction without making the definition. Definition and
+ * extraction commute for the non-nested case.  (Deferred recdefs)
+ *
+ * The purpose of wfrec_eqns is merely to instantiate the recursion theorem
+ * and extract termination conditions: no definition is made.
+ *---------------------------------------------------------------------------*)
+
+fun wfrec_eqns thy fid tflCongs eqns =
+ let val {lhs,rhs} = S.dest_eq (hd eqns)
+     val (f,args) = S.strip_comb lhs
+     val (fname,fty) = dest_atom f
+     val (SV,a) = front_last args    (* SV = schematic variables *)
+     val g = list_comb(f,SV)
+     val h = Free(fname,type_of g)
+     val eqns1 = map (subst_free[(g,h)]) eqns
+     val {functional as Abs(x, Ty, _),  pats} = mk_functional thy eqns1
+     val given_pats = givens pats
+     (* val f = Free(x,Ty) *)
+     val Type("fun", [f_dty, f_rty]) = Ty
+     val dummy = if x<>fid then
+                        raise TFL_ERR "wfrec_eqns"
+                                      ("Expected a definition of " ^
+                                      quote fid ^ " but found one of " ^
+                                      quote x)
+                 else ()
+     val (case_rewrites,context_congs) = extraction_thms thy
+     val tych = Thry.typecheck thy
+     val WFREC_THM0 = R.ISPEC (tych functional) Thms.WFREC_COROLLARY
+     val Const("All",_) $ Abs(Rname,Rtype,_) = concl WFREC_THM0
+     val R = Free (Name.variant (foldr add_term_names [] eqns) Rname,
+                   Rtype)
+     val WFREC_THM = R.ISPECL [tych R, tych g] WFREC_THM0
+     val ([proto_def, WFR],_) = S.strip_imp(concl WFREC_THM)
+     val dummy =
+           if !trace then
+               writeln ("ORIGINAL PROTO_DEF: " ^
+                          Sign.string_of_term thy proto_def)
+           else ()
+     val R1 = S.rand WFR
+     val corollary' = R.UNDISCH(R.UNDISCH WFREC_THM)
+     val corollaries = map (fn pat => R.SPEC (tych pat) corollary') given_pats
+     val corollaries' = map (rewrite_rule case_rewrites) corollaries
+     fun extract X = R.CONTEXT_REWRITE_RULE
+                       (f, R1::SV, cut_apply, tflCongs@context_congs) X
+ in {proto_def = proto_def,
+     SV=SV,
+     WFR=WFR,
+     pats=pats,
+     extracta = map extract corollaries'}
+ end;
+
+
+(*---------------------------------------------------------------------------
+ * Define the constant after extracting the termination conditions. The
+ * wellfounded relation used in the definition is computed by using the
+ * choice operator on the extracted conditions (plus the condition that
+ * such a relation must be wellfounded).
+ *---------------------------------------------------------------------------*)
+
+fun lazyR_def thy fid tflCongs eqns =
+ let val {proto_def,WFR,pats,extracta,SV} =
+           wfrec_eqns thy fid tflCongs eqns
+     val R1 = S.rand WFR
+     val f = #lhs(S.dest_eq proto_def)
+     val (extractants,TCl) = ListPair.unzip extracta
+     val dummy = if !trace
+                 then (writeln "Extractants = ";
+                       prths extractants;
+                       ())
+                 else ()
+     val TCs = foldr (gen_union (op aconv)) [] TCl
+     val full_rqt = WFR::TCs
+     val R' = S.mk_select{Bvar=R1, Body=S.list_mk_conj full_rqt}
+     val R'abs = S.rand R'
+     val proto_def' = subst_free[(R1,R')] proto_def
+     val dummy = if !trace then writeln ("proto_def' = " ^
+                                         Sign.string_of_term
+                                         thy proto_def')
+                           else ()
+     val {lhs,rhs} = S.dest_eq proto_def'
+     val (c,args) = S.strip_comb lhs
+     val (name,Ty) = dest_atom c
+     val defn = mk_const_def thy (name, Ty, S.list_mk_abs (args,rhs))
+     val ([def0], theory) =
+       thy
+       |> PureThy.add_defs_i false
+            [Thm.no_attributes (fid ^ "_def", defn)]
+     val def = Thm.freezeT def0;
+     val dummy = if !trace then writeln ("DEF = " ^ string_of_thm def)
+                           else ()
+     (* val fconst = #lhs(S.dest_eq(concl def))  *)
+     val tych = Thry.typecheck theory
+     val full_rqt_prop = map (Dcterm.mk_prop o tych) full_rqt
+         (*lcp: a lot of object-logic inference to remove*)
+     val baz = R.DISCH_ALL
+                 (fold_rev R.DISCH full_rqt_prop
+                  (R.LIST_CONJ extractants))
+     val dum = if !trace then writeln ("baz = " ^ string_of_thm baz)
+                           else ()
+     val f_free = Free (fid, fastype_of f)  (*'cos f is a Const*)
+     val SV' = map tych SV;
+     val SVrefls = map reflexive SV'
+     val def0 = (fold (fn x => fn th => R.rbeta(combination th x))
+                   SVrefls def)
+                RS meta_eq_to_obj_eq
+     val def' = R.MP (R.SPEC (tych R') (R.GEN (tych R1) baz)) def0
+     val body_th = R.LIST_CONJ (map R.ASSUME full_rqt_prop)
+     val SELECT_AX = (*in this way we hope to avoid a STATIC dependence upon
+                       theory Hilbert_Choice*)
+         thm "Hilbert_Choice.tfl_some"
+         handle ERROR msg => cat_error msg
+    "defer_recdef requires theory Main or at least Hilbert_Choice as parent"
+     val bar = R.MP (R.ISPECL[tych R'abs, tych R1] SELECT_AX) body_th
+ in {theory = theory, R=R1, SV=SV,
+     rules = fold (U.C R.MP) (R.CONJUNCTS bar) def',
+     full_pats_TCs = merge (map pat_of pats) (ListPair.zip (givens pats, TCl)),
+     patterns = pats}
+ end;
+
+
+
+(*----------------------------------------------------------------------------
+ *
+ *                           INDUCTION THEOREM
+ *
+ *---------------------------------------------------------------------------*)
+
+
+(*------------------------  Miscellaneous function  --------------------------
+ *
+ *           [x_1,...,x_n]     ?v_1...v_n. M[v_1,...,v_n]
+ *     -----------------------------------------------------------
+ *     ( M[x_1,...,x_n], [(x_i,?v_1...v_n. M[v_1,...,v_n]),
+ *                        ...
+ *                        (x_j,?v_n. M[x_1,...,x_(n-1),v_n])] )
+ *
+ * This function is totally ad hoc. Used in the production of the induction
+ * theorem. The nchotomy theorem can have clauses that look like
+ *
+ *     ?v1..vn. z = C vn..v1
+ *
+ * in which the order of quantification is not the order of occurrence of the
+ * quantified variables as arguments to C. Since we have no control over this
+ * aspect of the nchotomy theorem, we make the correspondence explicit by
+ * pairing the incoming new variable with the term it gets beta-reduced into.
+ *---------------------------------------------------------------------------*)
+
+fun alpha_ex_unroll (xlist, tm) =
+  let val (qvars,body) = S.strip_exists tm
+      val vlist = #2(S.strip_comb (S.rhs body))
+      val plist = ListPair.zip (vlist, xlist)
+      val args = map (the o AList.lookup (op aconv) plist) qvars
+                   handle Option => sys_error
+                       "TFL fault [alpha_ex_unroll]: no correspondence"
+      fun build ex      []   = []
+        | build (_$rex) (v::rst) =
+           let val ex1 = Term.betapply(rex, v)
+           in  ex1 :: build ex1 rst
+           end
+     val (nex::exl) = rev (tm::build tm args)
+  in
+  (nex, ListPair.zip (args, rev exl))
+  end;
+
+
+
+(*----------------------------------------------------------------------------
+ *
+ *             PROVING COMPLETENESS OF PATTERNS
+ *
+ *---------------------------------------------------------------------------*)
+
+fun mk_case ty_info usednames thy =
+ let
+ val divide = ipartition (gvvariant usednames)
+ val tych = Thry.typecheck thy
+ fun tych_binding(x,y) = (tych x, tych y)
+ fun fail s = raise TFL_ERR "mk_case" s
+ fun mk{rows=[],...} = fail"no rows"
+   | mk{path=[], rows = [([], (thm, bindings))]} =
+                         R.IT_EXISTS (map tych_binding bindings) thm
+   | mk{path = u::rstp, rows as (p::_, _)::_} =
+     let val (pat_rectangle,rights) = ListPair.unzip rows
+         val col0 = map hd pat_rectangle
+         val pat_rectangle' = map tl pat_rectangle
+     in
+     if (forall is_Free col0) (* column 0 is all variables *)
+     then let val rights' = map (fn ((thm,theta),v) => (thm,theta@[(u,v)]))
+                                (ListPair.zip (rights, col0))
+          in mk{path = rstp, rows = ListPair.zip (pat_rectangle', rights')}
+          end
+     else                     (* column 0 is all constructors *)
+     let val Type (ty_name,_) = type_of p
+     in
+     case (ty_info ty_name)
+     of NONE => fail("Not a known datatype: "^ty_name)
+      | SOME{constructors,nchotomy} =>
+        let val thm' = R.ISPEC (tych u) nchotomy
+            val disjuncts = S.strip_disj (concl thm')
+            val subproblems = divide(constructors, rows)
+            val groups      = map #group subproblems
+            and new_formals = map #new_formals subproblems
+            val existentials = ListPair.map alpha_ex_unroll
+                                   (new_formals, disjuncts)
+            val constraints = map #1 existentials
+            val vexl = map #2 existentials
+            fun expnd tm (pats,(th,b)) = (pats,(R.SUBS[R.ASSUME(tych tm)]th,b))
+            val news = map (fn (nf,rows,c) => {path = nf@rstp,
+                                               rows = map (expnd c) rows})
+                           (U.zip3 new_formals groups constraints)
+            val recursive_thms = map mk news
+            val build_exists = Library.foldr
+                                (fn((x,t), th) =>
+                                 R.CHOOSE (tych x, R.ASSUME (tych t)) th)
+            val thms' = ListPair.map build_exists (vexl, recursive_thms)
+            val same_concls = R.EVEN_ORS thms'
+        in R.DISJ_CASESL thm' same_concls
+        end
+     end end
+ in mk
+ end;
+
+
+fun complete_cases thy =
+ let val tych = Thry.typecheck thy
+     val ty_info = Thry.induct_info thy
+ in fn pats =>
+ let val names = foldr add_term_names [] pats
+     val T = type_of (hd pats)
+     val aname = Name.variant names "a"
+     val vname = Name.variant (aname::names) "v"
+     val a = Free (aname, T)
+     val v = Free (vname, T)
+     val a_eq_v = HOLogic.mk_eq(a,v)
+     val ex_th0 = R.EXISTS (tych (S.mk_exists{Bvar=v,Body=a_eq_v}), tych a)
+                           (R.REFL (tych a))
+     val th0 = R.ASSUME (tych a_eq_v)
+     val rows = map (fn x => ([x], (th0,[]))) pats
+ in
+ R.GEN (tych a)
+       (R.RIGHT_ASSOC
+          (R.CHOOSE(tych v, ex_th0)
+                (mk_case ty_info (vname::aname::names)
+                 thy {path=[v], rows=rows})))
+ end end;
+
+
+(*---------------------------------------------------------------------------
+ * Constructing induction hypotheses: one for each recursive call.
+ *
+ * Note. R will never occur as a variable in the ind_clause, because
+ * to do so, it would have to be from a nested definition, and we don't
+ * allow nested defns to have R variable.
+ *
+ * Note. When the context is empty, there can be no local variables.
+ *---------------------------------------------------------------------------*)
+(*
+local infix 5 ==>
+      fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
+in
+fun build_ih f P (pat,TCs) =
+ let val globals = S.free_vars_lr pat
+     fun nested tm = isSome (S.find_term (curry (op aconv) f) tm)
+     fun dest_TC tm =
+         let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
+             val (R,y,_) = S.dest_relation R_y_pat
+             val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
+         in case cntxt
+              of [] => (P_y, (tm,[]))
+               | _  => let
+                    val imp = S.list_mk_conj cntxt ==> P_y
+                    val lvs = gen_rems (op aconv) (S.free_vars_lr imp, globals)
+                    val locals = #2(U.pluck (curry (op aconv) P) lvs) handle U.ERR _ => lvs
+                    in (S.list_mk_forall(locals,imp), (tm,locals)) end
+         end
+ in case TCs
+    of [] => (S.list_mk_forall(globals, P$pat), [])
+     |  _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
+                 val ind_clause = S.list_mk_conj ihs ==> P$pat
+             in (S.list_mk_forall(globals,ind_clause), TCs_locals)
+             end
+ end
+end;
+*)
+
+local infix 5 ==>
+      fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
+in
+fun build_ih f (P,SV) (pat,TCs) =
+ let val pat_vars = S.free_vars_lr pat
+     val globals = pat_vars@SV
+     fun nested tm = isSome (S.find_term (curry (op aconv) f) tm)
+     fun dest_TC tm =
+         let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
+             val (R,y,_) = S.dest_relation R_y_pat
+             val P_y = if (nested tm) then R_y_pat ==> P$y else P$y
+         in case cntxt
+              of [] => (P_y, (tm,[]))
+               | _  => let
+                    val imp = S.list_mk_conj cntxt ==> P_y
+                    val lvs = subtract (op aconv) globals (S.free_vars_lr imp)
+                    val locals = #2(U.pluck (curry (op aconv) P) lvs) handle U.ERR _ => lvs
+                    in (S.list_mk_forall(locals,imp), (tm,locals)) end
+         end
+ in case TCs
+    of [] => (S.list_mk_forall(pat_vars, P$pat), [])
+     |  _ => let val (ihs, TCs_locals) = ListPair.unzip(map dest_TC TCs)
+                 val ind_clause = S.list_mk_conj ihs ==> P$pat
+             in (S.list_mk_forall(pat_vars,ind_clause), TCs_locals)
+             end
+ end
+end;
+
+(*---------------------------------------------------------------------------
+ * This function makes good on the promise made in "build_ih".
+ *
+ * Input  is tm = "(!y. R y pat ==> P y) ==> P pat",
+ *           TCs = TC_1[pat] ... TC_n[pat]
+ *           thm = ih1 /\ ... /\ ih_n |- ih[pat]
+ *---------------------------------------------------------------------------*)
+fun prove_case f thy (tm,TCs_locals,thm) =
+ let val tych = Thry.typecheck thy
+     val antc = tych(#ant(S.dest_imp tm))
+     val thm' = R.SPEC_ALL thm
+     fun nested tm = isSome (S.find_term (curry (op aconv) f) tm)
+     fun get_cntxt TC = tych(#ant(S.dest_imp(#2(S.strip_forall(concl TC)))))
+     fun mk_ih ((TC,locals),th2,nested) =
+         R.GENL (map tych locals)
+            (if nested then R.DISCH (get_cntxt TC) th2 handle U.ERR _ => th2
+             else if S.is_imp (concl TC) then R.IMP_TRANS TC th2
+             else R.MP th2 TC)
+ in
+ R.DISCH antc
+ (if S.is_imp(concl thm') (* recursive calls in this clause *)
+  then let val th1 = R.ASSUME antc
+           val TCs = map #1 TCs_locals
+           val ylist = map (#2 o S.dest_relation o #2 o S.strip_imp o
+                            #2 o S.strip_forall) TCs
+           val TClist = map (fn(TC,lvs) => (R.SPEC_ALL(R.ASSUME(tych TC)),lvs))
+                            TCs_locals
+           val th2list = map (U.C R.SPEC th1 o tych) ylist
+           val nlist = map nested TCs
+           val triples = U.zip3 TClist th2list nlist
+           val Pylist = map mk_ih triples
+       in R.MP thm' (R.LIST_CONJ Pylist) end
+  else thm')
+ end;
+
+
+(*---------------------------------------------------------------------------
+ *
+ *         x = (v1,...,vn)  |- M[x]
+ *    ---------------------------------------------
+ *      ?v1 ... vn. x = (v1,...,vn) |- M[x]
+ *
+ *---------------------------------------------------------------------------*)
+fun LEFT_ABS_VSTRUCT tych thm =
+  let fun CHOOSER v (tm,thm) =
+        let val ex_tm = S.mk_exists{Bvar=v,Body=tm}
+        in (ex_tm, R.CHOOSE(tych v, R.ASSUME (tych ex_tm)) thm)
+        end
+      val [veq] = List.filter (can S.dest_eq) (#1 (R.dest_thm thm))
+      val {lhs,rhs} = S.dest_eq veq
+      val L = S.free_vars_lr rhs
+  in  #2 (fold_rev CHOOSER L (veq,thm))  end;
+
+
+(*----------------------------------------------------------------------------
+ * Input : f, R,  and  [(pat1,TCs1),..., (patn,TCsn)]
+ *
+ * Instantiates WF_INDUCTION_THM, getting Sinduct and then tries to prove
+ * recursion induction (Rinduct) by proving the antecedent of Sinduct from
+ * the antecedent of Rinduct.
+ *---------------------------------------------------------------------------*)
+fun mk_induction thy {fconst, R, SV, pat_TCs_list} =
+let val tych = Thry.typecheck thy
+    val Sinduction = R.UNDISCH (R.ISPEC (tych R) Thms.WF_INDUCTION_THM)
+    val (pats,TCsl) = ListPair.unzip pat_TCs_list
+    val case_thm = complete_cases thy pats
+    val domain = (type_of o hd) pats
+    val Pname = Name.variant (foldr (Library.foldr add_term_names)
+                              [] (pats::TCsl)) "P"
+    val P = Free(Pname, domain --> HOLogic.boolT)
+    val Sinduct = R.SPEC (tych P) Sinduction
+    val Sinduct_assumf = S.rand ((#ant o S.dest_imp o concl) Sinduct)
+    val Rassums_TCl' = map (build_ih fconst (P,SV)) pat_TCs_list
+    val (Rassums,TCl') = ListPair.unzip Rassums_TCl'
+    val Rinduct_assum = R.ASSUME (tych (S.list_mk_conj Rassums))
+    val cases = map (fn pat => Term.betapply (Sinduct_assumf, pat)) pats
+    val tasks = U.zip3 cases TCl' (R.CONJUNCTS Rinduct_assum)
+    val proved_cases = map (prove_case fconst thy) tasks
+    val v = Free (Name.variant (foldr add_term_names [] (map concl proved_cases))
+                    "v",
+                  domain)
+    val vtyped = tych v
+    val substs = map (R.SYM o R.ASSUME o tych o (curry HOLogic.mk_eq v)) pats
+    val proved_cases1 = ListPair.map (fn (th,th') => R.SUBS[th]th')
+                          (substs, proved_cases)
+    val abs_cases = map (LEFT_ABS_VSTRUCT tych) proved_cases1
+    val dant = R.GEN vtyped (R.DISJ_CASESL (R.ISPEC vtyped case_thm) abs_cases)
+    val dc = R.MP Sinduct dant
+    val Parg_ty = type_of(#Bvar(S.dest_forall(concl dc)))
+    val vars = map (gvvariant[Pname]) (S.strip_prod_type Parg_ty)
+    val dc' = fold_rev (R.GEN o tych) vars
+                       (R.SPEC (tych(S.mk_vstruct Parg_ty vars)) dc)
+in
+   R.GEN (tych P) (R.DISCH (tych(concl Rinduct_assum)) dc')
+end
+handle U.ERR _ => raise TFL_ERR "mk_induction" "failed derivation";
+
+
+
+
+(*---------------------------------------------------------------------------
+ *
+ *                        POST PROCESSING
+ *
+ *---------------------------------------------------------------------------*)
+
+
+fun simplify_induction thy hth ind =
+  let val tych = Thry.typecheck thy
+      val (asl,_) = R.dest_thm ind
+      val (_,tc_eq_tc') = R.dest_thm hth
+      val tc = S.lhs tc_eq_tc'
+      fun loop [] = ind
+        | loop (asm::rst) =
+          if (can (Thry.match_term thy asm) tc)
+          then R.UNDISCH
+                 (R.MATCH_MP
+                     (R.MATCH_MP Thms.simp_thm (R.DISCH (tych asm) ind))
+                     hth)
+         else loop rst
+  in loop asl
+end;
+
+
+(*---------------------------------------------------------------------------
+ * The termination condition is an antecedent to the rule, and an
+ * assumption to the theorem.
+ *---------------------------------------------------------------------------*)
+fun elim_tc tcthm (rule,induction) =
+   (R.MP rule tcthm, R.PROVE_HYP tcthm induction)
+
+
+fun trace_thms s L =
+  if !trace then writeln (cat_lines (s :: map string_of_thm L))
+  else ();
+
+fun trace_cterms s L =
+  if !trace then writeln (cat_lines (s :: map string_of_cterm L))
+  else ();;
+
+
+fun postprocess strict {wf_tac, terminator, simplifier} theory {rules,induction,TCs} =
+let val tych = Thry.typecheck theory
+    val prove = R.prove strict;
+
+   (*---------------------------------------------------------------------
+    * Attempt to eliminate WF condition. It's the only assumption of rules
+    *---------------------------------------------------------------------*)
+   val (rules1,induction1)  =
+       let val thm = prove(tych(HOLogic.mk_Trueprop
+                                  (hd(#1(R.dest_thm rules)))),
+                             wf_tac)
+       in (R.PROVE_HYP thm rules,  R.PROVE_HYP thm induction)
+       end handle U.ERR _ => (rules,induction);
+
+   (*----------------------------------------------------------------------
+    * The termination condition (tc) is simplified to |- tc = tc' (there
+    * might not be a change!) and then 3 attempts are made:
+    *
+    *   1. if |- tc = T, then eliminate it with eqT; otherwise,
+    *   2. apply the terminator to tc'. If |- tc' = T then eliminate; else
+    *   3. replace tc by tc' in both the rules and the induction theorem.
+    *---------------------------------------------------------------------*)
+
+   fun simplify_tc tc (r,ind) =
+       let val tc1 = tych tc
+           val _ = trace_cterms "TC before simplification: " [tc1]
+           val tc_eq = simplifier tc1
+           val _ = trace_thms "result: " [tc_eq]
+       in
+       elim_tc (R.MATCH_MP Thms.eqT tc_eq) (r,ind)
+       handle U.ERR _ =>
+        (elim_tc (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
+                  (prove(tych(HOLogic.mk_Trueprop(S.rhs(concl tc_eq))),
+                           terminator)))
+                 (r,ind)
+         handle U.ERR _ =>
+          (R.UNDISCH(R.MATCH_MP (R.MATCH_MP Thms.simp_thm r) tc_eq),
+           simplify_induction theory tc_eq ind))
+       end
+
+   (*----------------------------------------------------------------------
+    * Nested termination conditions are harder to get at, since they are
+    * left embedded in the body of the function (and in induction
+    * theorem hypotheses). Our "solution" is to simplify them, and try to
+    * prove termination, but leave the application of the resulting theorem
+    * to a higher level. So things go much as in "simplify_tc": the
+    * termination condition (tc) is simplified to |- tc = tc' (there might
+    * not be a change) and then 2 attempts are made:
+    *
+    *   1. if |- tc = T, then return |- tc; otherwise,
+    *   2. apply the terminator to tc'. If |- tc' = T then return |- tc; else
+    *   3. return |- tc = tc'
+    *---------------------------------------------------------------------*)
+   fun simplify_nested_tc tc =
+      let val tc_eq = simplifier (tych (#2 (S.strip_forall tc)))
+      in
+      R.GEN_ALL
+       (R.MATCH_MP Thms.eqT tc_eq
+        handle U.ERR _ =>
+          (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
+                      (prove(tych(HOLogic.mk_Trueprop (S.rhs(concl tc_eq))),
+                               terminator))
+            handle U.ERR _ => tc_eq))
+      end
+
+   (*-------------------------------------------------------------------
+    * Attempt to simplify the termination conditions in each rule and
+    * in the induction theorem.
+    *-------------------------------------------------------------------*)
+   fun strip_imp tm = if S.is_neg tm then ([],tm) else S.strip_imp tm
+   fun loop ([],extras,R,ind) = (rev R, ind, extras)
+     | loop ((r,ftcs)::rst, nthms, R, ind) =
+        let val tcs = #1(strip_imp (concl r))
+            val extra_tcs = subtract (op aconv) tcs ftcs
+            val extra_tc_thms = map simplify_nested_tc extra_tcs
+            val (r1,ind1) = fold simplify_tc tcs (r,ind)
+            val r2 = R.FILTER_DISCH_ALL(not o S.is_WFR) r1
+        in loop(rst, nthms@extra_tc_thms, r2::R, ind1)
+        end
+   val rules_tcs = ListPair.zip (R.CONJUNCTS rules1, TCs)
+   val (rules2,ind2,extras) = loop(rules_tcs,[],[],induction1)
+in
+  {induction = ind2, rules = R.LIST_CONJ rules2, nested_tcs = extras}
+end;
+
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/thms.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,20 @@
+(*  Title:      HOL/Tools/TFL/thms.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+*)
+
+structure Thms =
+struct
+  val WFREC_COROLLARY = thm "tfl_wfrec";
+  val WF_INDUCTION_THM = thm "tfl_wf_induct";
+  val CUT_DEF = thm "cut_def";
+  val eqT = thm "tfl_eq_True";
+  val rev_eq_mp = thm "tfl_rev_eq_mp";
+  val simp_thm = thm "tfl_simp_thm";
+  val P_imp_P_iff_True = thm "tfl_P_imp_P_iff_True";
+  val imp_trans = thm "tfl_imp_trans";
+  val disj_assoc = thm "tfl_disj_assoc";
+  val tfl_disjE = thm "tfl_disjE";
+  val choose_thm = thm "tfl_exE";
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/thry.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,82 @@
+(*  Title:      HOL/Tools/TFL/thry.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+*)
+
+signature THRY =
+sig
+  val match_term: theory -> term -> term -> (term * term) list * (typ * typ) list
+  val match_type: theory -> typ -> typ -> (typ * typ) list
+  val typecheck: theory -> term -> cterm
+  (*datatype facts of various flavours*)
+  val match_info: theory -> string -> {constructors: term list, case_const: term} option
+  val induct_info: theory -> string -> {constructors: term list, nchotomy: thm} option
+  val extract_info: theory -> {case_congs: thm list, case_rewrites: thm list}
+end;
+
+structure Thry: THRY =
+struct
+
+
+fun THRY_ERR func mesg = Utils.ERR {module = "Thry", func = func, mesg = mesg};
+
+
+(*---------------------------------------------------------------------------
+ *    Matching
+ *---------------------------------------------------------------------------*)
+
+local
+
+fun tybind (ixn, (S, T)) = (TVar (ixn, S), T);
+
+in
+
+fun match_term thry pat ob =
+  let
+    val (ty_theta, tm_theta) = Pattern.match thry (pat,ob) (Vartab.empty, Vartab.empty);
+    fun tmbind (ixn, (T, t)) = (Var (ixn, Envir.typ_subst_TVars ty_theta T), t)
+  in (map tmbind (Vartab.dest tm_theta), map tybind (Vartab.dest ty_theta))
+  end;
+
+fun match_type thry pat ob =
+  map tybind (Vartab.dest (Sign.typ_match thry (pat, ob) Vartab.empty));
+
+end;
+
+
+(*---------------------------------------------------------------------------
+ * Typing
+ *---------------------------------------------------------------------------*)
+
+fun typecheck thry t =
+  Thm.cterm_of thry t
+    handle TYPE (msg, _, _) => raise THRY_ERR "typecheck" msg
+      | TERM (msg, _) => raise THRY_ERR "typecheck" msg;
+
+
+(*---------------------------------------------------------------------------
+ * Get information about datatypes
+ *---------------------------------------------------------------------------*)
+
+fun match_info thy dtco =
+  case (DatatypePackage.get_datatype thy dtco,
+         DatatypePackage.get_datatype_constrs thy dtco) of
+      (SOME { case_name, ... }, SOME constructors) =>
+        SOME {case_const = Const (case_name, Sign.the_const_type thy case_name), constructors = map Const constructors}
+    | _ => NONE;
+
+fun induct_info thy dtco = case DatatypePackage.get_datatype thy dtco of
+        NONE => NONE
+      | SOME {nchotomy, ...} =>
+          SOME {nchotomy = nchotomy,
+                constructors = (map Const o the o DatatypePackage.get_datatype_constrs thy) dtco};
+
+fun extract_info thy =
+ let val infos = (map snd o Symtab.dest o DatatypePackage.get_datatypes) thy
+ in {case_congs = map (mk_meta_eq o #case_cong) infos,
+     case_rewrites = List.concat (map (map mk_meta_eq o #case_rewrites) infos)}
+ end;
+
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/usyntax.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,409 @@
+(*  Title:      HOL/Tools/TFL/usyntax.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+
+Emulation of HOL's abstract syntax functions.
+*)
+
+signature USYNTAX =
+sig
+  datatype lambda = VAR   of {Name : string, Ty : typ}
+                  | CONST of {Name : string, Ty : typ}
+                  | COMB  of {Rator: term, Rand : term}
+                  | LAMB  of {Bvar : term, Body : term}
+
+  val alpha : typ
+
+  (* Types *)
+  val type_vars  : typ -> typ list
+  val type_varsl : typ list -> typ list
+  val mk_vartype : string -> typ
+  val is_vartype : typ -> bool
+  val strip_prod_type : typ -> typ list
+
+  (* Terms *)
+  val free_vars_lr : term -> term list
+  val type_vars_in_term : term -> typ list
+  val dest_term  : term -> lambda
+
+  (* Prelogic *)
+  val inst      : (typ*typ) list -> term -> term
+
+  (* Construction routines *)
+  val mk_abs    :{Bvar  : term, Body : term} -> term
+
+  val mk_imp    :{ant : term, conseq :  term} -> term
+  val mk_select :{Bvar : term, Body : term} -> term
+  val mk_forall :{Bvar : term, Body : term} -> term
+  val mk_exists :{Bvar : term, Body : term} -> term
+  val mk_conj   :{conj1 : term, conj2 : term} -> term
+  val mk_disj   :{disj1 : term, disj2 : term} -> term
+  val mk_pabs   :{varstruct : term, body : term} -> term
+
+  (* Destruction routines *)
+  val dest_const: term -> {Name : string, Ty : typ}
+  val dest_comb : term -> {Rator : term, Rand : term}
+  val dest_abs  : string list -> term -> {Bvar : term, Body : term} * string list
+  val dest_eq     : term -> {lhs : term, rhs : term}
+  val dest_imp    : term -> {ant : term, conseq : term}
+  val dest_forall : term -> {Bvar : term, Body : term}
+  val dest_exists : term -> {Bvar : term, Body : term}
+  val dest_neg    : term -> term
+  val dest_conj   : term -> {conj1 : term, conj2 : term}
+  val dest_disj   : term -> {disj1 : term, disj2 : term}
+  val dest_pair   : term -> {fst : term, snd : term}
+  val dest_pabs   : string list -> term -> {varstruct : term, body : term, used : string list}
+
+  val lhs   : term -> term
+  val rhs   : term -> term
+  val rand  : term -> term
+
+  (* Query routines *)
+  val is_imp    : term -> bool
+  val is_forall : term -> bool
+  val is_exists : term -> bool
+  val is_neg    : term -> bool
+  val is_conj   : term -> bool
+  val is_disj   : term -> bool
+  val is_pair   : term -> bool
+  val is_pabs   : term -> bool
+
+  (* Construction of a term from a list of Preterms *)
+  val list_mk_abs    : (term list * term) -> term
+  val list_mk_imp    : (term list * term) -> term
+  val list_mk_forall : (term list * term) -> term
+  val list_mk_conj   : term list -> term
+
+  (* Destructing a term to a list of Preterms *)
+  val strip_comb     : term -> (term * term list)
+  val strip_abs      : term -> (term list * term)
+  val strip_imp      : term -> (term list * term)
+  val strip_forall   : term -> (term list * term)
+  val strip_exists   : term -> (term list * term)
+  val strip_disj     : term -> term list
+
+  (* Miscellaneous *)
+  val mk_vstruct : typ -> term list -> term
+  val gen_all    : term -> term
+  val find_term  : (term -> bool) -> term -> term option
+  val dest_relation : term -> term * term * term
+  val is_WFR : term -> bool
+  val ARB : typ -> term
+end;
+
+structure USyntax: USYNTAX =
+struct
+
+infix 4 ##;
+
+fun USYN_ERR func mesg = Utils.ERR {module = "USyntax", func = func, mesg = mesg};
+
+
+(*---------------------------------------------------------------------------
+ *
+ *                            Types
+ *
+ *---------------------------------------------------------------------------*)
+val mk_prim_vartype = TVar;
+fun mk_vartype s = mk_prim_vartype ((s, 0), HOLogic.typeS);
+
+(* But internally, it's useful *)
+fun dest_vtype (TVar x) = x
+  | dest_vtype _ = raise USYN_ERR "dest_vtype" "not a flexible type variable";
+
+val is_vartype = can dest_vtype;
+
+val type_vars  = map mk_prim_vartype o typ_tvars
+fun type_varsl L = distinct (op =) (fold (curry op @ o type_vars) L []);
+
+val alpha  = mk_vartype "'a"
+val beta   = mk_vartype "'b"
+
+val strip_prod_type = HOLogic.prodT_factors;
+
+
+
+(*---------------------------------------------------------------------------
+ *
+ *                              Terms
+ *
+ *---------------------------------------------------------------------------*)
+
+(* Free variables, in order of occurrence, from left to right in the
+ * syntax tree. *)
+fun free_vars_lr tm =
+  let fun memb x = let fun m[] = false | m(y::rst) = (x=y)orelse m rst in m end
+      fun add (t, frees) = case t of
+            Free   _ => if (memb t frees) then frees else t::frees
+          | Abs (_,_,body) => add(body,frees)
+          | f$t =>  add(t, add(f, frees))
+          | _ => frees
+  in rev(add(tm,[]))
+  end;
+
+
+
+val type_vars_in_term = map mk_prim_vartype o term_tvars;
+
+
+
+(* Prelogic *)
+fun dest_tybinding (v,ty) = (#1(dest_vtype v),ty)
+fun inst theta = subst_vars (map dest_tybinding theta,[])
+
+
+(* Construction routines *)
+
+fun mk_abs{Bvar as Var((s,_),ty),Body}  = Abs(s,ty,abstract_over(Bvar,Body))
+  | mk_abs{Bvar as Free(s,ty),Body}  = Abs(s,ty,abstract_over(Bvar,Body))
+  | mk_abs _ = raise USYN_ERR "mk_abs" "Bvar is not a variable";
+
+
+fun mk_imp{ant,conseq} =
+   let val c = Const("op -->",HOLogic.boolT --> HOLogic.boolT --> HOLogic.boolT)
+   in list_comb(c,[ant,conseq])
+   end;
+
+fun mk_select (r as {Bvar,Body}) =
+  let val ty = type_of Bvar
+      val c = Const("Hilbert_Choice.Eps",(ty --> HOLogic.boolT) --> ty)
+  in list_comb(c,[mk_abs r])
+  end;
+
+fun mk_forall (r as {Bvar,Body}) =
+  let val ty = type_of Bvar
+      val c = Const("All",(ty --> HOLogic.boolT) --> HOLogic.boolT)
+  in list_comb(c,[mk_abs r])
+  end;
+
+fun mk_exists (r as {Bvar,Body}) =
+  let val ty = type_of Bvar
+      val c = Const("Ex",(ty --> HOLogic.boolT) --> HOLogic.boolT)
+  in list_comb(c,[mk_abs r])
+  end;
+
+
+fun mk_conj{conj1,conj2} =
+   let val c = Const("op &",HOLogic.boolT --> HOLogic.boolT --> HOLogic.boolT)
+   in list_comb(c,[conj1,conj2])
+   end;
+
+fun mk_disj{disj1,disj2} =
+   let val c = Const("op |",HOLogic.boolT --> HOLogic.boolT --> HOLogic.boolT)
+   in list_comb(c,[disj1,disj2])
+   end;
+
+fun prod_ty ty1 ty2 = HOLogic.mk_prodT (ty1,ty2);
+
+local
+fun mk_uncurry(xt,yt,zt) =
+    Const("split",(xt --> yt --> zt) --> prod_ty xt yt --> zt)
+fun dest_pair(Const("Pair",_) $ M $ N) = {fst=M, snd=N}
+  | dest_pair _ = raise USYN_ERR "dest_pair" "not a pair"
+fun is_var (Var _) = true | is_var (Free _) = true | is_var _ = false
+in
+fun mk_pabs{varstruct,body} =
+ let fun mpa (varstruct, body) =
+       if is_var varstruct
+       then mk_abs {Bvar = varstruct, Body = body}
+       else let val {fst, snd} = dest_pair varstruct
+            in mk_uncurry (type_of fst, type_of snd, type_of body) $
+               mpa (fst, mpa (snd, body))
+            end
+ in mpa (varstruct, body) end
+ handle TYPE _ => raise USYN_ERR "mk_pabs" "";
+end;
+
+(* Destruction routines *)
+
+datatype lambda = VAR   of {Name : string, Ty : typ}
+                | CONST of {Name : string, Ty : typ}
+                | COMB  of {Rator: term, Rand : term}
+                | LAMB  of {Bvar : term, Body : term};
+
+
+fun dest_term(Var((s,i),ty)) = VAR{Name = s, Ty = ty}
+  | dest_term(Free(s,ty))    = VAR{Name = s, Ty = ty}
+  | dest_term(Const(s,ty))   = CONST{Name = s, Ty = ty}
+  | dest_term(M$N)           = COMB{Rator=M,Rand=N}
+  | dest_term(Abs(s,ty,M))   = let  val v = Free(s,ty)
+                               in LAMB{Bvar = v, Body = Term.betapply (M,v)}
+                               end
+  | dest_term(Bound _)       = raise USYN_ERR "dest_term" "Bound";
+
+fun dest_const(Const(s,ty)) = {Name = s, Ty = ty}
+  | dest_const _ = raise USYN_ERR "dest_const" "not a constant";
+
+fun dest_comb(t1 $ t2) = {Rator = t1, Rand = t2}
+  | dest_comb _ =  raise USYN_ERR "dest_comb" "not a comb";
+
+fun dest_abs used (a as Abs(s, ty, M)) =
+     let
+       val s' = Name.variant used s;
+       val v = Free(s', ty);
+     in ({Bvar = v, Body = Term.betapply (a,v)}, s'::used)
+     end
+  | dest_abs _ _ =  raise USYN_ERR "dest_abs" "not an abstraction";
+
+fun dest_eq(Const("op =",_) $ M $ N) = {lhs=M, rhs=N}
+  | dest_eq _ = raise USYN_ERR "dest_eq" "not an equality";
+
+fun dest_imp(Const("op -->",_) $ M $ N) = {ant=M, conseq=N}
+  | dest_imp _ = raise USYN_ERR "dest_imp" "not an implication";
+
+fun dest_forall(Const("All",_) $ (a as Abs _)) = fst (dest_abs [] a)
+  | dest_forall _ = raise USYN_ERR "dest_forall" "not a forall";
+
+fun dest_exists(Const("Ex",_) $ (a as Abs _)) = fst (dest_abs [] a)
+  | dest_exists _ = raise USYN_ERR "dest_exists" "not an existential";
+
+fun dest_neg(Const("not",_) $ M) = M
+  | dest_neg _ = raise USYN_ERR "dest_neg" "not a negation";
+
+fun dest_conj(Const("op &",_) $ M $ N) = {conj1=M, conj2=N}
+  | dest_conj _ = raise USYN_ERR "dest_conj" "not a conjunction";
+
+fun dest_disj(Const("op |",_) $ M $ N) = {disj1=M, disj2=N}
+  | dest_disj _ = raise USYN_ERR "dest_disj" "not a disjunction";
+
+fun mk_pair{fst,snd} =
+   let val ty1 = type_of fst
+       val ty2 = type_of snd
+       val c = Const("Pair",ty1 --> ty2 --> prod_ty ty1 ty2)
+   in list_comb(c,[fst,snd])
+   end;
+
+fun dest_pair(Const("Pair",_) $ M $ N) = {fst=M, snd=N}
+  | dest_pair _ = raise USYN_ERR "dest_pair" "not a pair";
+
+
+local  fun ucheck t = (if #Name(dest_const t) = "split" then t
+                       else raise Match)
+in
+fun dest_pabs used tm =
+   let val ({Bvar,Body}, used') = dest_abs used tm
+   in {varstruct = Bvar, body = Body, used = used'}
+   end handle Utils.ERR _ =>
+          let val {Rator,Rand} = dest_comb tm
+              val _ = ucheck Rator
+              val {varstruct = lv, body, used = used'} = dest_pabs used Rand
+              val {varstruct = rv, body, used = used''} = dest_pabs used' body
+          in {varstruct = mk_pair {fst = lv, snd = rv}, body = body, used = used''}
+          end
+end;
+
+
+val lhs   = #lhs o dest_eq
+val rhs   = #rhs o dest_eq
+val rand  = #Rand o dest_comb
+
+
+(* Query routines *)
+val is_imp    = can dest_imp
+val is_forall = can dest_forall
+val is_exists = can dest_exists
+val is_neg    = can dest_neg
+val is_conj   = can dest_conj
+val is_disj   = can dest_disj
+val is_pair   = can dest_pair
+val is_pabs   = can (dest_pabs [])
+
+
+(* Construction of a cterm from a list of Terms *)
+
+fun list_mk_abs(L,tm) = fold_rev (fn v => fn M => mk_abs{Bvar=v, Body=M}) L tm;
+
+(* These others are almost never used *)
+fun list_mk_imp(A,c) = fold_rev (fn a => fn tm => mk_imp{ant=a,conseq=tm}) A c;
+fun list_mk_forall(V,t) = fold_rev (fn v => fn b => mk_forall{Bvar=v, Body=b})V t;
+val list_mk_conj = Utils.end_itlist(fn c1 => fn tm => mk_conj{conj1=c1, conj2=tm})
+
+
+(* Need to reverse? *)
+fun gen_all tm = list_mk_forall(term_frees tm, tm);
+
+(* Destructing a cterm to a list of Terms *)
+fun strip_comb tm =
+   let fun dest(M$N, A) = dest(M, N::A)
+         | dest x = x
+   in dest(tm,[])
+   end;
+
+fun strip_abs(tm as Abs _) =
+       let val ({Bvar,Body}, _) = dest_abs [] tm
+           val (bvs, core) = strip_abs Body
+       in (Bvar::bvs, core)
+       end
+  | strip_abs M = ([],M);
+
+
+fun strip_imp fm =
+   if (is_imp fm)
+   then let val {ant,conseq} = dest_imp fm
+            val (was,wb) = strip_imp conseq
+        in ((ant::was), wb)
+        end
+   else ([],fm);
+
+fun strip_forall fm =
+   if (is_forall fm)
+   then let val {Bvar,Body} = dest_forall fm
+            val (bvs,core) = strip_forall Body
+        in ((Bvar::bvs), core)
+        end
+   else ([],fm);
+
+
+fun strip_exists fm =
+   if (is_exists fm)
+   then let val {Bvar, Body} = dest_exists fm
+            val (bvs,core) = strip_exists Body
+        in (Bvar::bvs, core)
+        end
+   else ([],fm);
+
+fun strip_disj w =
+   if (is_disj w)
+   then let val {disj1,disj2} = dest_disj w
+        in (strip_disj disj1@strip_disj disj2)
+        end
+   else [w];
+
+
+(* Miscellaneous *)
+
+fun mk_vstruct ty V =
+  let fun follow_prod_type (Type("*",[ty1,ty2])) vs =
+              let val (ltm,vs1) = follow_prod_type ty1 vs
+                  val (rtm,vs2) = follow_prod_type ty2 vs1
+              in (mk_pair{fst=ltm, snd=rtm}, vs2) end
+        | follow_prod_type _ (v::vs) = (v,vs)
+  in #1 (follow_prod_type ty V)  end;
+
+
+(* Search a term for a sub-term satisfying the predicate p. *)
+fun find_term p =
+   let fun find tm =
+      if (p tm) then SOME tm
+      else case tm of
+          Abs(_,_,body) => find body
+        | (t$u)         => (case find t of NONE => find u | some => some)
+        | _             => NONE
+   in find
+   end;
+
+fun dest_relation tm =
+   if (type_of tm = HOLogic.boolT)
+   then let val (Const("op :",_) $ (Const("Pair",_)$y$x) $ R) = tm
+        in (R,y,x)
+        end handle Bind => raise USYN_ERR "dest_relation" "unexpected term structure"
+   else raise USYN_ERR "dest_relation" "not a boolean term";
+
+fun is_WFR (Const("Wellfounded_Recursion.wf",_)$_) = true
+  | is_WFR _                 = false;
+
+fun ARB ty = mk_select{Bvar=Free("v",ty),
+                       Body=Const("True",HOLogic.boolT)};
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/TFL/utils.ML	Thu May 31 13:18:52 2007 +0200
@@ -0,0 +1,59 @@
+(*  Title:      HOL/Tools/TFL/utils.ML
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+
+Basic utilities.
+*)
+
+signature UTILS =
+sig
+  exception ERR of {module: string, func: string, mesg: string}
+  val C: ('a -> 'b -> 'c) -> 'b -> 'a -> 'c
+  val end_itlist: ('a -> 'a -> 'a) -> 'a list -> 'a
+  val itlist2: ('a -> 'b -> 'c -> 'c) -> 'a list -> 'b list -> 'c -> 'c
+  val pluck: ('a -> bool) -> 'a list -> 'a * 'a list
+  val zip3: 'a list -> 'b list -> 'c list -> ('a*'b*'c) list
+  val take: ('a -> 'b) -> int * 'a list -> 'b list
+end;
+
+structure Utils: UTILS =
+struct
+
+(*standard exception for TFL*)
+exception ERR of {module: string, func: string, mesg: string};
+
+fun UTILS_ERR func mesg = ERR {module = "Utils", func = func, mesg = mesg};
+
+
+fun C f x y = f y x
+
+fun end_itlist f [] = raise (UTILS_ERR "end_itlist" "list too short")
+  | end_itlist f [x] = x 
+  | end_itlist f (x :: xs) = f x (end_itlist f xs);
+
+fun itlist2 f L1 L2 base_value =
+ let fun it ([],[]) = base_value
+       | it ((a::rst1),(b::rst2)) = f a b (it (rst1,rst2))
+       | it _ = raise UTILS_ERR "itlist2" "different length lists"
+ in  it (L1,L2)
+ end;
+
+fun pluck p  =
+  let fun remv ([],_) = raise UTILS_ERR "pluck" "item not found"
+        | remv (h::t, A) = if p h then (h, rev A @ t) else remv (t,h::A)
+  in fn L => remv(L,[])
+  end;
+
+fun take f =
+  let fun grab(0,L) = []
+        | grab(n, x::rst) = f x::grab(n-1,rst)
+  in grab
+  end;
+
+fun zip3 [][][] = []
+  | zip3 (x::l1) (y::l2) (z::l3) = (x,y,z)::zip3 l1 l2 l3
+  | zip3 _ _ _ = raise UTILS_ERR "zip3" "different lengths";
+
+
+end;