formal class for factorial (semi)rings
authorhaftmann
Mon, 27 Jul 2015 22:44:02 +0200
changeset 60804 080a979a985b
parent 60803 e11f47dd0786
child 60806 622d45ca75ee
formal class for factorial (semi)rings
CONTRIBUTORS
src/HOL/Library/Multiset.thy
src/HOL/Number_Theory/Factorial_Ring.thy
src/HOL/Number_Theory/Primes.thy
src/HOL/ROOT
--- a/CONTRIBUTORS	Mon Jul 27 22:08:46 2015 +0200
+++ b/CONTRIBUTORS	Mon Jul 27 22:44:02 2015 +0200
@@ -18,6 +18,9 @@
   (semi)domains like units, associated elements and normalization
   wrt. units.
 
+* Summer 2015: Florian Haftmann, TUM
+  Fundamentals of abstract type class for factorial rings.
+
 
 Contributions to Isabelle2015
 -----------------------------
--- a/src/HOL/Library/Multiset.thy	Mon Jul 27 22:08:46 2015 +0200
+++ b/src/HOL/Library/Multiset.thy	Mon Jul 27 22:44:02 2015 +0200
@@ -1140,6 +1140,36 @@
 by (cases "finite A") (induct A rule: finite_induct, simp_all add: ac_simps)
 
 
+subsection \<open>Replicate operation\<close>
+
+definition replicate_mset :: "nat \<Rightarrow> 'a \<Rightarrow> 'a multiset" where
+  "replicate_mset n x = ((op + {#x#}) ^^ n) {#}"
+
+lemma replicate_mset_0[simp]: "replicate_mset 0 x = {#}"
+  unfolding replicate_mset_def by simp
+
+lemma replicate_mset_Suc[simp]: "replicate_mset (Suc n) x = replicate_mset n x + {#x#}"
+  unfolding replicate_mset_def by (induct n) (auto intro: add.commute)
+
+lemma in_replicate_mset[simp]: "x \<in># replicate_mset n y \<longleftrightarrow> n > 0 \<and> x = y"
+  unfolding replicate_mset_def by (induct n) simp_all
+
+lemma count_replicate_mset[simp]: "count (replicate_mset n x) y = (if y = x then n else 0)"
+  unfolding replicate_mset_def by (induct n) simp_all
+
+lemma set_mset_replicate_mset_subset[simp]: "set_mset (replicate_mset n x) = (if n = 0 then {} else {x})"
+  by (auto split: if_splits)
+
+lemma size_replicate_mset[simp]: "size (replicate_mset n M) = n"
+  by (induct n, simp_all)
+
+lemma count_le_replicate_mset_le: "n \<le> count M x \<longleftrightarrow> replicate_mset n x \<le># M"
+  by (auto simp add: assms mset_less_eqI) (metis count_replicate_mset subseteq_mset_def)
+
+lemma filter_eq_replicate_mset: "{#y \<in># D. y = x#} = replicate_mset (count D x) x"
+  by (induct D) simp_all
+
+
 subsection \<open>Big operators\<close>
 
 no_notation times (infixl "*" 70)
@@ -1195,6 +1225,10 @@
   from msetsum_def show "comm_monoid_mset.F plus 0 = msetsum" ..
 qed
 
+lemma (in semiring_1) msetsum_replicate_mset [simp]:
+  "msetsum (replicate_mset n a) = of_nat n * a"
+  by (induct n) (simp_all add: algebra_simps)
+
 lemma setsum_unfold_msetsum:
   "setsum f A = msetsum (image_mset f (mset_set A))"
   by (cases "finite A") (induct A rule: finite_induct, simp_all)
@@ -1267,6 +1301,10 @@
   "msetprod (A + B) = msetprod A * msetprod B"
   by (fact msetprod.union)
 
+lemma msetprod_replicate_mset [simp]:
+  "msetprod (replicate_mset n a) = a ^ n"
+  by (induct n) (simp_all add: ac_simps)
+
 lemma setprod_unfold_msetprod:
   "setprod f A = msetprod (image_mset f (mset_set A))"
   by (cases "finite A") (induct A rule: finite_induct, simp_all)
@@ -1302,37 +1340,6 @@
 qed
 
 
-subsection \<open>Replicate operation\<close>
-
-definition replicate_mset :: "nat \<Rightarrow> 'a \<Rightarrow> 'a multiset" where
-  "replicate_mset n x = ((op + {#x#}) ^^ n) {#}"
-
-lemma replicate_mset_0[simp]: "replicate_mset 0 x = {#}"
-  unfolding replicate_mset_def by simp
-
-lemma replicate_mset_Suc[simp]: "replicate_mset (Suc n) x = replicate_mset n x + {#x#}"
-  unfolding replicate_mset_def by (induct n) (auto intro: add.commute)
-
-lemma in_replicate_mset[simp]: "x \<in># replicate_mset n y \<longleftrightarrow> n > 0 \<and> x = y"
-  unfolding replicate_mset_def by (induct n) simp_all
-
-lemma count_replicate_mset[simp]: "count (replicate_mset n x) y = (if y = x then n else 0)"
-  unfolding replicate_mset_def by (induct n) simp_all
-
-lemma set_mset_replicate_mset_subset[simp]: "set_mset (replicate_mset n x) = (if n = 0 then {} else {x})"
-  by (auto split: if_splits)
-
-lemma size_replicate_mset[simp]: "size (replicate_mset n M) = n"
-  by (induct n, simp_all)
-
-lemma count_le_replicate_mset_le: "n \<le> count M x \<longleftrightarrow> replicate_mset n x \<le># M"
-  by (auto simp add: assms mset_less_eqI) (metis count_replicate_mset subseteq_mset_def)
-
-
-lemma filter_eq_replicate_mset: "{#y \<in># D. y = x#} = replicate_mset (count D x) x"
-  by (induct D) simp_all
-
-
 subsection \<open>Alternative representations\<close>
 
 subsubsection \<open>Lists\<close>
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Factorial_Ring.thy	Mon Jul 27 22:44:02 2015 +0200
@@ -0,0 +1,370 @@
+(*  Title:      HOL/Number_Theory/Factorial_Ring.thy
+    Author:     Florian Haftmann, TU Muenchen
+*)
+
+section \<open>Factorial (semi)rings\<close>
+
+theory Factorial_Ring
+imports Main Primes "~~/src/HOL/Library/Multiset" (*"~~/src/HOL/Library/Polynomial"*)
+begin
+
+context algebraic_semidom
+begin
+
+lemma is_unit_mult_iff:
+  "is_unit (a * b) \<longleftrightarrow> is_unit a \<and> is_unit b" (is "?P \<longleftrightarrow> ?Q")
+  by (auto dest: dvd_mult_left dvd_mult_right)
+
+lemma is_unit_power_iff:
+  "is_unit (a ^ n) \<longleftrightarrow> is_unit a \<or> n = 0"
+  by (induct n) (auto simp add: is_unit_mult_iff)
+  
+lemma subset_divisors_dvd:
+  "{c. c dvd a} \<subseteq> {c. c dvd b} \<longleftrightarrow> a dvd b"
+  by (auto simp add: subset_iff intro: dvd_trans)
+
+lemma strict_subset_divisors_dvd:
+  "{c. c dvd a} \<subset> {c. c dvd b} \<longleftrightarrow> a dvd b \<and> \<not> b dvd a"
+  by (auto simp add: subset_iff intro: dvd_trans)
+
+end
+
+class factorial_semiring = normalization_semidom +
+  assumes finite_divisors: "a \<noteq> 0 \<Longrightarrow> finite {b. b dvd a \<and> normalize b = b}"
+  fixes is_prime :: "'a \<Rightarrow> bool"
+  assumes not_is_prime_zero [simp]: "\<not> is_prime 0"
+    and is_prime_not_unit: "is_prime p \<Longrightarrow> \<not> is_unit p"
+    and no_prime_divisorsI: "(\<And>b. b dvd a \<Longrightarrow> \<not> is_prime b) \<Longrightarrow> is_unit a"
+  assumes is_primeI: "p \<noteq> 0 \<Longrightarrow> \<not> is_unit p \<Longrightarrow> (\<And>a. a dvd p \<Longrightarrow> \<not> is_unit a \<Longrightarrow> p dvd a) \<Longrightarrow> is_prime p"
+    and is_primeD: "is_prime p \<Longrightarrow> p dvd a * b \<Longrightarrow> p dvd a \<or> p dvd b"
+begin
+
+lemma not_is_prime_one [simp]:
+  "\<not> is_prime 1"
+  by (auto dest: is_prime_not_unit)
+
+lemma is_prime_not_zeroI:
+  assumes "is_prime p"
+  shows "p \<noteq> 0"
+  using assms by (auto intro: ccontr)
+
+lemma is_prime_multD:
+  assumes "is_prime (a * b)"
+  shows "is_unit a \<or> is_unit b"
+proof -
+  from assms have "a \<noteq> 0" "b \<noteq> 0" by auto
+  moreover from assms is_primeD [of "a * b"] have "a * b dvd a \<or> a * b dvd b"
+    by auto
+  ultimately show ?thesis
+    using dvd_times_left_cancel_iff [of a b 1]
+      dvd_times_right_cancel_iff [of b a 1]
+    by auto
+qed
+
+lemma is_primeD2:
+  assumes "is_prime p" and "a dvd p" and "\<not> is_unit a"
+  shows "p dvd a"
+proof -
+  from \<open>a dvd p\<close> obtain b where "p = a * b" ..
+  with \<open>is_prime p\<close> is_prime_multD \<open>\<not> is_unit a\<close> have "is_unit b" by auto
+  with \<open>p = a * b\<close> show ?thesis
+    by (auto simp add: mult_unit_dvd_iff)
+qed
+
+lemma is_prime_mult_unit_left:
+  assumes "is_prime p"
+    and "is_unit a"
+  shows "is_prime (a * p)"
+proof (rule is_primeI)
+  from assms show "a * p \<noteq> 0" "\<not> is_unit (a * p)"
+    by (auto simp add: is_unit_mult_iff is_prime_not_unit)
+  show "a * p dvd b" if "b dvd a * p" "\<not> is_unit b" for b
+  proof -
+    from that \<open>is_unit a\<close> have "b dvd p"
+      using dvd_mult_unit_iff [of a b p] by (simp add: ac_simps)
+    with \<open>is_prime p\<close> \<open>\<not> is_unit b\<close> have "p dvd b" 
+      using is_primeD2 [of p b] by auto
+    with \<open>is_unit a\<close> show ?thesis
+      using mult_unit_dvd_iff [of a p b] by (simp add: ac_simps)
+  qed
+qed
+
+lemma is_primeI2:
+  assumes "p \<noteq> 0"
+  assumes "\<not> is_unit p"
+  assumes P: "\<And>a b. p dvd a * b \<Longrightarrow> p dvd a \<or> p dvd b"
+  shows "is_prime p"
+using \<open>p \<noteq> 0\<close> \<open>\<not> is_unit p\<close> proof (rule is_primeI)
+  fix a
+  assume "a dvd p"
+  then obtain b where "p = a * b" ..
+  with \<open>p \<noteq> 0\<close> have "b \<noteq> 0" by simp
+  moreover from \<open>p = a * b\<close> P have "p dvd a \<or> p dvd b" by auto
+  moreover assume "\<not> is_unit a"
+  ultimately show "p dvd a"
+    using dvd_times_right_cancel_iff [of b a 1] \<open>p = a * b\<close> by auto
+qed    
+
+lemma not_is_prime_divisorE:
+  assumes "a \<noteq> 0" and "\<not> is_unit a" and "\<not> is_prime a"
+  obtains b where "b dvd a" and "\<not> is_unit b" and "\<not> a dvd b"
+proof -
+  from assms have "\<exists>b. b dvd a \<and> \<not> is_unit b \<and> \<not> a dvd b"
+    by (auto intro: is_primeI)
+  with that show thesis by blast
+qed
+
+lemma prime_divisorE:
+  assumes "a \<noteq> 0" and "\<not> is_unit a" 
+  obtains p where "is_prime p" and "p dvd a"
+  using assms no_prime_divisorsI [of a] by blast
+
+lemma prime_dvd_mult_iff:  
+  assumes "is_prime p"
+  shows "p dvd a * b \<longleftrightarrow> p dvd a \<or> p dvd b"
+  using assms by (auto dest: is_primeD)
+
+lemma prime_dvd_power_iff:
+  assumes "is_prime p"
+  shows "p dvd a ^ n \<longleftrightarrow> p dvd a \<and> n > 0"
+  using assms by (induct n) (auto dest: is_prime_not_unit is_primeD)
+
+lemma is_prime_normalize_iff [simp]:
+  "is_prime (normalize p) \<longleftrightarrow> is_prime p" (is "?P \<longleftrightarrow> ?Q")
+proof
+  assume ?Q show ?P
+    by (rule is_primeI) (insert \<open>?Q\<close>, simp_all add: is_prime_not_zeroI is_prime_not_unit is_primeD2)
+next
+  assume ?P show ?Q
+    by (rule is_primeI)
+      (insert is_prime_not_zeroI [of "normalize p"] is_prime_not_unit [of "normalize p"] is_primeD2 [of "normalize p"] \<open>?P\<close>, simp_all)
+qed  
+
+lemma is_prime_inj_power:
+  assumes "is_prime p"
+  shows "inj (op ^ p)"
+proof (rule injI, rule ccontr)
+  fix m n :: nat
+  have [simp]: "p ^ q = 1 \<longleftrightarrow> q = 0" (is "?P \<longleftrightarrow> ?Q") for q
+  proof
+    assume ?Q then show ?P by simp
+  next
+    assume ?P then have "is_unit (p ^ q)" by simp
+    with assms show ?Q by (auto simp add: is_unit_power_iff is_prime_not_unit)
+  qed
+  have *: False if "p ^ m = p ^ n" and "m > n" for m n
+  proof -
+    from assms have "p \<noteq> 0"
+      by (rule is_prime_not_zeroI)
+    then have "p ^ n \<noteq> 0"
+      by (induct n) simp_all
+    from that have "m = n + (m - n)" and "m - n > 0" by arith+
+    then obtain q where "m = n + q" and "q > 0" ..
+    with that have "p ^ n * p ^ q = p ^ n * 1" by (simp add: power_add)
+    with \<open>p ^ n \<noteq> 0\<close> have "p ^ q = 1"
+      using mult_left_cancel [of "p ^ n" "p ^ q" 1] by simp
+    with \<open>q > 0\<close> show ?thesis by simp
+  qed 
+  assume "m \<noteq> n"
+  then have "m > n \<or> m < n" by arith
+  moreover assume "p ^ m = p ^ n"
+  ultimately show False using * [of m n] * [of n m] by auto
+qed
+
+lemma prime_unique:
+  assumes "is_prime q" and "is_prime p" and "q dvd p"
+  shows "normalize q = normalize p"
+proof -
+  from assms have "p dvd q"
+    by (auto dest: is_primeD2 [of p] is_prime_not_unit [of q])
+  with assms show ?thesis
+    by (auto intro: associatedI)
+qed  
+
+lemma exists_factorization:
+  assumes "a \<noteq> 0"
+  obtains P where "\<And>p. p \<in># P \<Longrightarrow> is_prime p" "msetprod P = normalize a"
+proof -
+  let ?prime_factors = "\<lambda>a. {p. p dvd a \<and> is_prime p \<and> normalize p = p}"
+  have "?prime_factors a \<subseteq> {b. b dvd a \<and> normalize b = b}" by auto
+  moreover from assms have "finite {b. b dvd a \<and> normalize b = b}"
+    by (rule finite_divisors)
+  ultimately have "finite (?prime_factors a)" by (rule finite_subset)
+  then show thesis using \<open>a \<noteq> 0\<close> that proof (induct "?prime_factors a" arbitrary: thesis a)
+    case empty then have
+      P: "\<And>b. is_prime b \<Longrightarrow> b dvd a \<Longrightarrow> normalize b \<noteq> b" and "a \<noteq> 0"
+      by auto
+    have "is_unit a"
+    proof (rule no_prime_divisorsI)
+      fix b
+      assume "b dvd a"
+      then show "\<not> is_prime b"
+        using P [of "normalize b"] by auto
+    qed
+    then have "\<And>p. p \<in># {#} \<Longrightarrow> is_prime p" and "msetprod {#} = normalize a"
+      by (simp_all add: is_unit_normalize)
+    with empty show thesis by blast
+  next
+    case (insert p P)
+    from \<open>insert p P = ?prime_factors a\<close>
+    have "p dvd a" and "is_prime p" and "normalize p = p"
+      by auto
+    obtain n where "n > 0" and "p ^ n dvd a" and "\<not> p ^ Suc n dvd a" 
+    proof (rule that)
+      def N \<equiv> "{n. p ^ n dvd a}"
+      from is_prime_inj_power \<open>is_prime p\<close> have "inj (op ^ p)" .
+      then have "inj_on (op ^ p) U" for U
+        by (rule subset_inj_on) simp
+      moreover have "op ^ p ` N \<subseteq> {b. b dvd a \<and> normalize b = b}"
+        by (auto simp add: normalize_power \<open>normalize p = p\<close> N_def)
+      ultimately have "finite N"
+        by (rule inj_on_finite) (simp add: finite_divisors \<open>a \<noteq> 0\<close>)
+      from N_def \<open>a \<noteq> 0\<close> have "0 \<in> N" by (simp add: N_def)
+      then have "N \<noteq> {}" by blast
+      note * = \<open>finite N\<close> \<open>N \<noteq> {}\<close>
+      from N_def \<open>p dvd a\<close> have "1 \<in> N" by simp
+      with * show "Max N > 0"
+        by (auto simp add: Max_gr_iff)
+      from * have "Max N \<in> N" by (rule Max_in)
+      then show "p ^ Max N dvd a" by (simp add: N_def)
+      from * have "\<forall>n\<in>N. n \<le> Max N"
+        by (simp add: Max_le_iff [symmetric])
+      then have "p ^ Suc (Max N) dvd a \<Longrightarrow> Suc (Max N) \<le> Max N"
+        by (rule bspec) (simp add: N_def)
+      then show "\<not> p ^ Suc (Max N) dvd a"
+        by auto
+    qed
+    from \<open>p ^ n dvd a\<close> obtain c where "a = p ^ n * c" ..
+    with \<open>\<not> p ^ Suc n dvd a\<close> have "\<not> p dvd c"
+      by (auto elim: dvdE simp add: ac_simps)
+    have "?prime_factors a - {p} = ?prime_factors c" (is "?A = ?B")
+    proof (rule set_eqI)
+      fix q
+      show "q \<in> ?A \<longleftrightarrow> q \<in> ?B"
+      using \<open>normalize p = p\<close> \<open>is_prime p\<close> \<open>a = p ^ n * c\<close> \<open>\<not> p dvd c\<close>
+        prime_unique [of q p]
+        by (auto simp add: prime_dvd_power_iff prime_dvd_mult_iff)
+    qed
+    moreover from insert have "P = ?prime_factors a - {p}"
+      by auto
+    ultimately have "P = ?prime_factors c"
+      by simp
+    moreover from \<open>a \<noteq> 0\<close> \<open>a = p ^ n * c\<close> have "c \<noteq> 0"
+      by auto
+    ultimately obtain P where "\<And>p. p \<in># P \<Longrightarrow> is_prime p" "msetprod P = normalize c"
+      using insert(3) by blast 
+    with \<open>is_prime p\<close> \<open>a = p ^ n * c\<close> \<open>normalize p = p\<close>
+    have "\<And>q. q \<in># P + (replicate_mset n p) \<longrightarrow> is_prime q" "msetprod (P + replicate_mset n p) = normalize a"
+      by (auto simp add: ac_simps normalize_mult normalize_power)
+    with insert(6) show thesis by blast
+  qed
+qed
+  
+end
+
+instantiation nat :: factorial_semiring
+begin
+
+definition is_prime_nat :: "nat \<Rightarrow> bool"
+where
+  "is_prime_nat p \<longleftrightarrow> (1 < p \<and> (\<forall>n. n dvd p \<longrightarrow> n = 1 \<or> n = p))"
+
+lemma is_prime_eq_prime:
+  "is_prime = prime"
+  by (simp add: fun_eq_iff prime_def is_prime_nat_def)
+
+instance proof
+  show "\<not> is_prime (0::nat)" by (simp add: is_prime_nat_def)
+  show "\<not> is_unit p" if "is_prime p" for p :: nat
+    using that by (simp add: is_prime_nat_def)
+next
+  fix p :: nat
+  assume "p \<noteq> 0" and "\<not> is_unit p"
+  then have "p > 1" by simp
+  assume P: "\<And>n. n dvd p \<Longrightarrow> \<not> is_unit n \<Longrightarrow> p dvd n"
+  have "n = 1" if "n dvd p" "n \<noteq> p" for n
+  proof (rule ccontr)
+    assume "n \<noteq> 1"
+    with that P have "p dvd n" by auto
+    with \<open>n dvd p\<close> have "n = p" by (rule dvd_antisym)
+    with that show False by simp
+  qed
+  with \<open>p > 1\<close> show "is_prime p" by (auto simp add: is_prime_nat_def)
+next
+  fix p m n :: nat
+  assume "is_prime p"
+  then have "prime p" by (simp add: is_prime_eq_prime)
+  moreover assume "p dvd m * n"
+  ultimately show "p dvd m \<or> p dvd n"
+    by (rule prime_dvd_mult_nat)
+next
+  fix n :: nat
+  show "is_unit n" if "\<And>m. m dvd n \<Longrightarrow> \<not> is_prime m"
+    using that prime_factor_nat by (auto simp add: is_prime_eq_prime)
+qed simp
+
+end
+
+instantiation int :: factorial_semiring
+begin
+
+definition is_prime_int :: "int \<Rightarrow> bool"
+where
+  "is_prime_int p \<longleftrightarrow> is_prime (nat \<bar>p\<bar>)"
+
+lemma is_prime_int_iff [simp]:
+  "is_prime (int n) \<longleftrightarrow> is_prime n"
+  by (simp add: is_prime_int_def)
+
+lemma is_prime_nat_abs_iff [simp]:
+  "is_prime (nat \<bar>k\<bar>) \<longleftrightarrow> is_prime k"
+  by (simp add: is_prime_int_def)
+
+instance proof
+  show "\<not> is_prime (0::int)" by (simp add: is_prime_int_def)
+  show "\<not> is_unit p" if "is_prime p" for p :: int
+    using that is_prime_not_unit [of "nat \<bar>p\<bar>"] by simp
+next
+  fix p :: int
+  assume P: "\<And>k. k dvd p \<Longrightarrow> \<not> is_unit k \<Longrightarrow> p dvd k"
+  have "nat \<bar>p\<bar> dvd n" if "n dvd nat \<bar>p\<bar>" and "n \<noteq> Suc 0" for n :: nat
+  proof -
+    from that have "int n dvd p" by (simp add: int_dvd_iff)
+    moreover from that have "\<not> is_unit (int n)" by simp
+    ultimately have "p dvd int n" by (rule P)
+    with that have "p dvd int n" by auto
+    then show ?thesis by (simp add: dvd_int_iff)
+  qed
+  moreover assume "p \<noteq> 0" and "\<not> is_unit p"
+  ultimately have "is_prime (nat \<bar>p\<bar>)" by (intro is_primeI) auto
+  then show "is_prime p" by simp
+next
+  fix p k l :: int
+  assume "is_prime p"
+  then have *: "is_prime (nat \<bar>p\<bar>)" by simp
+  assume "p dvd k * l"
+  then have "nat \<bar>p\<bar> dvd nat \<bar>k * l\<bar>"
+    by (simp add: dvd_int_iff)
+  then have "nat \<bar>p\<bar> dvd nat \<bar>k\<bar> * nat \<bar>l\<bar>"
+    by (simp add: abs_mult nat_mult_distrib)
+  with * have "nat \<bar>p\<bar> dvd nat \<bar>k\<bar> \<or> nat \<bar>p\<bar> dvd nat \<bar>l\<bar>"
+    using is_primeD [of "nat \<bar>p\<bar>"] by auto
+  then show "p dvd k \<or> p dvd l"
+    by (simp add: dvd_int_iff)
+next
+  fix k :: int
+  assume P: "\<And>l. l dvd k \<Longrightarrow> \<not> is_prime l"
+  have "is_unit (nat \<bar>k\<bar>)"
+  proof (rule no_prime_divisorsI)
+    fix m
+    assume "m dvd nat \<bar>k\<bar>"
+    then have "int m dvd k" by (simp add: int_dvd_iff)
+    then have "\<not> is_prime (int m)" by (rule P)
+    then show "\<not> is_prime m" by simp
+  qed
+  then show "is_unit k" by simp
+qed simp
+
+end
+
+end
--- a/src/HOL/Number_Theory/Primes.thy	Mon Jul 27 22:08:46 2015 +0200
+++ b/src/HOL/Number_Theory/Primes.thy	Mon Jul 27 22:44:02 2015 +0200
@@ -35,7 +35,7 @@
 declare [[coercion_enabled]]
 
 definition prime :: "nat \<Rightarrow> bool"
-  where "prime p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
+  where "prime p = (1 < p \<and> (\<forall>m. m dvd p \<longrightarrow> m = 1 \<or> m = p))"
 
 lemmas prime_nat_def = prime_def
 
--- a/src/HOL/ROOT	Mon Jul 27 22:08:46 2015 +0200
+++ b/src/HOL/ROOT	Mon Jul 27 22:44:02 2015 +0200
@@ -188,6 +188,7 @@
     Gauss
     Number_Theory
     Euclidean_Algorithm
+    Factorial_Ring
   document_files
     "root.tex"